Recent Advances in the Isolation Strategies of Plant-Derived Exosomes and Their Therapeutic Applications
Abstract
:1. Introduction
2. Characteristics of Plant-Derived Exosomes
3. Major Types of Exosome Extraction Methods
3.1. Ultracentrifugation
3.2. Density Gradient Centrifugation
3.3. Polymer-Based Precipitation
3.4. Size-Exclusion Chromatography
4. Isolation and Purification Methods of Plant-Derived Exosomes
4.1. Ultracentrifugation
4.2. Density Gradient Centrifugation
4.3. Polymer-Based Precipitation
4.4. Size-Exclusion Chromatography
5. Isolation Methods and Therapeutic Potential of Exosomes from Key Plant Species
5.1. Catharanthus roseus L.
5.2. Solanum nigrum L.
5.3. Pueraria lobata
5.4. Panax ginseng
5.5. Portulaca oleracea L.
5.6. Pachyrhizus erosus (Yam Bean)
5.7. Ginger Rhizomes
5.8. Carica papaya L.
5.9. Physalis minima (Golden Cherry)
5.10. Mulberry Bark
5.11. Allium sativum (Garlic)
5.12. Vitis vinifera (Grape)
5.13. Allium tuberosum
5.14. Brassica oleracea L. (Broccoli)
5.15. Houttuynia cordata
5.16. Atractylodes lancea Rhizome
5.17. Citrus limon
5.18. Salvia miltiorrhiza
5.19. Taraxacum officinale
5.20. Vaccinium ashei (Blueberry)
5.21. Asparagus cochinchinensis
5.22. Momordica charantia
5.23. Lycium barbarum L. (Goji Berry)
5.24. Citrus limon (Lemon)
5.25. Platycodon grandiflorum
5.26. Centella asiatica
5.27. Physalis peruviana (Goldenberry)
5.28. Panax notoginseng
5.29. Brucea javanica
5.30. Sesamum indicum L. (Sesame Leaves)
5.31. Citrus paradisi (Grapefruit)
5.32. Fragaria × ananassa (Strawberry)
5.33. Lycium barbarum L.
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ELNs | Exosome-like nanovesicles |
MVBs | Multivesicular bodies |
PEG | Polyethylene glycol |
MHC | Major histocompatibility complex |
CML | Chronic myeloid leukemia |
IBI | Ischemic brain injury |
TFF | Tangential flow filtration |
SR | Scavenger receptor |
TNBC | Triple-negative breast cancer |
References
- Chung, I.M.; Rajakumar, G.; Venkidasamy, B.; Subramanian, U.; Thiruvengadam, M. Exosomes: Current use and future applications. Clin. Chim. Acta 2020, 500, 226–232. [Google Scholar] [CrossRef]
- Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Q.; Qin, F.; Chen, J. Exosomes: A promising avenue for cancer diagnosis beyond treatment. Front. Cell Dev. Biol. 2024, 12, 1344705. [Google Scholar] [CrossRef]
- Fu, S.; Zhang, Y.; Li, Y.; Luo, L.; Zhao, Y.; Yao, Y. Extracellular vesicles in cardiovascular diseases. Cell Death Discov. 2020, 6, 68. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Bai, X.; Zhang, A.; Huang, J.; Xu, S.; Zhang, J. Role of Exosomes in Central Nervous System Diseases. Front. Mol. Neurosci. 2019, 12, 240. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, I.K.; Wood, M.J.A.; Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 2021, 16, 748–759. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Yang, W.; Cui, W.; Li, C.; Ma, C.; Ji, X.; Hong, J.; Qu, Z.; Chen, J.; Liu, A.; et al. Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon-bone healing. J. Nanobiotechnol. 2023, 21, 14. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Wijerathne, H.; Godwin, A.K.; Soper, S.A. Isolation and analysis methods of extracellular vesicles (EVs). Extracell. Vesicles Circ. Nucl. Acids 2021, 2, 80–103. [Google Scholar] [CrossRef]
- Di Bella, M.A. Overview and Update on Extracellular Vesicles: Considerations on Exosomes and Their Application in Modern Medicine. Biology 2022, 11, 804. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.I.; Park, J.; Zhu, Y.; Wang, X.; Han, Y.; Zhang, D. Recent advances in extracellular vesicles for therapeutic cargo delivery. Exp. Mol. Med. 2024, 56, 836–849. [Google Scholar] [CrossRef] [PubMed]
