Waldenström Macroglobulinemia: The Role of TP53 Mutations in Disease Progression and Therapeutic Response
Abstract
:1. Introduction
2. Prevalence and Genetic Landscape of TP53 Mutations in WM
3. The Role of TP53 in the Prognosis of WM
4. Evaluating the Influence of TP53 on WM Therapy
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ARID1A | AT-rich Interaction Domain 1A |
ASPEN | A Study of Pharmacodynamics and Efficacy in Non-Hodgkin Lymphoma |
BAD | Bcl-2-Associated Death promoter |
BAX | Bcl-2-Associated X protein |
BTK | Bruton’s Tyrosine Kinase |
CBA | Chromosome Banding Analysis |
CD19 | Cluster of Differentiation 19 |
CD79A | Cluster of Differentiation 79A |
CD79B | Cluster of Differentiation 79B |
CHIP | Clonal Hematopoiesis of Indeterminate Potential |
CXCR4 | C-X-C Motif Chemokine Receptor 4 |
DLBCL | Diffuse Large B-Cell Lymphoma |
DNA | Deoxyribonucleic Acid |
FISH | Fluorescence In Situ Hybridization |
GPER1 | G-Protein-Coupled Estrogen Receptor 1 |
IGHV | Immunoglobulin Heavy Chain Variable |
IgM | Immunoglobulin M |
LPL | Lymphoplasmacytic Lymphoma |
MDM2 | Mouse Double Minute 2 |
MGUS | Monoclonal Gammopathy of Undetermined Significance |
MWCL-1 | Mantle-Cell Lymphoma Cell Line 1 |
MYD88 | Myeloid Differentiation Primary Response 88 |
NF-κB | Nuclear Factor kappa-light-chain-enhancer of activated B cells |
OS | Overall Survival |
P21 | Cell Circle Inhibitor P21 |
PFS | Progression-Free Survival |
PUMA | p53 Upregulated Modulator of Apoptosis |
TMNs | Therapy-related Myeloid Neoplasms |
TP53 | Tumor Protein 53 |
TTP | Time To Progression |
TTT | Time To Treatment |
WHIM | Warts, Hypogammaglobulinemia, Infections, and Myelokathexis |
WM | Waldenström Macroglobulinemia |
References
- Owen, R.G.; Treon, S.P.; Al-Katib, A.; Fonseca, R.; Greipp, P.R.; McMaster, M.L.; Morra, E.; Pangalis, G.A.; San Miguel, J.F.; Branagan, A.R.; et al. Clinicopathological Definition of Waldenstrom’s Macroglobulinemia: Consensus Panel Recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin. Oncol. 2003, 30, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.J.; Pascual, V. Pathophysiology of Waldenström’s Macroglobulinemia. Haematologica 2010, 95, 359–364. [Google Scholar] [CrossRef]
- Kyle, R.A.; Therneau, T.M.; Rajkumar, S.V.; Remstein, E.D.; Offord, J.R.; Larson, D.R.; Plevak, M.F.; Melton, L.J. Long-Term Follow-up of IgM Monoclonal Gammopathy of Undetermined Significance. Blood 2003, 102, 3759–3764. [Google Scholar] [CrossRef]
- Kapoor, P.; Ansell, S.M.; Fonseca, R.; Chanan-Khan, A.; Kyle, R.A.; Kumar, S.K.; Mikhael, J.R.; Witzig, T.E.; Mauermann, M.; Dispenzieri, A.; et al. Diagnosis and Management of Waldenström Macroglobulinemia: Mayo Stratification of Macroglobulinemia and Risk-Adapted Therapy (mSMART) Guidelines 2016. JAMA Oncol. 2017, 3, 1257–1265. [Google Scholar] [CrossRef]
- Treon, S.P.; Hunter, Z.R.; Aggarwal, A.; Ewen, E.P.; Masota, S.; Lee, C.; Santos, D.D.; Hatjiharissi, E.; Xu, L.; Leleu, X.; et al. Characterization of Familial Waldenstrom’s Macroglobulinemia. Ann. Oncol. 2006, 17, 488–494. [Google Scholar] [CrossRef]
- Kapoor, P.; Paludo, J.; Ansell, S.M. Waldenstrom Macroglobulinemia: Familial Predisposition and the Role of Genomics in Prognosis and Treatment Selection. Curr. Treat. Options Oncol. 2016, 17, 16. [Google Scholar] [CrossRef]
