The Role of Cytokines and Chemokines as Biomarkers of Disease Activity in Idiopathic Nephrotic Syndrome in Children
Abstract
:1. Introduction
1.1. Overview of the Studied Clinical Problem
1.2. Proinflammatory and Anti-Inflammatory Cytokines and Chemokines in INS
2. Materials and Methods
2.1. Clinical Study Design
- at disease onset or relapse confirmation, prior to initiation of CS therapy, in order to abate its potential influence on results of laboratory investigations in this phase of the disease;
- at remission achievement with CS therapy, after which this therapy was gradually tapered over about eight weeks until discontinuation;
- after discontinuation of CS therapy in order to abate its potential influence on results of laboratory investigations in this phase of the disease.
2.2. Analytical Method
2.3. Statistical Method
2.4. Biologic and Demographic Data of Included Patients
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IL18 | Interleukin-18 |
HGF | Hepatocyte growth factor |
CCL19 | C-C motif chemokine 19 |
CCL2 | C-C motif chemokine 2 |
MMP12 | Macrophage metalloelastase |
LTA | Lymphotoxin-alpha |
FLT3LG | Fms-related tyrosine kinase 3 ligand |
TNF | Tumor necrosis factor |
IL17A | Interleukin-17A |
IL2 | Interleukin-2 |
IL17F | Interleukin-17F |
CSF3 | Granulocyte colony-stimulating factor |
IL1B | Interleukin-1 beta |
OLR1 | Oxidized low-density lipoprotein receptor 1 |
TNFSF12 | Tumor necrosis factor ligand superfamily member 12 |
CXCL10 | C-X-C motif chemokine 10 |
VEGFA | Vascular endothelial growth factor A |
IL33 | Interleukin-33 |
TSLP | Thymic stromal lymphopoietin |
IFNG | Interferon gamma |
CCL4 | C-C motif chemokine 4 |
TGFA | Protransforming growth factor alpha |
IL13 | Interleukin-13 |
CXCL8 | Interleukin-8 |
CCL8 | C-C motif chemokine 8 |
IL6 | Interleukin-6 |
CCL13 | C-C motif chemokine 13 |
CSF2 | Granulocyte–macrophage colony-stimulating factor |
CCL7 | C-C motif chemokine 7 |
IL4 | Interleukin-4 |
TNFSF10 | Tumor necrosis factor ligand superfamily member 10 |
OSM | Oncostatin-M |
MMP1 | Interstitial collagenase |
EGF | Pro-epidermal growth factor |
IL7 | Interleukin-7 |
IL15 | Interleukin-15 |
CSF1 | Macrophage colony-stimulating factor 1 |
CXCL9 | C-X-C motif chemokine 9 |
CXCL11 | C-X-C motif chemokine 11 |
IL17C | Interleukin-17C |
CXCL12 | Stromal cell-derived factor 1 |
CCL11 | Eotaxin |
IL10 | Interleukin-10 |
CCL3 | C-C motif chemokine 3 |
EBI3_IL27 | Interleukin-27 |
References
- Trautmann, A.; Boyer, O.; Hodson, E.; Bagga, A.; Gipson, D.S.; Samuel, S.; Wetzels, J.; Alhasan, K.; Banerjee, S.; Bhimma, R.; et al. International Pediatric Nephrology Association. IPNA clinical practice recommendations for the diagnosis and management of children with steroid-sensitive nephrotic syndrome. Pediatr. Nephrol. 2023, 38, 877–919. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Noone, D.G.; Iijima, K.; Parekh, R. Idiopathic nephrotic syndrome in children. Lancet 2018, 392, 61–74. [Google Scholar] [CrossRef]
- Tullus, K.; Webb, H.; Bagga, A. Management of steroid resistant nephrotic syndrome in children and adolescents. Lancet Child. Adolesc. Health 2018, 2, 880–890. [Google Scholar] [CrossRef]
- Carter, S.A.; Mistry, S.; Fitzpatrick, J.; Banh, T.; Hebert, D.; Langlois, V.; Pearl, R.J.; Chanchlani, R.; Licht, C.P.; Radhakrishnan, S.; et al. Prediction of short- and long-term outcomes in childhood nephrotic syndrome. Kidney Int. Rep. 2020, 5, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Furutera, N.; Fukunaga, N.; Okita, J.; Suzuki, T.; Suenaga, Y.; Oyama, Y.; Aoki, K.; Fukuda, A.; Nakata, T.; Uesugi, N.; et al. Two cases of idiopathic multicentric Castleman disease with nephrotic syndrome treated with tocilizumab. CEN Case Rep. 2021, 10, 35–41. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kalluri, R. Proteinuria with and without renal glomerular podocyte effacement. J. Am. Soc. Nephrol. 2006, 17, 2874–2883. [Google Scholar] [CrossRef]