- Lian, M.Q.; Chng, W.H.; Liang, J.; Yeo, H.Q.; Lee, C.K.; Belaid, M.; Tollemeto, M.; Wacker, M.G.; Czarny, B.; Pastorin, G. Plant-derived extracellular vesicles: Recent advancements and current challenges on their use for biomedical applications. J. Extracell. Vesicles 2022, 11, e12283. [Google Scholar] [CrossRef] [PubMed]
- Welsh, J.A.; Goberdhan, D.C.I.; O’Driscoll, L.; Buzas, E.I.; Blenkiron, C.; Bussolati, B.; Cai, H.; Di Vizio, D.; Driedonks, T.A.P.; Erdbrugger, U.; et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J. Extracell. Vesicles 2024, 13, e12404. [Google Scholar] [CrossRef]
- Sall, I.M.; Flaviu, T.A. Plant and mammalian-derived extracellular vesicles: A new therapeutic approach for the future. Front. Bioeng. Biotechnol. 2023, 11, 1215650. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhu, N.; Yan, T.; Shi, Y.N.; Chen, J.; Zhang, C.J.; Xie, X.J.; Liao, D.F.; Qin, L. The crosstalk: Exosomes and lipid metabolism. Cell Commun. Signal 2020, 18, 119. [Google Scholar] [CrossRef] [PubMed]
- Gurung, S.; Perocheau, D.; Touramanidou, L.; Baruteau, J. The exosome journey: From biogenesis to uptake and intracellular signalling. Cell Commun. Signal 2021, 19, 47. [Google Scholar] [CrossRef]
- Sidhom, K.; Obi, P.O.; Saleem, A. A Review of Exosomal Isolation Methods: Is Size Exclusion Chromatography the Best Option? Int. J. Mol. Sci. 2020, 21, 6466. [Google Scholar] [CrossRef] [PubMed]
- Dimik, M.; Abeysinghe, P.; Logan, J.; Mitchell, M. The exosome: A review of current therapeutic roles and capabilities in human reproduction. Drug Deliv. Transl. Res. 2023, 13, 473–502. [Google Scholar] [CrossRef]
- Nemati, M.; Singh, B.; Mir, R.A.; Nemati, M.; Babaei, A.; Ahmadi, M.; Rasmi, Y.; Golezani, A.G.; Rezaie, J. Plant-derived extracellular vesicles: A novel nanomedicine approach with advantages and challenges. Cell Commun. Signal 2022, 20, 69. [Google Scholar] [CrossRef] [PubMed]
- Yi, Q.; Xu, Z.; Thakur, A.; Zhang, K.; Liang, Q.; Liu, Y.; Yan, Y. Current understanding of plant-derived exosome-like nanoparticles in regulating the inflammatory response and immune system microenvironment. Pharmacol. Res. 2023, 190, 106733. [Google Scholar] [CrossRef] [PubMed]
- Mu, N.; Li, J.; Zeng, L.; You, J.; Li, R.; Qin, A.; Liu, X.; Yan, F.; Zhou, Z. Plant-Derived Exosome-Like Nanovesicles: Current Progress and Prospects. Int. J. Nanomed. 2023, 18, 4987–5009. [Google Scholar] [CrossRef] [PubMed]
- Rai, A.; Fang, H.; Fatmous, M.; Claridge, B.; Poh, Q.H.; Simpson, R.J.; Greening, D.W. A Protocol for Isolation, Purification, Characterization, and Functional Dissection of Exosomes. Methods Mol. Biol. 2021, 2261, 105–149. [Google Scholar] [CrossRef] [PubMed]
- Liangsupree, T.; Multia, E.; Riekkola, M.L. Modern isolation and separation techniques for extracellular vesicles. J. Chromatogr. A 2021, 1636, 461773. [Google Scholar] [CrossRef] [PubMed]
- Subha, D.; Harshnii, K.; Madhikiruba, K.G.; Nandhini, M.; Tamilselvi, K.S. Plant derived exosome-like Nanovesicles: An updated overview. Plant Nano Biol. 2023, 3, 100022. [Google Scholar] [CrossRef]
- Zhan, W.; Deng, M.; Huang, X.; Xie, D.; Gao, X.; Chen, J.; Shi, Z.; Lu, J.; Lin, H.; Li, P. Pueraria lobata-derived exosome-like nanovesicles alleviate osteoporosis by enhacning autophagy. J. Control. Release 2023, 364, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Cho, J.H.; Park, S.H.; Kim, D.S.; Lee, H.P.; Kim, D.; Kim, H.S.; Kim, J.H.; Cho, J.Y. Ginseng root-derived exosome-like nanoparticles protect skin from UV irradiation and oxidative stress by suppressing activator protein-1 signaling and limiting the generation of reactive oxygen species. J. Ginseng Res. 2024, 48, 211–219. [Google Scholar] [CrossRef]
