ncRNAs-Mediated Pyroptosis in Cerebral Ischemia-Reperfusion Injury: Pathophysiology, Mechanisms, and Therapeutic Perspectives
Abstract
:1. Introduction
2. The Role of Pyroptosis in CIRI
2.1. The Concept of Pyroptosis
2.2. The Role of Pyroptosis in CIRI
3. The Role of ncRNAs in CIRI
3.1. ncRNAs
3.2. The Role of ncRNAs in CIRI
4. The Role of ncRNAs-Mediated Pyroptosis in CIRI
4.1. The Role of lncRNAs-Mediated Pyroptosis in CIRI
4.2. The Role of miRNAs-Mediated Pyroptosis in CIRI
4.3. The Role of circRNAs-Mediated Pyroptosis in CIRI
5. Conclusions and Prospect
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
KCNQ1OT1 | KCNQ1 opposite strand/antisense transcript 1 |
IL-1β | interleukin-1β |
IL-18 | interleukin-18 |
GSDMD-NT | GSDMD-N-terminal fragments |
PD-L1 | programmed death-ligand 1 |
p-STAT3 | phosphorylated STAT3 |
CLIC4 | chloride intracellular channel 4 |
iNOS | inducible nitric oxide synthase |
TNF-α | tumor necrosis factor-alpha |
DGCR8 | DiGeorge Critical Region 8 |
3′-UTR | 3′-untranslated region |
OIP5-AS1 | Opa-interacting protein 5 antisense transcript 1 |
TXNIP | thioredoxin-interacting protein |
MEG3 | maternally expressed gene 3 |
EMT | epithelial-mesenchymal transition |
AIM2 | absent in melanoma 2 |
TUG1 | Taurine Up-regulated Gene 1 |
MDM2 | mouse double minute 2 |
FoxO1 | forkhead boxO1 |
TP53INP1 | tumor protein p53-Inducible Nuclear Protein 1 |
CIRI | Cerebral ischemia-reperfusion injury |
ncRNAs | non-coding RNAs |
caspase | cysteine aspartate-specific proteases |
lncRNAs | long non-coding RNAs |
miRNAs | microRNAs |
circRNAs | circular RNAs |
GSDM | gasdermin |
NLRP3 | NOD-like receptor thermal protein domain-associated protein 3 |
PRRs | pattern recognition receptors |
OGD/R | oxygen-glucose deprivation/reoxygenation |
MCAO/R | middle cerebral artery blockage/restoration |
SDSS | Sodium Danshensu |
BRCC3 | BRCA1/BRCA2-Containing Complex Subunit 3 |
M1 | the pro-inflammatory microglia |
M2 | the anti-inflammatory microglia |
pre-miRNAs | Precursor microRNAs |
TRBPs | TAR RNA-binding proteins |
RISC | RNA-induced silencing complex |
MREs | miRNA response elements |
CSF | cerebrospinal fluid |
XIST | X-inactive-specific transcript |
ASC | apoptosis-associated speck-like proteins containing a C-terminal caspase recruitment domain |
AQP4 | encoding aquaporin 4 |
NEATl | nuclear abundance transcript 1 |
MALAT1 | metastasis-associated lung adenocarcinoma transcript 1 |
DUSP14 | Dual specificity ATPase 14 |
EVs | extracellular vesicles |
References
- Bindal, P.; Kumar, V.; Kapil, L.; Singh, C.; Singh, A. Therapeutic management of ischemic stroke. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 2651–2679. [Google Scholar] [CrossRef] [PubMed]
- Tu, W.-J.; Zhao, Z.; Yin, P.; Cao, L.; Zeng, J.; Chen, H.; Fan, D.; Fang, Q.; Gao, P.; Gu, Y.; et al. Estimated Burden of Stroke in China in 2020. JAMA Netw. Open 2023, 6, e231455. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Liu, G.; Wang, Z.; Li, Y.; Fang, W. Circular RNAs: Promising Treatment Targets and Biomarkers of Ischemic Stroke. Int. J. Mol. Sci. 2023, 25, 178. [Google Scholar] [CrossRef]
- Zhang, L.; Han, Y.; Wu, X.; Chen, B.; Liu, S.; Huang, J.; Kong, L.; Wang, G.; Ye, Z. Research progress on the mechanism of curcumin in cerebral ischemia/reperfusion injury: A narrative review. Apoptosis 2023, 28, 1285–1303. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Jia, H.; Si, M.; Li, X.; Ma, Z.; Zhu, Y.; Sun, W.; Zhu, F.; Luo, S. Loureirin B protects against cerebral ischemia/reperfusion injury through modulating M1/M2 microglial polarization via STAT6/NF-kappaB signaling pathway. Eur. J. Pharmacol. 2023, 953, 175860. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; He, W.; Wei, H.; Chang, C.; Yang, L.; Meng, J.; Long, T.; Xu, Q.; Zhang, C. Srs11-92, a ferrostatin-1 analog, improves oxidative stress and neuroinflammation via Nrf2 signal following cerebral ischemia/reperfusion injury. CNS Neurosci. Ther. 2023, 29, 1667–1677. [Google Scholar] [CrossRef]
- Mahemuti, Y.; Kadeer, K.; Su, R.; Abula, A.; Aili, Y.; Maimaiti, A.; Abulaiti, S.; Maimaitituerxun, M.; Miao, T.; Jiang, S.; et al. TSPO exacerbates acute cerebral ischemia/reperfusion injury by inducing autophagy dysfunction. Exp. Neurol. 2023, 369, 114542. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, W.; Wei, X.; Shi, Y.; Zhang, K.; Hu, C.; Wan, J.; Luo, K.; Shen, W. Moxibustion ameliorates cerebral ischemia-reperfusion injury by regulating ferroptosis in rats. Clin. Exp. Pharmacol. Physiol. 2023, 50, 779–788. [Google Scholar] [CrossRef]
- Huang, J.; Chen, L.; Yao, Z.M.; Sun, X.R.; Tong, X.H.; Dong, S.Y. The role of mitochondrial dynamics in cerebral ischemia-reperfusion injury. Biomed. Pharmacother. 2023, 162, 114671. [Google Scholar] [CrossRef]
- Wei, J.; Xie, J.; He, J.; Li, D.; Wei, D.; Li, Y.; Li, X.; Fang, W.; Wei, G.; Lai, K. Active fraction of Polyrhachis vicina (Roger) alleviated cerebral ischemia/reperfusion injury by targeting SIRT3-mediated mitophagy and angiogenesis. Phytomedicine 2023, 121, 155104. [Google Scholar] [CrossRef]