- Varettoni, M.; Tedeschi, A.; Arcaini, L.; Pascutto, C.; Vismara, E.; Orlandi, E.; Ricci, F.; Corso, A.; Greco, A.; Mangiacavalli, S.; et al. Risk of Second Cancers in Waldenström Macroglobulinemia. Ann. Oncol. 2012, 23, 411–415. [Google Scholar] [CrossRef]
- Lin, P.; Mansoor, A.; Bueso-Ramos, C.; Hao, S.; Lai, R.; Medeiros, L.J. Diffuse Large B-Cell Lymphoma Occurring in Patients with Lymphoplasmacytic Lymphoma/Waldenström Macroglobulinemia. Clinicopathologic Features of 12 Cases. Am. J. Clin. Pathol. 2003, 120, 246–253. [Google Scholar] [CrossRef]
- Leleu, X.; Soumerai, J.; Roccaro, A.; Hatjiharissi, E.; Hunter, Z.R.; Manning, R.; Ciccarelli, B.T.; Sacco, A.; Ioakimidis, L.; Adamia, S.; et al. Increased Incidence of Transformation and Myelodysplasia/Acute Leukemia in Patients with Waldenström Macroglobulinemia Treated with Nucleoside Analogs. J. Clin. Oncol. 2009, 27, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Castillo, J.J.; Gustine, J.; Meid, K.; Dubeau, T.; Hunter, Z.R.; Treon, S.P. Histological Transformation to Diffuse Large B-Cell Lymphoma in Patients with Waldenström Macroglobulinemia. Am. J. Hematol. 2016, 91, 1032–1035. [Google Scholar] [CrossRef] [PubMed]
- Durot, E.; Tomowiak, C.; Michallet, A.-S.; Dupuis, J.; Hivert, B.; Leprêtre, S.; Toussaint, E.; Godet, S.; Merabet, F.; Van Den Neste, E.; et al. Transformed Waldenström Macroglobulinaemia: Clinical Presentation and Outcome. A Multi-Institutional Retrospective Study of 77 Cases from the French Innovative Leukemia Organization (FILO). Br. J. Haematol. 2017, 179, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, M.A.; Panayiotidis, P.; Moulopoulos, L.A.; Sfikakis, P.; Dalakas, M. Waldenström’s Macroglobulinemia: Clinical Features, Complications, and Management. J. Clin. Oncol. 2000, 18, 214–226. [Google Scholar] [CrossRef]
- Gertz, M.A.; Fonseca, R.; Rajkumar, S.V. Waldenström’s Macroglobulinemia. Oncologist 2000, 5, 63–67. [Google Scholar] [CrossRef]
- Jiménez, C.; Sebastián, E.; Chillón, M.C.; Giraldo, P.; Mariano Hernández, J.; Escalante, F.; González-López, T.J.; Aguilera, C.; de Coca, A.G.; Murillo, I.; et al. MYD88 L265P Is a Marker Highly Characteristic of, but Not Restricted to, Waldenström’s Macroglobulinemia. Leukemia 2013, 27, 1722–1728. [Google Scholar] [CrossRef] [PubMed]
- Poulain, S.; Roumier, C.; Decambron, A.; Renneville, A.; Herbaux, C.; Bertrand, E.; Tricot, S.; Daudignon, A.; Galiègue-Zouitina, S.; Soenen, V.; et al. MYD88 L265P Mutation in Waldenstrom Macroglobulinemia. Blood 2013, 121, 4504–4511. [Google Scholar] [CrossRef]
- Varettoni, M.; Arcaini, L.; Zibellini, S.; Boveri, E.; Rattotti, S.; Riboni, R.; Corso, A.; Orlandi, E.; Bonfichi, M.; Gotti, M.; et al. Prevalence and Clinical Significance of the MYD88 (L265P) Somatic Mutation in Waldenstrom’s Macroglobulinemia and Related Lymphoid Neoplasms. Blood 2013, 121, 2522–2528. [Google Scholar] [CrossRef]
- Xu, L.; Hunter, Z.R.; Yang, G.; Zhou, Y.; Cao, Y.; Liu, X.; Morra, E.; Trojani, A.; Greco, A.; Arcaini, L.; et al. MYD88 L265P in Waldenström Macroglobulinemia, Immunoglobulin M Monoclonal Gammopathy, and Other B-Cell Lymphoproliferative Disorders Using Conventional and Quantitative Allele-Specific Polymerase Chain Reaction. Blood 2013, 121, 2051–2058. [Google Scholar] [CrossRef]