- Wang, X.; Wu, B.; Sun, G.; He, W.; Gao, J.; Huang, T.; Liu, J.; Zhou, Q.; He, X.; Zhang, S.; et al. Selenium Biofortification Enhanced miR167a Expression in Broccoli Extracellular Vesicles Inducing Apoptosis in Human Pancreatic Cancer Cells by Targeting IRS1. Int. J. Nanomed. 2023, 18, 2431–2446. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Chang, M.; Wang, Q.; Chen, J.; Liu, D.; He, W. Identifying the Potential of miRNAs in Houttuynia cordata-Derived Exosome-Like Nanoparticles Against Respiratory RNA Viruses. Int. J. Nanomed. 2023, 18, 5983–6000. [Google Scholar] [CrossRef]
- Zhang, X.; Pan, Z.; Wang, Y.; Liu, P.; Hu, K. Taraxacum officinale-derived exosome-like nanovesicles modulate gut metabolites to prevent intermittent hypoxia-induced hypertension. Biomed. Pharmacother. 2023, 161, 114572. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Cao, X.; Wu, W.; Han, L.; Wang, F. Investigating the proliferative inhibition of HepG2 cells by exosome-like nanovesicles derived from Centella asiatica extract through metabolomics. Biomed. Pharmacother. 2024, 176, 116855. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Xiao, Q.; Zhao, J.; Chen, H.; Xu, Y.; Tan, M.; Peng, L. Brucea javanica derived exosome-like nanovesicles deliver miRNAs for cancer therapy. J. Control. Release 2024, 367, 425–440. [Google Scholar] [CrossRef]
- Castelli, G.; Logozzi, M.; Mizzoni, D.; Di Raimo, R.; Cerio, A.; Dolo, V.; Pasquini, L.; Screnci, M.; Ottone, T.; Testa, U.; et al. Ex Vivo Anti-Leukemic Effect of Exosome-like Grapefruit-Derived Nanovesicles from Organic Farming-The Potential Role of Ascorbic Acid. Int. J. Mol. Sci. 2023, 24, 15663. [Google Scholar] [CrossRef]
- Perut, F.; Roncuzzi, L.; Avnet, S.; Massa, A.; Zini, N.; Sabbadini, S.; Giampieri, F.; Mezzetti, B.; Baldini, N. Strawberry-Derived Exosome-Like Nanoparticles Prevent Oxidative Stress in Human Mesenchymal Stromal Cells. Biomolecules 2021, 11, 87. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wong, D.K.; Hong, K.Y.; Raffai, R.L. Cushioned-Density Gradient Ultracentrifugation (C-DGUC): A Refined and High Performance Method for the Isolation, Characterization, and Use of Exosomes. Methods Mol. Biol. 2018, 1740, 69–83. [Google Scholar] [CrossRef]
- Li, Z.; Wang, H.; Yin, H.; Bennett, C.; Zhang, H.G.; Guo, P. Arrowtail RNA for Ligand Display on Ginger Exosome-like Nanovesicles to Systemic Deliver siRNA for Cancer Suppression. Sci. Rep. 2018, 8, 14644. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Jin, K.; Gao, L.; Zhang, Z.; Li, F.; Zhou, F.; Zhang, L. Methods and Technologies for Exosome Isolation and Characterization. Small Methods 2018, 2, 1800021. [Google Scholar] [CrossRef]
- Ou, X.; Wang, H.; Tie, H.; Liao, J.; Luo, Y.; Huang, W.; Yu, R.; Song, L.; Zhu, J. Novel plant-derived exosome-like nanovesicles from Catharanthus roseus: Preparation, characterization, and immunostimulatory effect via TNF-alpha/NF-kappaB/PU.1 axis. J. Nanobiotechnol. 2023, 21, 160. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Song, Q.; Bi, X.; Cui, W.; Fang, C.; Gao, J.; Li, J.; Wang, X.; Qu, K.; Qin, X.; et al. Preparation of Pueraria lobata Root-Derived Exosome-Like Nanovesicles and Evaluation of Their Effects on Mitigating Alcoholic Intoxication and Promoting Alcohol Metabolism in Mice. Int. J. Nanomed. 2024, 19, 4907–4921. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Li, W.; Bai, X.; Di Nunzio, G.; Fan, L.; Zhao, Y.; Ren, L.; Zhao, R.; Bian, S.; Liu, M.; et al. Ginseng-derived nanoparticles alleviate inflammatory bowel disease via the TLR4/MAPK and p62/Nrf2/Keap1 pathways. J. Nanobiotechnol. 2024, 22, 48. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Zhu, Y.; Chen, S.; Wang, D.; Zhang, S.; Xia, J.; Li, S.; Qiu, Q.; Lee, H.; Wang, J. Anti-glioma effect of ginseng-derived exosomes-like nanoparticles by active blood-brain-barrier penetration and tumor microenvironment modulation. J. Nanobiotechnol. 2023, 21, 253. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.Z.; Xu, H.M.; Liang, Y.J.; Xu, J.; Yue, N.N.; Zhang, Y.; Tian, C.M.; Yao, J.; Wang, L.S.; Nie, Y.Q.; et al. Edible exosome-like nanoparticles from Portulaca oleracea L mitigate DSS-induced colitis via facilitating double-positive CD4(+)CD8(+)T cells expansion. J. Nanobiotechnol. 2023, 21, 309. [Google Scholar] [CrossRef] [PubMed]