- Duan, W.L.; Wang, X.J.; Ma, Y.P.; Sheng, Z.M.; Dong, H.; Zhang, L.Y.; Zhang, B.G.; He, M.T. Therapeutic strategies targeting the NLRP3-mediated inflammatory response and pyroptosis in cerebral ischemia/reperfusion injury (Review). Mol. Med. Rep. 2024, 29, 46. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Fan, L.L.; Ding, Y.L.; Wu, D.; Zheng, J.Y.; Cai, Y.F.; Huang, Y.; Qiao, L.J.; Zhang, S.J.; Zhan, J. Pre-electroacupuncture Ameliorates Cerebral Ischemia-reperfusion Injury by Inhibiting Microglial RhoA/pyrin/GSDMD Signaling Pathway. Neurochem. Res. 2024, 49, 3105–3117. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, Q.; Zhang, R.; Zhang, Y.; Zeng, W.; Yu, Q.; Zeng, M.; Gan, J.; Li, H.; Yang, L.; et al. Sodium Danshensu ameliorates cerebral ischemia/reperfusion injury by inhibiting CLIC4/NLRP3 inflammasome-mediated endothelial cell pyroptosis. Biofactors 2024, 50, 74–88. [Google Scholar] [CrossRef]
- Bai, W.; Huo, S.; Zhou, G.; Li, J.; Yang, Y.; Shao, J. Biliverdin modulates the Nrf2/A20/eEF1A2 axis to alleviate cerebral ischemia-reperfusion injury by inhibiting pyroptosis. Biomed. Pharmacother. 2023, 165, 115057. [Google Scholar] [CrossRef]
- Yang, L.; Gao, Y.; Huang, J.; Yang, H.; Zhao, P.; Li, C.; Yang, Z. LncRNA Gm44206 Promotes Microglial Pyroptosis Through NLRP3/Caspase-1/GSDMD Axis and Aggravate Cerebral Ischemia-Reperfusion Injury. DNA Cell Biol. 2023, 42, 554–562. [Google Scholar] [CrossRef]
- Li, J.; Xu, P.; Hong, Y.; Xie, Y.; Peng, M.; Sun, R.; Guo, H.; Zhang, X.; Zhu, W.; Wang, J.; et al. Lipocalin-2-mediated astrocyte pyroptosis promotes neuroinflammatory injury via NLRP3 inflammasome activation in cerebral ischemia/reperfusion injury. J. Neuroinflamm. 2023, 20, 148. [Google Scholar] [CrossRef]
- Feng, X.; Yang, X.; Zhong, Y.; Cheng, X. The role of ncRNAs-mediated pyroptosis in diabetes and its vascular complications. Cell Biochem. Funct. 2024, 42, e3968. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, X.; Cai, Z.; Zhou, J.; Cao, R.; Zhao, Y.; Chen, Z.; Wang, D.; Ruan, W.; Zhao, Q.; et al. A novel class of microRNA-recognition elements that function only within open reading frames. Nat. Struct. Mol. Biol. 2018, 25, 1019–1027. [Google Scholar] [CrossRef]
- Wang, N.; Yu, Y.; Xu, B.; Zhang, M.; Li, Q.; Miao, L. Pivotal prognostic and diagnostic role of the long non-coding RNA colon cancer-associated transcript 1 expression in human cancer (Review). Mol. Med. Rep. 2019, 19, 771–782. [Google Scholar] [CrossRef]
- Militello, G.; Weirick, T.; John, D.; Döring, C.; Dimmeler, S.; Uchida, S. Screening and validation of lncRNAs and circRNAs as miRNA sponges. Brief Bioinform. 2017, 18, 780–788. [Google Scholar] [CrossRef]
- Ye, J.; Shan, Y.; Zhou, X.; Tian, T.; Gao, W. Identification of Novel Circular RNA Targets in Key Penumbra Region of Rats After Cerebral Ischemia-Reperfusion Injury. J. Mol. Neurosci. 2023, 73, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Zychlinsky, A.; Prevost, M.C.; Sansonetti, P.J. Shigella flexneri induces apoptosis in infected macrophages. Nature 1992, 358, 167–169. [Google Scholar] [CrossRef] [PubMed]
- Cookson, B.T.; Brennan, M.A. Pro-inflammatory programmed cell death. Trends Microbiol. 2001, 9, 113–114. [Google Scholar] [CrossRef]
- Brennan, M.A.; Cookson, B.T. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol. Microbiol. 2000, 38, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Stoess, C.; Choi, Y.K.; Onyuru, J.; Friess, H.; Hoffman, H.M.; Hartmann, D.; Feldstein, A.E. Cell Death in Liver Disease and Liver Surgery. Biomedicines 2024, 12, 559. [Google Scholar] [CrossRef]
- Toldo, S.; Mauro, A.G.; Cutter, Z.; Abbate, A. Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H1553–H1568. [Google Scholar] [CrossRef]
- Wang, L.; Ren, W.; Wu, Q.; Liu, T.; Wei, Y.; Ding, J.; Zhou, C.; Xu, H.; Yang, S. NLRP3 Inflammasome Activation: A Therapeutic Target for Cerebral Ischemia-Reperfusion Injury. Front. Mol. Neurosci. 2022, 15, 847440. [Google Scholar] [CrossRef]
- Yarovinsky, T.O.; Su, M.; Chen, C.; Xiang, Y.; Tang, W.H.; Hwa, J. Pyroptosis in cardiovascular diseases: Pumping gasdermin on the fire. Semin. Immunol. 2023, 69, 101809. [Google Scholar] [CrossRef]
- Shi, J.; Gao, W.; Shao, F. Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. Trends Biochem. Sci. 2017, 42, 245–254. [Google Scholar] [CrossRef]
- Kayagaki, N.; Lee, B.L.; Stowe, I.B.; Kornfeld, O.S.; O’Rourke, K.; Mirrashidi, K.M.; Haley, B.; Watanabe, C.; Roose-Girma, M.; Modrusan, Z.; et al. IRF2 transcriptionally induces GSDMD expression for pyroptosis. Sci. Signal. 2019, 12, eaax4917. [Google Scholar] [CrossRef]
- Ma, X.; Li, Y.; Shen, W.; Oladejo, A.O.; Yang, J.; Jiang, W.; Imam, B.H.; Wu, X.; Ding, X.; Yang, Y.; et al. LPS Mediates Bovine Endometrial Epithelial Cell Pyroptosis Directly Through Both NLRP3 Classical and Non-Classical Inflammasome Pathways. Front. Immunol. 2021, 12, 676088. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zhao, Y.; Wang, Y.; Gao, W.; Ding, J.; Li, P.; Hu, L.; Shao, F. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 2014, 514, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Broz, P.; Pelegrín, P.; Shao, F. The gasdermins, a protein family executing cell death and inflammation. Nat. Rev. Immunol. 2020, 20, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.J.; Liu, X.; Xia, S.; Zhang, Z.; Zhang, Y.; Zhao, J.; Ruan, J.; Luo, X.; Lou, X.; Bai, Y.; et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat. Immunol. 2020, 21, 736–745. [Google Scholar] [CrossRef]