- Gustine, J.; Meid, K.; Xu, L.; Hunter, Z.R.; Castillo, J.J.; Treon, S.P. To Select or Not to Select? The Role of B-Cell Selection in Determining the MYD88 Mutation Status in Waldenström Macroglobulinaemia. Br. J. Haematol. 2017, 176, 822–824. [Google Scholar] [CrossRef]
- Hunter, Z.R.; Xu, L.; Yang, G.; Zhou, Y.; Liu, X.; Cao, Y.; Manning, R.J.; Tripsas, C.; Patterson, C.J.; Sheehy, P.; et al. The Genomic Landscape of Waldenstrom Macroglobulinemia Is Characterized by Highly Recurring MYD88 and WHIM-like CXCR4 Mutations, and Small Somatic Deletions Associated with B-Cell Lymphomagenesis. Blood 2014, 123, 1637–1646. [Google Scholar] [CrossRef]
- Xu, L.; Hunter, Z.R.; Tsakmaklis, N.; Cao, Y.; Yang, G.; Chen, J.; Liu, X.; Kanan, S.; Castillo, J.J.; Tai, Y.-T.; et al. Clonal Architecture of CXCR4 WHIM-like Mutations in Waldenström Macroglobulinaemia. Br. J. Haematol. 2016, 172, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Ocio, E.M.; Schop, R.F.J.; Gonzalez, B.; Van Wier, S.A.; Hernandez-Rivas, J.M.; Gutierrez, N.C.; Garcia-Sanz, R.; Moro, M.J.; Aguilera, C.; Hernandez, J.; et al. 6q Deletion in Waldenström Macroglobulinemia Is Associated with Features of Adverse Prognosis. Br. J. Haematol. 2007, 136, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Qi, C.; Trieu, Y.; Jiang, A.; Young, K.H.; Chesney, A.; Jani, P.; Wang, C.; Reece, D.; Chen, C. Prognostic Relevance of 6q Deletion in Waldenström’s Macroglobulinemia: A Multicenter Study. Clin. Lymphoma Myeloma 2009, 9, 36–38. [Google Scholar] [CrossRef] [PubMed]
- Varettoni, M.; Zibellini, S.; Defrancesco, I.; Ferretti, V.V.; Rizzo, E.; Malcovati, L.; Gallì, A.; Porta, M.G.D.; Boveri, E.; Arcaini, L.; et al. Pattern of Somatic Mutations in Patients with Waldenström Macroglobulinemia or IgM Monoclonal Gammopathy of Undetermined Significance. Haematologica 2017, 102, 2077–2085. [Google Scholar] [CrossRef]
- Poulain, S.; Roumier, C.; Venet-Caillault, A.; Figeac, M.; Herbaux, C.; Marot, G.; Doye, E.; Bertrand, E.; Geffroy, S.; Lepretre, F.; et al. Genomic Landscape of CXCR4 Mutations in Waldenström Macroglobulinemia. Clin. Cancer Res. 2016, 22, 1480–1488. [Google Scholar] [CrossRef]
- Terré, C.; Nguyen-Khac, F.; Barin, C.; Mozziconacci, M.J.; Eclache, V.; Léonard, C.; Chapiro, E.; Farhat, H.; Bouyon, A.; Rousselot, P.; et al. Trisomy 4, a New Chromosomal Abnormality in Waldenström’s Macroglobulinemia: A Study of 39 Cases. Leukemia 2006, 20, 1634–1636. [Google Scholar] [CrossRef]
- Schop, R.F.J.; Jalal, S.M.; Van Wier, S.A.; Ahmann, G.J.; Bailey, R.J.; Kyle, R.A.; Greipp, P.R.; Rajkumar, S.V.; Gertz, M.A.; Lust, J.A.; et al. Deletions of 17p13.1 and 13q14 Are Uncommon in Waldenström Macroglobulinemia Clonal Cells and Mostly Seen at the Time of Disease Progression. Cancer Genet. Cytogenet. 2002, 132, 55–60. [Google Scholar] [CrossRef]
- Zhang, L.-B.; Zhang, L.; Xin, H.-L.; Wang, Y.; Bao, H.-Y.; Meng, Q.-Q.; Jiang, S.-Y.; Han, X.; Chen, W.-R.; Wang, J.-N.; et al. Coexistence of Diffuse Large B-Cell Lymphoma, Acute Myeloid Leukemia, and Untreated Lymphoplasmacytic Lymphoma/Waldenström Macroglobulinemia in a Same Patient: A Case Report. World J. Clin. Cases 2023, 11, 4295–4305. [Google Scholar] [CrossRef]