- Sriwastva, M.K.; Deng, Z.B.; Wang, B.; Teng, Y.; Kumar, A.; Sundaram, K.; Mu, J.; Lei, C.; Dryden, G.W.; Xu, F.; et al. Exosome-like nanoparticles from Mulberry bark prevent DSS-induced colitis via the AhR/COPS8 pathway. EMBO Rep. 2022, 23, e53365. [Google Scholar] [CrossRef]
- Sundaram, K.; Mu, J.; Kumar, A.; Behera, J.; Lei, C.; Sriwastva, M.K.; Xu, F.; Dryden, G.W.; Zhang, L.; Chen, S.; et al. Garlic exosome-like nanoparticles reverse high-fat diet induced obesity via the gut/brain axis. Theranostics 2022, 12, 1220–1246. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, K.; Teng, Y.; Mu, J.; Xu, Q.; Xu, F.; Sriwastva, M.K.; Zhang, L.; Park, J.W.; Zhang, X.; Yan, J.; et al. Outer Membrane Vesicles Released from Garlic Exosome-like Nanoparticles (GaELNs) Train Gut Bacteria that Reverses Type 2 Diabetes via the Gut-Brain Axis. Small 2024, 20, e2308680. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Dong, X.; Duan, T.; Wang, C.; Wang, L.; Yang, X.; Tian, H.; Li, T. peu-MIR2916-p3-enriched garlic exosomes ameliorate murine colitis by reshaping gut microbiota, especially by boosting the anti-colitic Bacteroides thetaiotaomicron. Pharmacol. Res. 2024, 200, 107071. [Google Scholar] [CrossRef]
- Ju, S.; Mu, J.; Dokland, T.; Zhuang, X.; Wang, Q.; Jiang, H.; Xiang, X.; Deng, Z.B.; Wang, B.; Zhang, L.; et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol. Ther. 2013, 21, 1345–1357. [Google Scholar] [CrossRef]
- Duan, T.; Wang, X.; Dong, X.; Wang, C.; Wang, L.; Yang, X.; Li, T. Broccoli-Derived Exosome-like Nanoparticles Alleviate Loperamide-Induced Constipation, in Correlation with Regulation on Gut Microbiota and Tryptophan Metabolism. J. Agric. Food Chem. 2023, 71, 16568–16580. [Google Scholar] [CrossRef] [PubMed]
- Raimondo, S.; Naselli, F.; Fontana, S.; Monteleone, F.; Lo Dico, A.; Saieva, L.; Zito, G.; Flugy, A.; Manno, M.; Di Bella, M.A.; et al. Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death. Oncotarget 2015, 6, 19514–19527. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xia, J.; Zhu, Y.; Dong, M.; Wang, J. Establishing Salvia miltiorrhiza-Derived Exosome-like Nanoparticles and Elucidating Their Role in Angiogenesis. Molecules 2024, 29, 1599. [Google Scholar] [CrossRef]
- Zhang, L.; He, F.; Gao, L.; Cong, M.; Sun, J.; Xu, J.; Wang, Y.; Hu, Y.; Asghar, S.; Hu, L.; et al. Engineering Exosome-Like Nanovesicles Derived from Asparagus cochinchinensis Can Inhibit the Proliferation of Hepatocellular Carcinoma Cells with Better Safety Profile. Int. J. Nanomed. 2021, 16, 1575–1586. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Huang, L.Y.; Hong, R.; Song, J.X.; Guo, X.J.; Zhou, W.; Hu, Z.L.; Wang, W.; Wang, Y.L.; Shen, J.G.; et al. Momordica charantia Exosome-Like Nanoparticles Exert Neuroprotective Effects Against Ischemic Brain Injury via Inhibiting Matrix Metalloproteinase 9 and Activating the AKT/GSK3beta Signaling Pathway. Front. Pharmacol. 2022, 13, 908830. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, S.; Zhang, Z.; Tang, M.; Meng, Z.; Peng, Z.; Liao, Y.; Yang, X.; Nussler, A.K.; Liu, L.; et al. Gouqi-derived nanovesicles (GqDNVs) inhibited dexamethasone-induced muscle atrophy associating with AMPK/SIRT1/PGC1alpha signaling pathway. J. Nanobiotechnol. 2024, 22, 276. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.; Teng, Y.; He, L.; Sayed, M.; Mu, J.; Xu, F.; Zhang, X.; Kumar, A.; Sundaram, K.; Sriwastva, M.K.; et al. Lemon exosome-like nanoparticles enhance stress survival of gut bacteria by RNase P-mediated specific tRNA decay. iScience 2021, 24, 102511. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, R.; Wang, A.; Li, Y.; Zhang, M.; Kim, J.; Zhu, Y.; Wang, Q.; Zhang, Y.; Wei, Y.; et al. Panax notoginseng: Derived exosome-like nanoparticles attenuate ischemia reperfusion injury via altering microglia polarization. J. Nanobiotechnol. 2023, 21, 416. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, K.; Cao, X.; Rong, W.; Shi, W.; Yu, Q.; Deng, W.; Yu, J.; Xu, X. Plant-derived exosomes extracted from Lycium barbarum L. loaded with isoliquiritigenin to promote spinal cord injury repair based on 3D printed bionic scaffold. Bioeng. Transl. Med. 2024, 9, e10646. [Google Scholar] [CrossRef]
- Emmanuela, N.; Muhammad, D.R.; Iriawati; Wijaya, C.H.; Ratnadewi, Y.M.D.; Takemori, H.; Ana, I.D.; Yuniati, R.; Handayani, W.; Wungu, T.D.K.; et al. Isolation of plant-derived exosome-like nanoparticles (PDENs) from Solanum nigrum L. berries and Their Effect on interleukin-6 expression as a potential anti-inflammatory agent. PLoS ONE 2024, 19, e0296259. [Google Scholar] [CrossRef]
- Kusnandar, M.R.; Wibowo, I.; Barlian, A. Characterizing Nanoparticle Isolated by Yam Bean (Pachyrhizus erosus) as a Potential Agent for Nanocosmetics: An in vitro and in vivo Approaches. Pharm. Nanotechnol. 2024, 13, 341–357. [Google Scholar] [CrossRef]
- Kalarikkal, S.P.; Prasad, D.; Kasiappan, R.; Chaudhari, S.R.; Sundaram, G.M. A cost-effective polyethylene glycol-based method for the isolation of functional edible nanoparticles from ginger rhizomes. Sci. Rep. 2020, 10, 4456. [Google Scholar] [CrossRef]
- Iriawati, I.; Vitasasti, S.; Rahmadian, F.N.A.; Barlian, A. Isolation and characterization of plant-derived exosome-like nanoparticles from Carica papaya L. fruit and their potential as anti-inflammatory agent. PLoS ONE 2024, 19, e0304335. [Google Scholar] [CrossRef]
- Setiadi, V.E.; Adlia, A.; Barlian, A.; Ayuningtyas, F.D.; Rachmawati, H. Development and Characterization of a Gel Formulation Containing Golden Cherry Exosomes (Physalis minima) as a Potential Anti-Photoaging. Pharm. Nanotechnol. 2023, 12, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Ishida, T.; Kawada, K.; Jobu, K.; Morisawa, S.; Kawazoe, T.; Nishimura, S.; Akagaki, K.; Yoshioka, S.; Miyamura, M. Exosome-like nanoparticles derived from Allium tuberosum prevent neuroinflammation in microglia-like cells. J. Pharm. Pharmacol. 2023, 75, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Ishida, T.; Morisawa, S.; Jobu, K.; Kawada, K.; Yoshioka, S.; Miyamura, M. Atractylodes lancea rhizome derived exosome-like nanoparticles prevent alpha-melanocyte stimulating hormone-induced melanogenesis in B16-F10 melanoma cells. Biochem. Biophys. Rep. 2023, 35, 101530. [Google Scholar] [CrossRef]
- Kawada, K.; Ishida, T.; Morisawa, S.; Jobu, K.; Higashi, Y.; Aizawa, F.; Yagi, K.; Izawa-Ishizawa, Y.; Niimura, T.; Abe, S.; et al. Atractylodes lancea (Thunb.) DC. [Asteraceae] rhizome-derived exosome-like nanoparticles suppress lipopolysaccharide-induced inflammation in murine microglial cells. Front. Pharmacol. 2024, 15, 1302055. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.J.; Bian, Y.P.; Wang, Q.H.; Yin, F.; Yin, L.; Zhang, Y.L.; Liu, J.H. Blueberry-derived exosomes-like nanoparticles ameliorate nonalcoholic fatty liver disease by attenuating mitochondrial oxidative stress. Acta Pharmacol. Sin. 2022, 43, 645–658. [Google Scholar] [CrossRef] [PubMed]
- Natania, F.; Iriawati, I.; Ayuningtyas, F.D.; Barlian, A. Potential of Plant-derived Exosome-like Nanoparticles from Physalis peruviana Fruit for Human Dermal Fibroblast Regeneration and Remodeling. Pharm. Nanotechnol. 2024. [Google Scholar] [CrossRef]