- Yap, H.K.; Cheung, W.; Murugasu, B.; Sim, S.K.; Seah, C.-C.; Jordan, S.C. Th1 and Th2 cytokine mRNA profiles in childhood nephrotic syndrome. J. Am. Soc. Nephrol. 1999, 10, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Assarsson, E.; Lundberg, M.; Holmquist, G.; Björkesten, J.; Thorsen, S.B.; Ekman, D.; Eriksson, A.; Dickens, E.R.; Ohlsson, S.; Edfeldt, G.; et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS ONE 2014, 9, e95192. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, J.; Shi, F.; Xun, W. Leptin, hs-CRP, IL-18 and urinary protein before and after treatment of children with nephrotic syndrome. Exp. Ther. Med. 2018, 15, 4426–4430. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matsumoto, K.; Nakamura, T. Hepatocyte growth factor: Renotropic role and potential therapeutics for renal diseases. Kidney Int. 2001, 59, 2023–2038. [Google Scholar] [CrossRef] [PubMed]
- Souto, M.F.; Teixeira, A.L.; Russo, R.C.; Penido, M.G.; Silveira, K.D.; Teixeira, M.M.; Simões, E. Immune mediators in idiopathic nephrotic syndrome: Evidence for a relation between interleukin 8 and proteinuria. Pediatr. Res. 2008, 64, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Glasstetter, L.M.; Lerman, A.; Lerman, L.O. TSG-6 (Tumor Necrosis Factor-α-Stimulated Gene/Protein-6): An Emerging Remedy for Renal Inflammation. Hypertension 2023, 80, 35–42. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mariani, L.H.; Eddy, S.; AlAkwaa, F.M.; McCown, P.J.; Harder, J.L.; Nair, V.; Eichinger, F.; Martini, S.; Ademola, A.D.; Boima, V.; et al. Precision nephrology identified tumor necrosis factor activation variability in minimal change disease and focal segmental glomerulosclerosis. Kidney Int. 2023, 103, 565–579. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weissbach, A.; Garty, B.Z.; Lagovsky, I.; Krause, I.; Davidovits, M. Serum Tumor Necrosis Factor-Alpha Levels in Children with Nephrotic Syndrome: A Pilot Study. Isr. Med. Assoc. J. 2017, 19, 30–33. [Google Scholar] [PubMed]
- Cortvrindt, C.; Speeckaert, R.; Moerman, A.; Delanghe, J.R.; Speeckaert, M.M. The role of interleukin-17A in the pathogenesis of kidney diseases. Pathology 2017, 49, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Wu, L.; Wang, S.; Chen, X. Role of Chemokine (C-X-C Motif) Ligand 10 (CXCL10) in Renal Diseases. Mediators Inflamm. 2020, 2020, 6194864. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jia, W.; Dou, W.; Zeng, H.; Wang, Q.; Shi, P.; Liu, J.; Liu, Z.; Zhang, J.; Zhang, J. Diagnostic value of serum CRP, PCT and IL-6 in children with nephrotic syndrome complicated by infection: A single center retrospective study. Pediatr. Res. 2024, 95, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Afsar, B.; Covic, A.; Ortiz, A.; Afsar, R.E.; Kanbay, M. The Future of IL-1 Targeting in Kidney Disease. Drugs 2018, 78, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.J.; Ryu, J.H.; Piao, H.; Hwang, J.H.; Han, D.; Lee, S.K.; Jang, J.Y.; Lee, J.; Koo, T.Y.; Yang, J. Granulocyte Colony-Stimulating Factor Attenuates Renal Ischemia-Reperfusion Injury by Inducing Myeloid-Derived Suppressor Cells. J. Am. Soc. Nephrol. 2020, 31, 731–746. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nickavar, A.; Valavi, E.; Safaeian, B.; Amoori, P.; Moosavian, M. Predictive Value of Serum Interleukins in Children with Idiopathic Nephrotic Syndrome. Iran. J. Allergy Asthma Immunol. 2020, 19, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Estrada, C.C.; Maldonado, A.; Mallipattu, S.K. Therapeutic Inhibition of VEGF Signaling and Associated Nephrotoxicities. J. Am. Soc. Nephrol. 2019, 30, 187–200. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alikhan, M.A.; Jones, C.V.; Williams, T.M.; Beckhouse, A.G.; Fletcher, A.L.; Kett, M.M.; Sakkal, S. Colony-stimulating factor-1 promotes kidney growth and repair via alteration of macrophage responses. Am. J. Pathol. 2011, 179, 1243–1256. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Uchio, K.; Sawada, K.; Manabe, N. Expression of macrophage metalloelastase (MMP-12) in podocytes of hereditary nephrotic mice (ICGN strain). J. Vet. Med. Sci. 2009, 71, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Ko, Y.; Lee, C.H.; Jeon, N.; Lee, K.H.; Oh, J.; Kronbichler, A.; Saleem, M.A.; Lim, B.J.; Shin, J.I. The Effect of Interleukin-4 and Dexamethasone on RNA-Seq-Based Transcriptomic Profiling of Human Podocytes: A Potential Role in Minimal Change Nephrotic Syndrome. J. Clin. Med. 2021, 10, 496. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kang, J.; Bai, K.M.; Wang, B.L.; Yao, Z.; Pang, X.W.; Chen, W.F. Increased production of interleukin 4 in children with simple idiopathic nephrotic syndrome. Chin. Med. J. (Engl) 1994, 107, 347–350. [Google Scholar] [PubMed]