- Hunter, Z.R.; Xu, L.; Tsakmaklis, N.; Demos, M.G.; Kofides, A.; Jimenez, C.; Chan, G.G.; Chen, J.; Liu, X.; Munshi, M.; et al. Insights into the Genomic Landscape of MYD88 Wild-Type Waldenström Macroglobulinemia. Blood Adv. 2018, 2, 2937–2946. [Google Scholar] [CrossRef]
- Krzisch, D.; Guedes, N.; Boccon-Gibod, C.; Baron, M.; Bravetti, C.; Davi, F.; Armand, M.; Smagghe, L.; Caron, J.; Bernard, O.A.; et al. Cytogenetic and Molecular Abnormalities in Waldenström’s Macroglobulinemia Patients: Correlations and Prognostic Impact. Am. J. Hematol. 2021, 96, 1569–1579. [Google Scholar] [CrossRef]
- Berendsen, M.R.; van Bladel, D.A.G.; Hesius, E.; Berganza Irusquieta, C.; Rijntjes, J.; van Spriel, A.B.; van der Spek, E.; Pruijt, J.F.M.; Kroeze, L.I.; Hebeda, K.M.; et al. Clonal Relationship and Mutation Analysis in Lymphoplasmacytic Lymphoma/Waldenström Macroglobulinemia Associated With Diffuse Large B-Cell Lymphoma. Hemasphere 2023, 7, e976. [Google Scholar] [CrossRef] [PubMed]
- Østergaard, S.; Schejbel, L.; Breinholt, M.F.; Pedersen, M.Ø.; Hammer, T.; Munksgaard, L.; Nørgaard, P.; Høgdall, E.; Gjerdrum, L.M.R.; Nielsen, T.H. Mutational Landscape in Waldenström Macroglobulinemia Evaluated Using a Next-Generation Sequencing Lymphoma Panel in Routine Clinical Practice. Leuk Lymphoma 2024, 65, 758–767. [Google Scholar] [CrossRef]
- Poulain, S.; Roumier, C.; Bertrand, E.; Renneville, A.; Caillault-Venet, A.; Doye, E.; Geffroy, S.; Sebda, S.; Nibourel, O.; Nudel, M.; et al. TP53 Mutation and Its Prognostic Significance in Waldenstrom’s Macroglobulinemia. Clin. Cancer Res. 2017, 23, 6325–6335. [Google Scholar] [CrossRef]
- Gustine, J.N.; Tsakmaklis, N.; Demos, M.G.; Kofides, A.; Chen, J.G.; Liu, X.; Munshi, M.; Guerrera, M.L.; Chan, G.G.; Patterson, C.J.; et al. TP53 Mutations Are Associated with Mutated MYD88 and CXCR4, and Confer an Adverse Outcome in Waldenström Macroglobulinaemia. Br. J. Haematol. 2019, 184, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gali, V.L.; Xu-Monette, Z.Y.; Sano, D.; Thomas, S.K.; Weber, D.M.; Zhu, F.; Fang, X.; Deng, M.; Zhang, M.; et al. Molecular and Genetic Biomarkers Implemented from Next-Generation Sequencing Provide Treatment Insights in Clinical Practice for Waldenström Macroglobulinemia. Neoplasia 2021, 23, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Gustine, J.N.; Sarosiek, S.; Flynn, C.A.; Meid, K.; Leventoff, C.; White, T.; Guerrera, M.L.; Xu, L.; Kofides, A.; Tsakmaklis, N.; et al. Natural History of Waldenström Macroglobulinemia Following Acquired Resistance to Ibrutinib Monotherapy. Haematologica 2022, 107, 1163–1171. [Google Scholar] [CrossRef]
- Tomowiak, C.; Poulain, S.; Herbaux, C.; Perrot, A.; Mahé, B.; Morel, P.; Aurran, T.; Tournilhac, O.; Leprêtre, S.; Assaad, S.; et al. Obinutuzumab and Idelalisib in Symptomatic Patients with Relapsed/Refractory Waldenström Macroglobulinemia. Blood Adv. 2021, 5, 2438–2446. [Google Scholar] [CrossRef]
- Andriko, J.A.; Aguilera, N.S.; Chu, W.S.; Nandedkar, M.A.; Cotelingam, J.D. Waldenström’s Macroglobulinemia: A Clinicopathologic Study of 22 Cases. Cancer 1997, 80, 1926–1935. [Google Scholar]