- Vanessa, V.; Rachmawati, H.; Barlian, A. Anti-inflammatory potential of goldenberry-derived exosome-like nanoparticles in macrophage polarization. Future Sci. OA 2024, 10, FSO943. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Na, J.; Lin, X.; Jiao, R.; Liu, X.; Huang, Y. Plant-derived exosome-like nanovesicles: A novel nanotool for disease therapy. Heliyon 2024, 10, e30630. [Google Scholar] [CrossRef] [PubMed]
- De Robertis, M.; Sarra, A.; D’Oria, V.; Mura, F.; Bordi, F.; Postorino, P.; Fratantonio, D. Blueberry-Derived Exosome-Like Nanoparticles Counter the Response to TNF-alpha-Induced Change on Gene Expression in EA.hy926 Cells. Biomolecules 2020, 10, 742. [Google Scholar] [CrossRef]
- Kim, J.; Gao, C.; Guo, P.; Sheng, J.; Wang, J. A novel approach to alleviate acetaminophen-induced hepatotoxicity with hybrid balloon flower root-derived exosome-like nanoparticles (BDEs) with silymarin via inhibition of hepatocyte MAPK pathway and apoptosis. Cell Commun. Signal 2024, 22, 334. [Google Scholar] [CrossRef]
- Jiang, D.; Li, Z.; Liu, H.; Liu, H.; Xia, X.; Xiang, X. Plant exosome-like nanovesicles derived from sesame leaves as carriers for luteolin delivery: Molecular docking, stability and bioactivity. Food Chem. 2024, 438, 137963. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Liu, Y.; Xu, Y.; Yan, G.; Zhou, N.; Chen, H.; Jiang, Z.; Peng, L. Plant-Derived Exosomes as Novel Nanotherapeutics Contrive Glycolysis Reprogramming-Mediated Angiogenesis for Diabetic Ulcer Healing. Biomater. Res. 2024, 28, 0035. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Hong, Y.D.; Kim, D.; Park, S.J.; Kim, J.S.; Kim, H.-M.; Yoon, E.J.; Cho, J.-S. Confirmation of plant-derived exosomes as bioactive substances for skin application through comparative analysis of keratinocyte transcriptome. Appl. Biol. Chem. 2022, 65, 8. [Google Scholar] [CrossRef]
- Lu, X.; Han, Q.; Chen, J.; Wu, T.; Cheng, Y.; Li, F.; Xia, W. Celery (Apium graveolens L.) Exosome-like Nanovesicles as a New-Generation Chemotherapy Drug Delivery Platform against Tumor Proliferation. J. Agric. Food Chem. 2023, 71, 8413–8424. [Google Scholar] [CrossRef] [PubMed]
- Viršilė, A.; Samuolienė, G.; Laužikė, K.; Mikalauskienė, E.; Balion, Z.; Jekabsone, A. The Impact of Genotype and Controlled Environment Cultivation Parameters on Tomato-Leaf-Derived Exosome-like Nanoparticle Yield and Properties. Horticulturae 2024, 10, 477. [Google Scholar] [CrossRef]
- You, J.Y.; Kang, S.J.; Rhee, W.J. Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells. Bioact. Mater. 2021, 6, 4321–4332. [Google Scholar] [CrossRef] [PubMed]
- Umezu, T.; Takanashi, M.; Murakami, Y.; Ohno, S.I.; Kanekura, K.; Sudo, K.; Nagamine, K.; Takeuchi, S.; Ochiya, T.; Kuroda, M. Acerola exosome-like nanovesicles to systemically deliver nucleic acid medicine via oral administration. Mol. Ther. Methods Clin. Dev. 2021, 21, 199–208. [Google Scholar] [CrossRef]
Exosome Origin | Extraction Method | Isolation Method | Application | Reference |
---|---|---|---|---|
Pueraria lobata | Double steam water at 60 °C | Ultracentrifugation | Osteoporosis (0–20 µM in BMSCs and 10 mg/kg in SD rats) | [24] |
Panax ginseng | Grinding machine | Ultracentrifugation | Oxidative stress (0–2 × 109 particles/mL in HaCaT cells) | [25] |
Brassica oleracea L. (broccoli) | Grinding machine | Ultracentrifugation | Apoptosis in human pancreatic cancer cells (0–40 mg/µL in PANC-1 cells) | [26] |
Houttuynia cordata | Grinding machine | Ultracentrifugation | Anti-viral effect against respiratory syncytial virus | [27] |
Taraxacum officinale | Not provided | Ultracentrifugation | Intermittent hypoxia-induced hypertension (Protein concentration of 0.5 mg/kg in SD rats) | [28] |