- Sarhan, J.; Liu, B.C.; Muendlein, H.I.; Li, P.; Nilson, R.; Tang, A.Y.; Rongvaux, A.; Bunnell, S.C.; Shao, F.; Green, D.R.; et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc. Natl. Acad. Sci. USA 2018, 115, e10888–e10897. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yang, T.; Xiao, J.; Xu, C.; Alippe, Y.; Sun, K.; Kanneganti, T.D.; Monahan, J.B.; Abu-Amer, Y.; Lieberman, J.; et al. NLRP3 inflammasome activation triggers gasdermin D-independent inflammation. Sci. Immunol. 2021, 6, eabj3859. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Zhao, R.; Xia, W.; Chang, C.W.; You, Y.; Hsu, J.M.; Nie, L.; Chen, Y.; Wang, Y.C.; Liu, C.; et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat. Cell Biol. 2020, 22, 1264–1275. [Google Scholar] [CrossRef]
- Meng, C.; Zhang, J.; Zhang, L.; Wang, Y.; Li, Z.; Zhao, J. Effects of NLRP6 in Cerebral Ischemia/Reperfusion (I/R) Injury in Rats. J. Mol. Neurosci. 2019, 69, 411–418. [Google Scholar] [CrossRef]
- Voet, S.; Srinivasan, S.; Lamkanfi, M.; van Loo, G. Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol. Med. 2019, 11, e10248. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, N.; Zhang, L.; Meng, C.; Zhao, J.; Wu, J. NLRP6 expressed in astrocytes aggravates neurons injury after OGD/R through activating the inflammasome and inducing pyroptosis. Int. Immunopharmacol. 2020, 80, 106183. [Google Scholar] [CrossRef]
- Feng, Y.S.; Tan, Z.X.; Wang, M.M.; Xing, Y.; Dong, F.; Zhang, F. Inhibition of NLRP3 Inflammasome: A Prospective Target for the Treatment of Ischemic Stroke. Front. Cell Neurosci. 2020, 14, 155. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Jiang, W.; Wang, R.; Zhong, H.; He, H.; Gao, X.; Zhong, S.; Yu, F.; Guo, Q.; Zhang, L.; et al. Brain endothelial GSDMD activation mediates inflammatory BBB breakdown. Nature 2024, 629, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Liu, M.; Fan, Y.; Zhang, J.; Liu, L.; Li, Y.; Zhang, Q.; Xie, H.; Jiang, C.; Wu, J.; et al. Intermittent theta-burst stimulation improves motor function by inhibiting neuronal pyroptosis and regulating microglial polarization via TLR4/NFκB/NLRP3 signaling pathway in cerebral ischemic mice. J. Neuroinflamm. 2022, 19, 141. [Google Scholar] [CrossRef] [PubMed]
- Ding, R.; Li, H.; Liu, Y.; Ou, W.; Zhang, X.; Chai, H.; Huang, X.; Yang, W.; Wang, Q. Activating cGAS-STING axis contributes to neuroinflammation in CVST mouse model and induces inflammasome activation and microglia pyroptosis. J. Neuroinflamm. 2022, 19, 137. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, S.; Yin, Y.; Yu, J.; Liu, Y.; Gao, H. Dexmedetomidine suppresses hippocampal astrocyte pyroptosis in cerebral hypoxic-ischemic neonatal rats by upregulating microRNA-148a-3p to inactivate the STAT/JMJD3 axis. Int. Immunopharmacol. 2023, 121, 110440. [Google Scholar] [CrossRef]
- Liang, Y.; Song, P.; Chen, W.; Xie, X.; Luo, R.; Su, J.; Zhu, Y.; Xu, J.; Liu, R.; Zhu, P.; et al. Inhibition of Caspase-1 Ameliorates Ischemia-Associated Blood-Brain Barrier Dysfunction and Integrity by Suppressing Pyroptosis Activation. Front. Cell Neurosci. 2020, 14, 540669. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, J.H.; He, Y.; Zhou, H.F.; Wang, Y.; Ding, Z.S.; Jin, B.; Wan, H.T. Protocatechuic aldehyde prevents ischemic injury by attenuating brain microvascular endothelial cell pyroptosis via lncRNA Xist. Phytomedicine 2022, 94, 153849. [Google Scholar] [CrossRef]
- Huang, X.; Gan, H.; Tan, J.; Wang, T.; Zhao, J.; Zhao, Y. BRCC3 promotes activation of the NLRP6 inflammasome following cerebral ischemia/reperfusion (I/R) injury in rats. Neurosci. Lett. 2021, 756, 135954. [Google Scholar] [CrossRef]
- Huang, X.; Tan, J.; Ji, Y.; Luo, J.; Zhao, Y.; Zhao, J. BRCC3 mediates inflammation and pyroptosis in cerebral ischemia/reperfusion injury by activating the NLRP6 inflammasome. CNS Neurosci. Ther. 2024, 30, e14697. [Google Scholar] [CrossRef]
- Rivest, S. Regulation of innate immune responses in the brain. Nat. Rev. Immunol. 2009, 9, 429–439. [Google Scholar] [CrossRef]
- Xu, S.; Lu, J.; Shao, A.; Zhang, J.H.; Zhang, J. Glial Cells: Role of the Immune Response in Ischemic Stroke. Front. Immunol. 2020, 11, 294. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.C.; Zhang, N.N.; Zhang, Y.N.; Chen, H.S. Kv1.3 channel blockade alleviates cerebral ischemia/reperfusion injury by reshaping M1/M2 phenotypes and compromising the activation of NLRP3 inflammasome in microglia. Exp. Neurol. 2020, 332, 113399. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.B.; Deng, X.; Wang, J.; Qi, Y.; Zhao, W.; Guan, S. HAX-1 interferes in assembly of NLRP3-ASC to block microglial pyroptosis in cerebral I/R injury. Cell Death Discov. 2024, 10, 264. [Google Scholar] [CrossRef]
- Long, J.; Sun, Y.; Liu, S.; Yang, S.; Chen, C.; Zhang, Z.; Chu, S.; Yang, Y.; Pei, G.; Lin, M.; et al. Targeting pyroptosis as a preventive and therapeutic approach for stroke. Cell Death Discov. 2023, 9, 155. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, F.; Xu, H.; Yang, H.; Shao, M.; Xu, S.; Lyu, F. TLR4 aggravates microglial pyroptosis by promoting DDX3X-mediated NLRP3 inflammasome activation via JAK2/STAT1 pathway after spinal cord injury. Clin. Transl. Med. 2022, 12, e894. [Google Scholar] [CrossRef]
- Zhou, C.; Li, J.X.; Zheng, C.X.; Zhou, X.Q.; Chen, C.; Qiu, S.W.; Liu, W.H.; Li, H. Neuroprotective effects of Jie-du-huo-xue decoction on microglia pyroptosis after cerebral ischemia and reperfusion—From the perspective of glial-vascular unit. J. Ethnopharmacol. 2024, 318, 116990. [Google Scholar] [CrossRef]