- Tomowiak, C.; Poulain, S.; Nudel, M.; Feugier, P.; Herbaux, C.; Mahé, B.; Morel, P.; Aurran, T.; Tournilhac, O.; Leprêtre, S.; et al. Six-Year Follow-up of Phase II Study Exploring Chemo-Free Treatment Association with Idelalisib and Obinutuzumab in Symptomatic Relapsed/Refractory Patients with Waldenström’s Macroglobulinemia. Ann. Hematol. 2024. [Google Scholar] [CrossRef]
- Tam, C.S.; Opat, S.; D’Sa, S.; Jurczak, W.; Lee, H.-P.; Cull, G.; Owen, R.G.; Marlton, P.; Wahlin, B.E.; García-Sanz, R.; et al. Biomarker Analysis of the ASPEN Study Comparing Zanubrutinib with Ibrutinib for Patients with Waldenström Macroglobulinemia. Blood Adv. 2024, 8, 1639–1650. [Google Scholar] [CrossRef]
- Christian, A.; Davis, Z.; Walewska, R.; McCarthy, H. Importance of Sequential Analysis of TP53 Variation in Patients with Waldenström Macroglobulinaemia. Br. J. Haematol. 2019, 186, e73–e76. [Google Scholar] [CrossRef] [PubMed]
- Hodge, L.S.; Novak, A.J.; Grote, D.M.; Braggio, E.; Ketterling, R.P.; Manske, M.K.; Price Troska, T.L.; Ziesmer, S.C.; Fonseca, R.; Witzig, T.E.; et al. Establishment and Characterization of a Novel Waldenstrom Macroglobulinemia Cell Line, MWCL-1. Blood 2011, 117, e190–e197. [Google Scholar] [CrossRef]
- Martinez, J.D. Restoring P53 Tumor Suppressor Activity as an Anticancer Therapeutic Strategy. Future Oncol. 2010, 6, 1857–1862. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Khac, F.; Lambert, J.; Chapiro, E.; Grelier, A.; Mould, S.; Barin, C.; Daudignon, A.; Gachard, N.; Struski, S.; Henry, C.; et al. Chromosomal Aberrations and Their Prognostic Value in a Series of 174 Untreated Patients with Waldenström’s Macroglobulinemia. Haematologica 2013, 98, 649–654. [Google Scholar] [CrossRef]
- Cho, J.H.; Shim, J.-H.; Yoon, S.E.; Kim, H.-J.; Kim, S.-H.; Ko, Y.H.; Lee, S.-T.; Kim, K.; Kim, W.S.; Kim, S.J. Real-World Data on the Survival Outcome of Patients with Newly Diagnosed Waldenström Macroglobulinemia. Korean J. Intern. Med. 2021, 36, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Morelli, E.; Hunter, Z.R.; Fulciniti, M.; Gullà, A.; Perrotta, I.D.; Zuccalà, V.; Federico, C.; Juli, G.; Manzoni, M.; Ronchetti, D.; et al. Therapeutic Activation of G Protein-Coupled Estrogen Receptor 1 in Waldenström Macroglobulinemia. Exp. Hematol. Oncol. 2022, 11, 54. [Google Scholar] [CrossRef]
- Sobhani, M.; Abdi, J.; Manujendra, S.N.; Chen, C.; Chang, H. PRIMA-1Met Induces Apoptosis in Waldenström’s Macroglobulinemia Cells Independent of P53. Cancer Biol. Ther. 2015, 16, 799–806. [Google Scholar] [CrossRef]
- Gibson, C.J.; Lindsley, R.C.; Tchekmedyian, V.; Mar, B.G.; Shi, J.; Jaiswal, S.; Bosworth, A.; Francisco, L.; He, J.; Bansal, A.; et al. Clonal Hematopoiesis Associated With Adverse Outcomes After Autologous Stem-Cell Transplantation for Lymphoma. J. Clin. Oncol. 2017, 35, 1598–1605. [Google Scholar] [CrossRef]
- D’Sa, S.; Matous, J.V.; Advani, R.; Buske, C.; Castillo, J.J.; Gatt, M.; Kapoor, P.; Kersten, M.J.; Leblond, V.; Leiba, M.; et al. Report of Consensus Panel 2 from the 11th International Workshop on Waldenström’s Macroglobulinemia on the Management of Relapsed or Refractory WM Patients. Semin. Hematol. 2023, 60, 80–89. [Google Scholar] [CrossRef]
- Tam, C.S.; Kapoor, P.; Castillo, J.J.; Buske, C.; Ansell, S.M.; Branagan, A.R.; Kimby, E.; Li, Y.; Palomba, M.L.; Qiu, L.; et al. Report of Consensus Panel 7 from the 11th International Workshop on Waldenström Macroglobulinemia on Priorities for Novel Clinical Trials. Semin. Hematol. 2023, 60, 118–124. [Google Scholar] [CrossRef]