Centella asiatica | Crush | Ultracentrifugation | Anti-proliferation effect for HepG2 cells (0–80 µg/mL in HepG2 cells) | [29] |
Brucea javanica | Not provided | Ultracentrifugation | Triple-negative breast cancer (TNBC) (0–200 µg/mL in 4T1, MCF-7 and MDA-MB-231 cells, and 6 mg protein/kg in BALB/c mice) | [30] |
Citrus paradisi (grapefruit) | Not provided | Ultracentrifugation | Leukemia (0–1 × 1012/mL in leukemic and leukemic blast cell lines) | [31] |
Fragaria × ananassa (strawberry) | Squeeze | Ultracentrifugation | Anti-oxidant effect (0–9 µg/mL in human ADMSCs) | [32] |
Exosome Origin | Extraction Method | Isolation Method | Application | Reference |
---|---|---|---|---|
Catharanthus roseus L. | Digested with cellulase and pectinase | Sucrose density gradient with ultracentrifugation | Immunostimulatory effects (0–240 µg/mL in RAW 264.7 cells and 60 mg/kg in BALB/c mice) | [36] |
Pueraria lobata | Grinding machine | Sucrose density gradient with ultracentrifugation | Alcoholic liver injury (0–50 mg/kg in C57BL/6J mice) | [37] |
Panax ginseng | Cut into small pieces | Sucrose density gradient with ultracentrifugation | Inflammatory bowel disease (IBD) (0–20 µg/mL in RAW 264.7 and Caco-2 cells and 0–10 mg/mL in C57BL/6J mice) | [38] |
Grinding machine | Sucrose density gradient with ultracentrifugation | Glioma (0–62.5 µg/mL in C6 glioma cells, 2 mg/1 mL in Wister rats, and 2 mg/5 µL in BALB/c mice) | [39] | |
Portulaca oleracea L. | Grinding machine | Sucrose density gradient with ultracentrifugation | DSS-induced colitis (0–100 mg/g in C57BL/6 mice) | [40] |
Mulberry bark | Grinding machine | Sucrose density gradient with ultracentrifugation | DSS-induced colitis (1 × 1010 particles/100 µL/mouse in C57BL/6J mice) | [41] |
Allium sativum (garlic) | Grinding machine | Sucrose density gradient with ultracentrifugation | High-fat-diet-induced weight gain (1 × 1010 particles in C57BL/6J mice) | [42] |
Grinding machine | Sucrose density gradient with ultracentrifugation | Type 2 diabetes (High-fat-diet-induced type 2 diabetes) | [43] | |
Grinding machine | Sucrose density gradient with ultracentrifugation | DSS-induced colitis (0–50 mg/kg in C57BL/6J mice) | [44] | |
Vitis vinifera (grape) | Squeeze | Sucrose gradient | DSS-induced colitis (2 mg/200 µL/mouse in Lgr5-EGFP-IRES-CreERT2 and C57BL/6J mice daily for 7 days) | [45] |
Brassica oleracea L. (broccoli) | Grinding machine | Sucrose gradient with ultracentrifugation | Loperamide-induced constipation (17.5 mg/kg/d in LOP-induced constipated mice) | [46] |
Citrus limon | Squeeze | 30% sucrose/D2O cushion with ultracentrifugation | Apoptosis in chronic myeloid leukemia (CML) tumor growth (0–20 µg/mL in A549, SW480 and LAMA-84 cells and 0–50 µg in NOD/SCID mice bearing CML xenograft tumors) | [47] |
Salvia miltiorrhiza | Grinding machine | Sucrose density gradient with ultracentrifugation | Neovascularization in myocardial ischemia–reperfusion injury (0–100 µg/mL in HUVECs and 10 mg/kg in C57BL/6 mice) | [48] |
Asparagus cochinchinensis | Squeeze | Sucrose density gradient with ultracentrifugation | Cytotoxicity against human hepatocellular carcinoma (HCC) cells (0–50 µg/mL in HepG2, Hep3B, SMMC-7721, and LO2 cells and 15 mg/mouse in BALB/c and BALB/c nude mice bearing HepG2 xenograft tumors) | [49] |
Momordica charantia | Grinding machine | Sucrose density gradient with ultracentrifugation | Neuroprotective effects against ischemic brain injury (IBI) (0–800 µg/kg in SD rats) | [50] |
Lycium barbarum L. (goji berry) | Grinding machine | Sucrose density gradient with ultracentrifugation | Dexamethasone-induced muscle atrophy (0–1 × 109 particles/mL in C2C12 cells and 1 × 108 particles/mouse in C57BL/6J mice daily for 14 days) | [51] |