- Jung, B.K.; Park, Y.; Yoon, B.; Bae, J.S.; Han, S.W.; Heo, J.E.; Kim, D.E.; Ryu, K.Y. Reduced secretion of LCN2 (lipocalin 2) from reactive astrocytes through autophagic and proteasomal regulation alleviates inflammatory stress and neuronal damage. Autophagy 2023, 19, 2296–2317. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Sun, H.; Xu, C.; Sun, H.; Wei, W.; Song, J.; Jia, F.; Zhong, D.; Li, G. A2 reactive astrocyte-derived exosomes alleviate cerebral ischemia-reperfusion injury by delivering miR-628. J. Cell. Mol. Med. 2024, 28, e70004. [Google Scholar] [CrossRef]
- Xia, P.; Pan, Y.; Zhang, F.; Wang, N.; Wang, E.; Guo, Q.; Ye, Z. Pioglitazone Confers Neuroprotection Against Ischemia-Induced Pyroptosis due to its Inhibitory Effects on HMGB-1/RAGE and Rac1/ROS Pathway by Activating PPAR-ɤ. Cell. Physiol. Biochem. 2018, 45, 2351–2368. [Google Scholar] [CrossRef]
- An, P.; Xie, J.; Qiu, S.; Liu, Y.; Wang, J.; Xiu, X.; Li, L.; Tang, M. Hispidulin exhibits neuroprotective activities against cerebral ischemia reperfusion injury through suppressing NLRP3-mediated pyroptosis. Life Sci. 2019, 232, 116599. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cheng, L.; Zhan, H.; Li, H.; Li, X.; Huang, Y.; Li, Y. The Roles of Noncoding RNAs in Systemic Sclerosis. Front. Immunol. 2022, 13, 856036. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yujiao, W.; Fang, W.; Linhui, Y.; Ziqi, G.; Zhichen, W.; Zirui, W.; Shengwang, W. The roles of miRNA, lncRNA and circRNA in the development of osteoporosis. Biol. Res. 2020, 53, 40. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.; Tran, N. miRNA interplay: Mechanisms and consequences in cancer. Dis. Models Mech. 2021, 14, dmm047662. [Google Scholar] [CrossRef]
- Alarcón, C.R.; Lee, H.; Goodarzi, H.; Halberg, N.; Tavazoie, S.F. N6-methyladenosine marks primary microRNAs for processing. Nature 2015, 519, 482–485. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, Q.; Yu, L.; Zhu, D.; Li, Y.; Xue, Z.; Hua, Z.; Luo, X.; Song, Z.; Lu, C.; et al. The Role of miRNA in Tumor Immune Escape and miRNA-Based Therapeutic Strategies. Front. Immunol. 2021, 12, 807895. [Google Scholar] [CrossRef]
- Alvarez-Dominguez, J.R.; Lodish, H.F. Emerging mechanisms of long noncoding RNA function during normal and malignant hematopoiesis. Blood 2017, 130, 1965–1975. [Google Scholar] [CrossRef]
- Lin, C.; Yang, L. Long Noncoding RNA in Cancer: Wiring Signaling Circuitry. Trends Cell Biol. 2018, 28, 287–301. [Google Scholar] [CrossRef]
- Slaby, O.; Laga, R.; Sedlacek, O. Therapeutic targeting of non-coding RNAs in cancer. Biochem. J. 2017, 474, 4219–4251. [Google Scholar] [CrossRef]
- Chen, L.L.; Yang, L. Regulation of circRNA biogenesis. RNA Biol. 2015, 12, 381–388. [Google Scholar] [CrossRef]
- Yu, C.Y.; Kuo, H.C. The emerging roles and functions of circular RNAs and their generation. J. Biomed. Sci. 2019, 26, 29. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Ran, L.; Zhao, H.; Yin, P.; Li, W.; Lin, J.; Mao, H.; Cai, D.; Ma, Q.; Pan, X.; et al. Circular RNA circ-TNPO3 suppresses metastasis of GC by acting as a protein decoy for IGF2BP3 to regulate the expression of MYC and SNAIL. Mol. Ther.-Nucleic Acids 2021, 26, 649–664. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.J.; Ji, H.; Jeong, S.D.; Pandey, P.R.; Gorospe, M.; Kim, H.H. LINC00162 regulates cell proliferation and apoptosis by sponging PAQR4-targeting miR-485-5p. J. Cell. Physiol. 2022, 237, 2943–2960. [Google Scholar] [CrossRef] [PubMed]
- Heydarnezhad Asl, M.; Pasban Khelejani, F.; Bahojb Mahdavi, S.Z.; Emrahi, L.; Jebelli, A.; Mokhtarzadeh, A. The various regulatory functions of long noncoding RNAs in apoptosis, cell cycle, and cellular senescence. J. Cell. Biochem. 2022, 123, 995–1024. [Google Scholar] [CrossRef]
- Li, X.; Peng, X.; Zhou, X.; Li, M.; Chen, G.; Shi, W.; Yu, H.; Zhang, C.; Li, Y.; Feng, Z.; et al. Small extracellular vesicles delivering lncRNA WAC-AS1 aggravate renal allograft ischemia–reperfusion injury by inducing ferroptosis propagation. Cell Death Differ. 2023, 30, 2167–2186. [Google Scholar] [CrossRef]
- Yang, K.; Zeng, L.; Ge, A.; Wang, S.; Zeng, J.; Yuan, X.; Mei, Z.; Wang, G.; Ge, J. A systematic review of the research progress of non-coding RNA in neuroinflammation and immune regulation in cerebral infarction/ischemia-reperfusion injury. Front. Immunol. 2022, 13, 930171. [Google Scholar] [CrossRef]
- Zingale, V.D.; Gugliandolo, A.; Mazzon, E. MiR-155: An Important Regulator of Neuroinflammation. Int. J. Mol. Sci. 2021, 23, 90. [Google Scholar] [CrossRef]
- Fan, Y.; Ding, S.; Sun, Y.; Zhao, B.; Pan, Y.; Wan, J. MiR-377 Regulates Inflammation and Angiogenesis in Rats After Cerebral Ischemic Injury. J. Cell Biochem. 2018, 119, 327–337. [Google Scholar] [CrossRef]
- Song, S.; Pan, Y.; Li, H.; Zhen, H. MiR-1202 Exerts Neuroprotective Effects on OGD/R Induced Inflammation in HM Cell by Negatively Regulating Rab1a Involved in TLR4/NF-κB Signaling Pathway. Neurochem. Res. 2020, 45, 1120–1129. [Google Scholar] [CrossRef]