- Garcia-Sanz, R.; Varettoni, M.; Jiménez, C.; Ferrero, S.; Poulain, S.; San-Miguel, J.F.; Guerrera, M.L.; Drandi, D.; Bagratuni, T.; McMaster, M.; et al. Report of Consensus Panel 3 from the 11th International Workshop on Waldenström’s Macroglobulinemia: Recommendations for Molecular Diagnosis in Waldenström’s Macroglobulinemia. Semin. Hematol. 2023, 60, 90–96. [Google Scholar] [CrossRef] [PubMed]
TP53 Abnormalities | Participants | Prognosis | Effects of TP53 Abnormalities | Ref. |
---|---|---|---|---|
17p deletion | Total (n = 140); Deletion (n = 11) | Poor | Higher median percentage of tumor cells in bone marrow of patients with a 17p deletion; shorter PFS and shorter disease-free survival in patients with 17p deletion. | [43] |
17p deletion | Total (n = 40); Deletion (n = 6) | Insufficient | No clear difference in OS; higher percentage of bone marrow involvement in patients with 17p deletion; greater risk for patients with 17p deletions to have passed away at the last follow-up; higher likelihood of prior treatment in patients with 17p deletion; no definitive conclusions can be drawn. | [26] |
TP53 mutation | Total (n = 62); Mutation (n = 6) | Unaltered | No statistically significant correlation between TP53 mutations and overall survival (OS). | [23] |
TP53 mutation | Total (n = 49); Mutation (n = 11) | Unaltered | No prognostic factors for OS emerged, except for a harmful effect of the TP53 mutation. No statistical significance in the Cox model; univariate analysis of molecular screening revealed no significant impact of TP53 genotypes on progression-free survival (PFS). | [36] |
TP53 mutation | Total (n = 48); Mutation (n = 11) | Poor | Patients with TP53 mutations showed lower OS. Five-year OS reached 45.5% for TP53-mutated patients compared to 82.3% for those without the mutation. | [38] |
TP53 mutation | Total (n = 68); Mutation (n = 11.8%) | Poor; Unaltered | Significantly worse OS and PFS rates in patients with TP53 mutation; shorter time to treatment (TTT) and more severe clinical presentation in patients with the TP53 mutation; no significant prognostic differences between patients with and without 17p deletion. | [34] |
TP53 mutation | Total (n = 265); Mutation (n = 6) | Poor | At the time of TP53 mutation detection, the median bone marrow involvement was 80%, and the median hemoglobin level measured 92 g/L; the median serum Immunoglobulin M level was 25.08 g/L, with two patients exhibiting symptomatic hyperviscosity; after a median follow-up of 18 months, two patients (33%) had succumbed to progressive disease, both of whom presented with biallelic TP53 inactivation. | [33] |
TP53 mutation | Total (n = 18); Mutation (n = 2) | Poor | Genomic mutations detected in transformed patients comprised TP53; all detected mutations appeared in Diffuse Large B-Cell Lymphoma (DLBCL) and contributed to NF-κB-driven lymphomagenesis. | [28] |
TP53 mutation | Total (n = 8); Mutation (n = 2) | Poor | In all cases of clonally related lymphoplasmacytic lymphoma/WM and DLBCL included in the targeted mutation analysis, transformation was marked by acquired TP53 mutations. | [30] |