Citrus limon (lemon) | Squeeze | Sucrose density gradient with ultracentrifugation | Bile resistance enhancement (1 × 1010/mL in Lactobacillus rhamnosus GG and 5 × 109/g in C57BL/6 | [52] |
Panax notoginseng | Grinding machine | Sucrose density gradient with ultracentrifugation | Ischemia–reperfusion injury (3 mg/kg in SD rats) | [53] |
Lycium barbarum L. | Grinding machine | Sucrose density gradient with ultracentrifugation | Spinal cord injury repair | [54] |
Exosome Origin | Extraction Method | Isolation Method | Application | Reference |
---|---|---|---|---|
Solanum nigrum L. | Grinding machine | PEG 6000 with centrifugation | Anti-inflammatory activity (0–2.5 µg/mL in RAW 264.7 cells) | [55] |
Pachyrhizus erosus (yam bean) | Grinding machine | PEG 6000 | Anti-melanogenic effect in skin treatment (0–7.5 μg/mL concentration on melanocyte cell number of Zebrafish) | [56] |
Ginger rhizomes | Grinding machine | PEG 6000 or ultracentrifugation | Anti-oxidant activity | [57] |
Carica papaya L. | Grinding machine | PEG 6000 | Anti-inflammatory activity (0–100 µg/mL in RAW 264.7 cells) | [58] |
Physalis minima (golden cherry) | Grinding machine | PEG 6000 | Treatment of photoaging (approximately 400 µg/mL as the IC50 value in the DPPH assay) | [59] |
Allium tuberosum | Crush | Commercial exosome isolation kit | Neuroinflammation (0–20 µg/mL in BV-2 cells) | [60] |
Atractylodes lancea rhizome | Hot water extract | Commercial exosome isolation kit | Melanogenesis (0–20 µg/mL in B16-F10 melanoma cells) | [61] |
Hot water extract | Commercial exosome isolation kit | Anti-inflammatory effect in murine microglial cells (0–20 µg/mL in BV-2 cells) | [62] | |
Vaccinium ashei (blueberry) | Grinding machine | PEG 8000 | Nonalcoholic fatty liver disease (0–200 µg/mL in HepG2 cells and 0–100 mg/mouse in C57BL/6 mice) | [63] |
Physalis peruviana (goldenberry) | Grinding machine | PEG 6000 | Human dermal fibroblast regeneration and remodeling (0–7.5 µg/mL in HDF cells) | [64] |
Grinding machine | PEG 6000 | Anti-inflammatory potential by regulating macrophage M1/M2 polarization (0–40 µg/mL in RAW 264.7 cells) | [65] |
Exosome Origin | Extraction Method | Isolation Method | Application | Reference |
---|---|---|---|---|
Vaccinium ashei (blueberry) | Squeeze | Ultracentrifugation with 10,000 MWCO membrane | Anti-inflammatory effect in EA.hy926 cells (0–40 µg/mL in EA.hy926 cells) | [67] |
Platycodon grandiflorum | Grinding machine | TFF system | Acetaminophen-induced hepatotoxicity (100 µg/mL in RAW 264.7 cells and 200 µL of 1 mg/mL in C57BL/6J mice) | [68] |
Sesamum indicum L. (sesame leaves) | Grinding machine | 100 kD ultrafiltration membrane with ultrapure column | An anti-inflammatory effect in LPS-treated RAW 264.7 cells (0–40 µg/mL in RAW 264.7 cells) | [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mun, J.-G.; Song, D.-H.; Kee, J.-Y.; Han, Y. Recent Advances in the Isolation Strategies of Plant-Derived Exosomes and Their Therapeutic Applications. Curr. Issues Mol. Biol. 2025, 47, 144. https://doi.org/10.3390/cimb47030144
Mun J-G, Song D-H, Kee J-Y, Han Y. Recent Advances in the Isolation Strategies of Plant-Derived Exosomes and Their Therapeutic Applications. Current Issues in Molecular Biology. 2025; 47(3):144. https://doi.org/10.3390/cimb47030144
Chicago/Turabian StyleMun, Jeong-Geon, Dong-Ha Song, Ji-Ye Kee, and Yohan Han. 2025. "Recent Advances in the Isolation Strategies of Plant-Derived Exosomes and Their Therapeutic Applications" Current Issues in Molecular Biology 47, no. 3: 144. https://doi.org/10.3390/cimb47030144
APA StyleMun, J.-G., Song, D.-H., Kee, J.-Y., & Han, Y. (2025). Recent Advances in the Isolation Strategies of Plant-Derived Exosomes and Their Therapeutic Applications. Current Issues in Molecular Biology, 47(3), 144. https://doi.org/10.3390/cimb47030144