- Yin, W.L.; Yin, W.G.; Huang, B.S.; Wu, L.X. LncRNA SNHG12 inhibits miR-199a to upregulate SIRT1 to attenuate cerebral ischemia/reperfusion injury through activating AMPK signaling pathway. Neurosci. Lett. 2019, 690, 188–195. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Q.; Su, D.; Xie, Y. Long Non-coding RNAMALAT1 Knockdown Alleviates Cerebral Ischemia/Reperfusion Injury of Rats Through Regulating the miR-375/PDE4D Axis. Front. Neurol. 2020, 11, 578765. [Google Scholar] [CrossRef]
- Deng, L.; Jiang, J.; Chen, S.; Lin, X.; Zuo, T.; Hu, Q.; Wu, Y.; Fan, X.; Dong, Z. Long Non-coding RNA ANRIL Downregulation Alleviates Neuroinflammation in an Ischemia Stroke Model via Modulation of the miR-671-5p/NF-κB Pathway. Neurochem. Res. 2022, 47, 2002–2015. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Wang, Y.R.; Li, F.; Liu, X.L.; Zhang, H.; Zhu, Z.Z.; Huang, H.; Xu, X.H. Circ-camk4 involved in cerebral ischemia/reperfusion induced neuronal injury. Sci. Rep. 2020, 10, 7012. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, J.; Li, J.; Xu, L.; Lian, W. The decreased circular RNA hsa_circ_0072309 promotes cell apoptosis of ischemic stroke by sponging miR-100. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 4420–4429. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Xu, H.; Zhang, W.; Chen, Z.; Li, W.; Ke, W. Circular RNA circCCDC9 alleviates ischaemic stroke ischaemia/reperfusion injury via the Notch pathway. J. Cell Mol. Med. 2020, 24, 14152–14159. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Ho, E.S.; Mai, H.; Zang, J.; Liu, Y.; Li, Y.; Yang, B.; Ding, Y.; Tsang, C.K.; Xu, A. Identification of Blood Circular RNAs as Potential Biomarkers for Acute Ischemic Stroke. Front. Neurosci. 2020, 14, 81. [Google Scholar] [CrossRef] [PubMed]
- Ostolaza, A.; Blanco-Luquin, I.; Urdánoz-Casado, A.; Rubio, I.; Labarga, A.; Zandio, B.; Roldán, M.; Martínez-Cascales, J.; Mayor, S.; Herrera, M.; et al. Circular RNA expression profile in blood according to ischemic stroke etiology. Cell Biosci. 2020, 10, 34. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, J.; Han, B.; Meng, K.; Han, Y.; Ding, Y. Elucidating the Molecular Mechanism of Ischemic Stroke Using Integrated Analysis of miRNA, mRNA, and lncRNA Expression Profiles. Front. Integr. Neurosci. 2021, 15, 638114. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, J.K.; Ma, J. Regulation of the long noncoding RNA XIST on the inflammatory polarization of microglia in cerebral infarction. Exp. Ther. Med. 2021, 22, 924. [Google Scholar] [CrossRef]
- Wooten, S.; Smith, K.N. Long non-coding RNA OIP5-AS1 (Cyrano): A context-specific regulator of normal and disease processes. Clin. Transl. Med. 2022, 12, e706. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, W.; Chen, M.; Sun, Q.; Chen, H.; Li, Y. Up-regulating lncRNA OIP5-AS1 protects neuron injury against cerebral hypoxia-ischemia induced inflammation and oxidative stress in microglia/macrophage through activating CTRP3 via sponging miR-186-5p. Int. Immunopharmacol. 2021, 92, 107339. [Google Scholar] [CrossRef]
- Li, Z.; Pang, Y.; Hou, L.; Xing, X.; Yu, F.; Gao, M.; Wang, J.; Li, X.; Zhang, L.; Xiao, Y. Exosomal OIP5-AS1 attenuates cerebral ischemia-reperfusion injury by negatively regulating TXNIP protein stability and inhibiting neuronal pyroptosis. Int. Immunopharmacol. 2024, 127, 111310. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Gao, J.; Sun, D.; Jiao, Q.; Ma, J.; Cui, W.; Lou, Y.; Xu, F.; Li, S.; Li, H. LncRNA MEG3: Potential stock for precision treatment of cardiovascular diseases. Front. Pharmacol. 2022, 13, 1045501. [Google Scholar] [CrossRef] [PubMed]
- Balusu, S.; Horré, K.; Thrupp, N.; Craessaerts, K.; Snellinx, A.; Serneels, L.; T’Syen, D.; Chrysidou, I.; Arranz, A.M.; Sierksma, A.; et al. MEG3 activates necroptosis in human neuron xenografts modeling Alzheimer’s disease. Science 2023, 381, 1176–1182. [Google Scholar] [CrossRef]
- Yao, L.; Peng, P.; Ding, T.; Yi, J.; Liang, J. m(6)A-Induced lncRNA MEG3 Promotes Cerebral Ischemia-Reperfusion Injury Via Modulating Oxidative Stress and Mitochondrial Dysfunction by hnRNPA1/Sirt2 Axis. Mol. Neurobiol. 2024, 61, 6893–6908. [Google Scholar] [CrossRef]
- Liang, J.; Wang, Q.; Li, J.Q.; Guo, T.; Yu, D. Long non-coding RNA MEG3 promotes cerebral ischemia-reperfusion injury through increasing pyroptosis by targeting miR-485/AIM2 axis. Exp. Neurol. 2020, 325, 113139. [Google Scholar] [CrossRef]
- Zhu, B.; Cheng, X.; Jiang, Y.; Cheng, M.; Chen, L.; Bao, J.; Tang, X. Silencing of KCNQ1OT1 Decreases Oxidative Stress and Pyroptosis of Renal Tubular Epithelial Cells. Diabetes Metab. Syndr. Obes. 2020, 13, 365–375. [Google Scholar] [CrossRef]
- Wang, H.J.; Tang, X.L.; Huang, G.; Li, Y.B.; Pan, R.H.; Zhan, J.; Wu, Y.K.; Liang, J.F.; Bai, X.X.; Cai, J. Long Non-Coding KCNQ1OT1 Promotes Oxygen-Glucose-Deprivation/Reoxygenation-Induced Neurons Injury Through Regulating MIR-153-3p/FOXO3 Axis. J. Stroke Cerebrovasc. Dis. 2020, 29, 105126. [Google Scholar] [CrossRef]
- Yi, M.; Li, Y.; Wang, D.; Zhang, Q.; Yang, L.; Yang, C. KCNQ1OT1 Exacerbates Ischemia-Reperfusion Injury Through Targeted Inhibition of miR-140-3P. Inflammation 2020, 43, 1832–1845. [Google Scholar] [CrossRef]
- Li, Y.; Yi, M.; Wang, D.; Zhang, Q.; Yang, L.; Yang, C. Correction to: LncRNA KCNQ1OT1 Regulates Endoplasmic Reticulum Stress to Affect Cerebral Ischemia-Reperfusion Injury Through Targeting miR-30b/GRP78. Inflammation 2022, 45, 935–936. [Google Scholar] [CrossRef]