- Riedel, J.H.; Paust, H.J.; Krohn, S.; Turner, J.E.; Kluger, M.A.; Steinmetz, O.M.; Krebs, C.F.; Stahl, R.A.; Panzer, U. IL-17F Promotes Tissue Injury in Autoimmune Kidney Diseases. J. Am. Soc. Nephrol. 2016, 27, 3666–3677. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, H.; Zhang, Z.; Zhou, L.; Cai, T.; Liu, B.; Wang, L.; Yang, J. Identification of CCL19 as a Novel Immune-Related Biomarker in Diabetic Nephropathy. Front. Genet. 2022, 13, 830437. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Komatsuda, A.; Wakui, H.; Iwamoto, K.; Harada, M.; Okumoto, Y.; Sawada, K. Gene expression profiling of peripheral blood mononuclear cells from patients with minimal change nephrotic syndrome by cDNA microarrays. Am. J. Nephrol. 2008, 28, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Tian, G.; Lu, J.; Guo, H.; Liu, Q.; Wang, H. Protective effect of Flt3L on organ structure during advanced multiorgan dysfunction syndrome in mice. Mol. Med. Rep. 2015, 11, 4135–4141. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hodson, E.M.; Sinha, A.; Cooper, T.E. Interventions for focal segmental glomerulosclerosis in adults. Cochrane Database Syst. Rev. 2022, 2, CD003233. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Cytokine/Chemokine | G1 Average | G1 [Min, Max] | G2 Average | G2 [Min,Max] | p-Value (G1 vs. G2) | p-Value (Wilcoxon Test) | N |
---|---|---|---|---|---|---|---|
CSF1 | 17,914.68 | [13,500.14, 22,343.19] | 13484.45 | [9643.39, 16,363.25] | 0.001 | 0.002 | 13 |
MMP12 | 28,607.54 | [6436.08, 58,715.05] | 15,874.35 | [3696.65, 43,664.75] | 0.036 | 0.033 | 13 |
FLT3LG | 8445.84 | [2788.73, 18,855.89] | 5741.94 | [1951.46, 9135.27] | 0.050 | 0.040 | 13 |
IL4 | 0.0392 | [0.008, 0.1632] | 0.0102 | [0.0072, 0.0175] | 0.110 | 0.042 | 11 |
CCL19 | 10,939.78 | [2311.75, 31,713.69] | 6144.62 | [912.61, 13,383.07] | 0.042 | 0.068 | 13 |
G1 average | G1 [min, max] | G3 average | G3 [min,max] | p-value (G1 vs. G3) | p-value (Wilcoxon test) | N | |
CSF1 | 18,456.84 | [13,500.15, 22,343.19] | 13,776.12 | [11,727.92, 15,216.58] | 0.003 | 0.016 | 8 |
IL17F | 21.06 | [0.00034, 168.49] | 85.12 | [0.000196, 209.44] | 0.068 | 0.039 | 8 |
G2 average | G2 [min, max] | G3 average | G3 [min,max] | p-value (G2 vs. G3) | p-value (Wilcoxon test) | N | |
CCL19 | 7743.25 | [2344.13, 13,383.07] | 17,541.20 | [8872.62, 29,817.32] | 0.015 | 0.016 | 8 |
MMP12 | 18,486.89 | [3696.66, 43,664.75] | 42,074.98 | [15,489.89, 74,369.29] | 0.032 | 0.039 | 8 |
CCL13 | 16,545.44 | [9981.48, 26,466.91] | 32,143.81 | [7983.75, 54,187.33] | 0.041 | 0.054 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopač, M.; Jerin, A.; Petrera, A.; Osredkar, J. The Role of Cytokines and Chemokines as Biomarkers of Disease Activity in Idiopathic Nephrotic Syndrome in Children. Curr. Issues Mol. Biol. 2025, 47, 77. https://doi.org/10.3390/cimb47020077
Kopač M, Jerin A, Petrera A, Osredkar J. The Role of Cytokines and Chemokines as Biomarkers of Disease Activity in Idiopathic Nephrotic Syndrome in Children. Current Issues in Molecular Biology. 2025; 47(2):77. https://doi.org/10.3390/cimb47020077
Chicago/Turabian StyleKopač, Matjaž, Aleš Jerin, Agnese Petrera, and Joško Osredkar. 2025. "The Role of Cytokines and Chemokines as Biomarkers of Disease Activity in Idiopathic Nephrotic Syndrome in Children" Current Issues in Molecular Biology 47, no. 2: 77. https://doi.org/10.3390/cimb47020077
APA StyleKopač, M., Jerin, A., Petrera, A., & Osredkar, J. (2025). The Role of Cytokines and Chemokines as Biomarkers of Disease Activity in Idiopathic Nephrotic Syndrome in Children. Current Issues in Molecular Biology, 47(2), 77. https://doi.org/10.3390/cimb47020077