- Ren, Y.; Gao, X.P.; Liang, H.; Zhang, H.; Hu, C.Y. LncRNA KCNQ1OT1 contributes to oxygen-glucose-deprivation/reoxygenation-induced injury via sponging miR-9 in cultured neurons to regulate MMP8. Exp. Mol. Pathol. 2020, 112, 104356. [Google Scholar] [CrossRef]
- Xu, Y.; Niu, Y.; Li, H.; Pan, G. Downregulation of lncRNA TUG1 attenuates inflammation and apoptosis of renal tubular epithelial cell induced by ischemia-reperfusion by sponging miR-449b-5p via targeting HMGB1 and MMP2. Inflammation 2020, 43, 1362–1374. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Yu, J.; Liu, H.B.; Yan, X.Q.; Hu, J.; Yu, Y.; Guo, J.; Yuan, Y.; Du, Z.M. The long non-coding RNA TUG1-miR-9a-5p axis contributes to ischemic injuries by promoting cardiomyocyte apoptosis via targeting KLF5. Cell Death Dis. 2019, 10, 908. [Google Scholar] [CrossRef] [PubMed]
- Shan, W.; Chen, W.; Zhao, X.; Pei, A.; Chen, M.; Yu, Y.; Zheng, Y.; Zhu, S. Long noncoding RNA TUG1 contributes to cerebral ischaemia/reperfusion injury by sponging mir-145 to up-regulate AQP4 expression. J. Cell Mol. Med. 2020, 24, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Chen, W.P.; Yin, X.P.; Tu, J.L.; Hu, N.; Li, Z.Y. LncRNA TUG1 Demethylated by TET2 Promotes NLRP3 Expression, Contributes to Cerebral Ischemia/Reperfusion Inflammatory Injury. ASN Neuro 2021, 13, 17590914211003247. [Google Scholar] [CrossRef]
- Fan, W.; Qin, Y.; Tan, J.; Li, B.; Liu, Y.; Rong, J.; Shi, W.; Yu, B. RGD1564534 represses NLRP3 inflammasome activity in cerebral injury following ischemia-reperfusion by impairing miR-101a-3p-mediated Dusp1 inhibition. Exp. Neurol. 2023, 359, 114266. [Google Scholar] [CrossRef]
- Zhang, H.S.; Ouyang, B.; Ji, X.Y.; Liu, M.F. Gastrodin Alleviates Cerebral Ischaemia/Reperfusion Injury by Inhibiting Pyroptosis by Regulating the lncRNA NEAT1/miR-22-3p Axis. Neurochem. Res. 2021, 46, 1747–1758. [Google Scholar] [CrossRef]
- Liu, B.; Xu, T.; Meng, Y. IncRNA NEAT1 aggravates cerebral ischemia/reperfusion injury by sponging miR-874-3p. J. Biol. Regul. Homeost. Agents 2020, 34. [Google Scholar] [CrossRef]
- Shen, S.; Ma, L.; Shao, F.; Jin, L.; Bian, Z. Long Non-Coding RNA (lncRNA) NEAT1 Aggravates Cerebral Ischemia-Reperfusion Injury by Suppressing the Inhibitory Effect of miR-214 on PTEN. Med. Sci. Monit. 2020, 26, e924781. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, H.; Li, Q.; Fu, J.; Huang, J.; Zhao, Y. MALAT1 Activates the P53 Signaling Pathway by Regulating MDM2 to Promote Ischemic Stroke. Cell Physiol. Biochem. 2018, 50, 2216–2228. [Google Scholar] [CrossRef]
- Zhao, N.; Hua, W.; Liu, Q.; Wang, Y.; Liu, Z.; Jin, S.; Wang, B.; Pang, Y.; Qi, J.; Song, Y. MALAT1 knockdown alleviates the pyroptosis of microglias in diabetic cerebral ischemia via regulating STAT1 mediated NLRP3 transcription. Mol. Med. 2023, 29, 44. [Google Scholar] [CrossRef]
- Gao, P.; Shi, H.; Jin, X.; Guo, S.; Zhou, X.; Gao, W. Mechanism of astragaloside IV regulating NLRP3 through LOC102555978 to attenuate cerebral ischemia reperfusion induced microglia pyroptosis. Int. Immunopharmacol. 2024, 131, 111862. [Google Scholar] [CrossRef]
- Qin, X.; Lu, M.; Zhou, Y.; Li, G.; Liu, Z. LncRNA FENDRR represses proliferation, migration and invasion through suppression of survivin in cholangiocarcinoma cells. Cell Cycle 2019, 18, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Zhou, B.; Sun, Z.; Huang, S.; Han, L.; Nie, H.; Chen, G.; Liu, S.; Zhang, Y.; Bao, N.; et al. LncRNA-FENDRR mediates VEGFA to promote the apoptosis of brain microvascular endothelial cells via regulating miR-126 in mice with hypertensive intracerebral hemorrhage. Microcirculation 2018, 25, e12499. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Q.; Zheng, Y.Y.; Zhou, H.J.; Zhang, X.X.; Wu, P.; Zhu, S.M. LncRNA-Fendrr protects against the ubiquitination and degradation of NLRC4 protein through HERC2 to regulate the pyroptosis of microglia. Mol. Med. 2021, 27, 39. [Google Scholar] [CrossRef]
- Wang, Q.S.; Luo, X.Y.; Fu, H.; Luo, Q.; Wang, M.Q.; Zou, D.Y. MiR-139 protects against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced nerve injury through targeting c-Jun to inhibit NLRP3 inflammasome activation. J. Stroke Cerebrovasc. Dis. 2020, 29, 105037. [Google Scholar] [CrossRef]
- Yao, Y.; Hu, S.; Zhang, C.; Zhou, Q.; Wang, H.; Yang, Y.; Liu, C.; Ding, H. Ginsenoside Rd attenuates cerebral ischemia/reperfusion injury by exerting an anti-pyroptotic effect via the miR-139-5p/FoxO1/Keap1/Nrf2 axis. Int. Immunopharmacol. 2022, 105, 108582. [Google Scholar] [CrossRef]
- Yuan, X.W.; Yan, T.Q.; Tong, H. Effect of miR-515-5p on Proliferation and Drug Sensitivity of Retinoblastoma Cells. Cancer Manag. Res. 2020, 12, 12087–12098. [Google Scholar] [CrossRef]
- Shi, Y.; Li, K.; Xu, K.; Liu, Q.H. MiR-155-5p accelerates cerebral ischemia-reperfusion injury via targeting DUSP14 by regulating NF-κB and MAPKs signaling pathways. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 1408–1419. [Google Scholar] [CrossRef]
- Que, Y.Y.; Zhu, T.; Zhang, F.X.; Peng, J. Neuroprotective effect of DUSP14 overexpression against isoflurane-induced inflammatory response, pyroptosis and cognitive impairment in aged rats through inhibiting the NLRP3 inflammasome. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 7101–7113. [Google Scholar] [CrossRef]
- Shi, Y.; Li, Z.; Li, K.; Xu, K. miR-155-5p accelerates cerebral ischemia-reperfusion inflammation injury and cell pyroptosis via DUSP14/ TXNIP/NLRP3 pathway. Acta Biochim. Pol. 2022, 69, 787–793. [Google Scholar] [CrossRef]
- Dong, Q.; Long, X.; Cheng, J.; Wang, W.; Tian, Q.; Di, W. LncRNA GAS5 suppresses ovarian cancer progression by targeting the miR-96-5p/PTEN axis. Ann. Transl. Med. 2021, 9, 1770. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Duan, Y.; Li, S.; Wang, Q.; Zhen, W.; Zhang, W.; Zhang, Y.; Jiang, M.; Wang, C. miR-96-5p regulates myocardial infarction-induced cardiac fibrosis via Smad7/Smad3 pathway. Acta Biochim. Biophys. Sin. 2022, 54, 1874–1888. [Google Scholar] [CrossRef] [PubMed]
- Jin, F.; Jin, L.; Wei, B.; Li, X.; Li, R.; Liu, W.; Guo, S.; Fan, H.; Duan, C. miR-96-5p alleviates cerebral ischemia-reperfusion injury in mice by inhibiting pyroptosis via downregulating caspase 1. Exp. Neurol. 2024, 374, 114676. [Google Scholar] [CrossRef] [PubMed]
- Mo, W.Y.; Cao, S.Q. MiR-29a-3p: A potential biomarker and therapeutic target in colorectal cancer. Clin. Transl. Oncol. 2023, 25, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Hao, X.; Liu, J.; Zhang, Q.; Liang, Z.; Li, X.; Liu, H. miR-29a-3p Regulates Autophagy by Targeting Akt3-Mediated mTOR in SiO(2)-Induced Lung Fibrosis. Int. J. Mol. Sci. 2023, 24, 11440. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Wang, M. MiR-29a regulates cardiomyocyte apoptosis by targeting Bak1 in diabetic cardiomyopathy. J. Biochem. 2022, 171, 663–671. [Google Scholar] [CrossRef]
- Liu, X.; Lv, X.; Liu, Z.; Zhang, M.; Leng, Y. MircoRNA-29a in Astrocyte-derived Extracellular Vesicles Suppresses Brain Ischemia Reperfusion Injury via TP53INP1 and the NF-κB/NLRP3 Axis. Cell Mol. Neurobiol. 2022, 42, 1487–1500. [Google Scholar] [CrossRef]
- Luo, J.; Lang, J.; Xu, W.; Wang, L.; Zhao, Z.; Jia, J.; Lang, B. Electroacupuncture Alleviates Post-stroke Cognitive Impairment Through Inhibiting miR-135a-5p/mTOR/NLRP3 Axis-mediated Autophagy. Neuroscience 2024, 545, 185–195. [Google Scholar] [CrossRef]
- Chen, H.; Li, X. LncRNA ROR is involved in cerebral hypoxia/reoxygenation-induced injury in PC12 cells via regulating miR-135a-5p/ROCK1/2. Am. J. Transl. Res. 2019, 11, 6145–6158. [Google Scholar]
- Liu, Y.; Li, Y.P.; Xiao, L.M.; Chen, L.K.; Zheng, S.Y.; Zeng, E.M.; Xu, C.H. Extracellular vesicles derived from M2 microglia reduce ischemic brain injury through microRNA-135a-5p/TXNIP/NLRP3 axis. Lab. Investig. 2021, 101, 837–850. [Google Scholar] [CrossRef]
- Harraz, M.M.; Eacker, S.M.; Wang, X.; Dawson, T.M.; Dawson, V.L. MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proc. Natl. Acad. Sci. USA 2012, 109, 18962–18967. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhong, L.; Xian, R.; Yuan, B. MicroRNA-223 regulates inflammation and brain injury via feedback to NLRP3 inflammasome after intracerebral hemorrhage. Mol. Immunol. 2015, 65, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Sha, R.; Zhang, B.; Han, X.; Peng, J.; Zheng, C.; Zhang, F.; Huang, X. Electroacupuncture Alleviates Ischemic Brain Injury by Inhibiting the miR-223/NLRP3 Pathway. Med. Sci. Monit. 2019, 25, 4723–4733. [Google Scholar] [CrossRef]
- Hamzei Taj, S.; Kho, W.; Riou, A.; Wiedermann, D.; Hoehn, M. MiRNA-124 induces neuroprotection and functional improvement after focal cerebral ischemia. Biomaterials 2016, 91, 151–165. [Google Scholar] [CrossRef]
- Ponomarev, E.D.; Veremeyko, T.; Barteneva, N.; Krichevsky, A.M.; Weiner, H.L. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway. Nat. Med. 2011, 17, 64–70. [Google Scholar] [CrossRef]
- Sun, H.; Li, J.J.; Feng, Z.R.; Liu, H.Y.; Meng, A.G. MicroRNA-124 regulates cell pyroptosis during cerebral ischemia-reperfusion injury by regulating STAT3. Exp. Ther. Med. 2020, 20, 227. [Google Scholar] [CrossRef]
- Luo, J.; Jiang, N.; Chen, J.; Yu, G.; Zhao, J.; Yang, C.; Zhao, Y. Inhibition of miR-423-5p Exerts Neuroprotective Effects in an Experimental Rat Model of Cerebral Ischemia/Reperfusion Injury. Neuroscience 2022, 503, 95–106. [Google Scholar] [CrossRef]
- Wan, H.; Yuan, B.; Jiang, K.; Wei, J.; Feng, X.; Sun, B.; Wang, F. CircRNA CircRIMS is Overexpressed in Esophageal Squamous Cell Carcinoma and Downregulate miR-613 Through Methylation to Increase Cell Proliferation. Cancer Manag. Res. 2021, 13, 4587–4595. [Google Scholar] [CrossRef]
- Li, W.; Xie, L.; Wang, L.; Lin, F. CircRIMS promotes cerebral ischemia-reperfusion injury through increasing apoptosis and targeting the miR-96-5p/JAK/STAT1 axis. Brain Inj. 2023, 37, 1235–1244. [Google Scholar] [CrossRef]
- Wang, C.; Dong, M.; Zhang, X.; Wang, X.; Zhao, Y.; Cao, Y. Competitive binding of circCCDC6 to microRNA-128-3p activates TXNIP/NLRP3 pathway and promotes cerebral ischemia-reperfusion defects. Acta Biochim. Pol. 2023, 70, 807–815. [Google Scholar] [CrossRef]
- Cheng, X.; Ren, Z.; Jia, H.; Wang, G. METTL3 Mediates Microglial Activation and Blood-Brain Barrier Permeability in Cerebral Ischemic Stroke by Regulating NLRP3 Inflammasomes Through m6A Methylation Modification. Neurotox. Res. 2024, 42, 15. [Google Scholar] [CrossRef] [PubMed]
ncRNAs | Class | Animals/Cells | Expression on Disease | Targets | Effect on Pyroptosis | Function |
---|---|---|---|---|---|---|
XIST | lncRNA | Rat/ BMECs | ↓ | NLRP3/Caspase-1/GSDMD | Anti- | Protocatechaldehyde attenuates rBMEC pyroptosis by inhibiting NLRP3/Caspase-1/GSDMD pathway through lncRNA XIST, thereby preventing ischemic injury [47]. |
OIP5-AS1 | lncRNA | Rat/ Neurons | ↓ | ITCH/TXNIP | Anti- | OIP5-AS1 can negatively regulate TXNIP protein in vitro and in vivo, inhibit neuronal pyroptosis, and alleviate nerve damage after CIRI [89]. |
Gm44206 | lncRNA | Microglia | ↑ | NLRP3/Caspase-1/GSDMD | pro- | Gm44206 promotes microglial pyroptosis and exacerbates CIRI via the classical pathway [15]. |
MEG3 | lncRNA | Rat/Mice | ↑ | miR-485/AIM2 | pro- | MEG3 enhances pyroptosis by targeting the miR-485/AIM2 axis to promote cerebral ischemia and reperfusion injury [95]. |
KCNQ1OT1 | lncRNA | Mice/ Neurons | ↑ | MIR-153-3P/FOXO3 | pro- | KCNQ1OT1 modulates the miR-153-3P/FOXO3 axis to increase pyroptosis, thereby facilitating oxygen loss and glucose/reoxygenation-induced neuronal damage [97]. |
TUG1 | lncRNA | Mice/ Neurons | ↑ | miR-200a-3p/NLRP3 | pro- | TUG1 sponges miR-200a-3p, reducing miR-200a-3p levels and promoting the NLRP3-dependent inflammatory response, therefore enhancing pyroptosis to promote ischemia and reperfusion [104]. |
RGD1564534 | lncRNA | Rat/ Neurons | ↓ | miR-101a-3p/Dusp1/NLRP3 | Anti- | RGD1564534 enhances mitophagy, reduces NLRP3 inflammasome activity, and inhibits OGD/R-induced neuronal pyroptosis [105]. |
NEAT1 | lncRNA | Rat/ Neurons | ↑ | miR-22-3p/NLRP3 | pro- | Gastrodin alleviates cerebral ischemia/reperfusion injury by managing the lncRNA NEAT1/miR-22-3p axis and inhibiting pyroptosis [106]. |
MALAT1 | lncRNA | Mice/ Microglia | ↑ | STAT1/NLRP3 | pro- | MALAT1 plays a role in the pathogenesis of brain I/R damage through the MALAT1/STAT1-mediated microglial pyroptosis [110]. |
LOC102555978 | lncRNA | Rat/ Microglia | ↑ | miR-3584-5p/NLRP3 | pro- | The effect of astragaloside IV on NLRP3 through LOC102555978 in reducing microglial pyroptosis induced by cerebral ischemia/reperfusion [111]. |
FENDRR | lncRNA | Rat/ Microglia | ↑ | HERC2/NLRC4 | pro- | FENDRR can accelerate pyroptosis of microglia by inhibiting the ubiquitination and degradation of NLRC4 through E3 ubiquitin ligase [114]. |
miR-139 | miRNA | Mice/ Neurons | ↓ | FoxO1/Keap1/Nrf2 or c-Jun/NLRP3 | Anti- | Through negative regulation of c-Jun/NLRP3 inflammasome signaling, the upregulation of miR-139 provides protection for nerve damage caused by OGD/R [115]. |
miR-155-5p | miRNA | Rat/ Neurons | ↑ | DUSP14/TXNIP/NLRP3 | pro- | Knockdown of miR-155-5p mediates brain inflammation by modulating the DUSP14/TXNIP/NLRP3 axis. These results could offer a potential approach for reducing brain ischemia-reperfusion damage [120]. |
miR-96-5p | miRNA | Mice/ Neurons | ↓ | caspase 1/GSDMD | Anti- | Inhibition of caspase-1 on the shielding effect of miR-96-5p against ischemic stroke in vitro and vivo [123]. |
miR-29a | miRNA | Rat/ Microglia | ↓ | TP53INP1 and the NF-κB/NLRP3 | Anti- | Astrocyte-derived EVs containing miR-29a inhibit BIRI by downregulating TP53INP1 and NF-κB/NLRP3 [127]. |
miR-135a-5p | miRNA | Mice/ Neurons/Rat | ↓ | TXNIP/NLRP3 and mTOR/NLRP3 | Anti- | In M2 microglia-derived EVs, increased expression of miR-135a-5p inhibits NLRP3 inflammasome via TXNIP downregulation, and inhibits neuronal pyroptosis [128,130]. |
miR-223 | miRNA | Rat | ↓ | NLRP3/caspase-1 | Anti- | miR-223 levels were reduced, whereas NLRP3, caspase-1, IL 1β, and IL-18 levels were elevated in the peripheral cerebral cortex of MCAO rats [133]. |
miR-124 | miRNA | Rat | ↓ | STAT3/caspase-1 | Anti- | During CIRI, miR-124 may provide neuroprotection against pyroptosis, possibly by inhibiting the signaling pathway of STAT3 [136]. |
miR-423-5p | miRNA | Mice | ↑ | NLRP3/caspase-1 | pro- | The miR-423-5p inhibits the inflammation of I/R and cell pyroptosis in the brain through the NLRP3/caspase-1 pathway [137]. |
CircCRIM1 | circRNA | Mice/Astrocytes | ↑ | miR-96-5p/JAK/STAT1 | pro- | CircRIMS is involved in CIRI injury by regulation of the miR-96-5p/JAK/STAT1 axis [139]. |
CircCCDC6 | circRNA | Rat/ Neurons | ↑ | microRNA-128-3p/TXNIP/NLRP3 | pro- | CircCCDC6 mediates miR-128-3p and activates TXNIP/NLRP3, thereby facilitating neuronal pyroptosis and inflammation caused by OGD/R [140]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, R.; Peng, Q.; Chen, W.; Cheng, X.; Wang, G. ncRNAs-Mediated Pyroptosis in Cerebral Ischemia-Reperfusion Injury: Pathophysiology, Mechanisms, and Therapeutic Perspectives. Curr. Issues Mol. Biol. 2025, 47, 141. https://doi.org/10.3390/cimb47030141
Xu R, Peng Q, Chen W, Cheng X, Wang G. ncRNAs-Mediated Pyroptosis in Cerebral Ischemia-Reperfusion Injury: Pathophysiology, Mechanisms, and Therapeutic Perspectives. Current Issues in Molecular Biology. 2025; 47(3):141. https://doi.org/10.3390/cimb47030141
Chicago/Turabian StyleXu, Ruiyi, Quan Peng, Wen Chen, Xihua Cheng, and Guozuo Wang. 2025. "ncRNAs-Mediated Pyroptosis in Cerebral Ischemia-Reperfusion Injury: Pathophysiology, Mechanisms, and Therapeutic Perspectives" Current Issues in Molecular Biology 47, no. 3: 141. https://doi.org/10.3390/cimb47030141
APA StyleXu, R., Peng, Q., Chen, W., Cheng, X., & Wang, G. (2025). ncRNAs-Mediated Pyroptosis in Cerebral Ischemia-Reperfusion Injury: Pathophysiology, Mechanisms, and Therapeutic Perspectives. Current Issues in Molecular Biology, 47(3), 141. https://doi.org/10.3390/cimb47030141