TP53 mutation | Total (n = 45); Mutation (n = 4%) | Poor | Two patients carried a TP53 mutation, both with clonally related histological transformation to DLBCL; the remaining 43 patients with TP53 wild-type showed no clinical or histological transformation. | [31] |
TP53 mutation | Total (n = 2); Mutation (n = 1) | Poor | Mutations in TP53 identified in the case of early death (male, 68 years old). | [44] |
TP53 mutation | Total (n = 14); Mutation (n = 4) | Insufficient | In patients undergoing BTKi therapy, a positive TP53 status was strongly linked to disease progression; multivariate analysis indicated a similar trend toward significance, but the limited cohort size prevented it from reaching statistical significance. | [40] |
TP53 mutation; 17p deletion | Total (n = 125); Mutation (n = 9); Deletion (n = 12) | Poor | Lower OS in the group harboring TP53 abnormalities; higher proportion of β2-microglobulin levels and greater International Prognostic Scoring System for WM (IPSSWM) score in patients with TP53 abnormalities; shorter median TTT in the group with TP53 abnormalities. | [32] |
TP53 mutation; 17p deletion | Total (n = 170); Abnormalities (n = 26) | Poor | OS and PFS showed negative impact due to TP53 abnormalities. Multivariate analyses identified TP53 abnormalities as a significant negative factor for PFS, while both IPSSWM and TP53 abnormalities retained significant negative effects on OS. | [29] |
Abnormalities | Participants | Treatment Studied | Outcome | Effects of TP53 Abnormalities | Ref. |
---|---|---|---|---|---|
TP53 deletion | Total (n = 140); Deletion (n = 11) | Oral chlorambucil; Oral fludarabine | No impact | No significant interaction was observed between the impact of 17p deletion and the treatment group. | [43] |
TP53 mutation | Total (n = 7); Mutation (n = 7) | Bortezomib; Dexamethasone; Rituximab; Ibrutinib; Ixazomib; Dexamethasone; Rituximab; Bendamustine; RituximabV; Venetoclax | Impact | TP53 mutations appear to influence the treatment outcomes of WM; WM patients harboring TP53 mutations have demonstrated a response to ibrutinib therapy. | [33] |
TP53 mutation | Total (n = 49); Mutation (n = 11) | Chemo-free regimen | Impact | Treatment with a fixed-duration, chemo-free regimen resulted in a significantly shorter overall survival (OS) for those with TP53 mutations. | [38] |
TP53 mutation | Total (n = 68); Mutation (n = 11.8%) | Ibrutinib; Dexamethasone; Rituximab | Impact | Ibrutinib treatment showed a trend toward improved progression free survival (PFS) after treatment among patients with TP53 mutations; frontline dexamethasone has been linked to significantly shorter OS and potentially shorter PFS in patients with TP53 mutations. However, when a multivariate analysis was performed, incorporating all genetic and treatment factors, the significance of this effect disappeared; maintenance rituximab was linked to significantly improved PFS in TP53 mutated patients. | [34] |
TP53 mutation | Total (n = 20); Mutation (n = 3) | Ibrutinib; Salvage therapy | Impact | TP53 mutations were associated with refractory disease and reduced OS after developing resistance to ibrutinib; no response to salvage therapy was observed in patients with a TP53 mutation. | [35] |
TP53 mutation | Total (n = 190); Mutation (n = 24.8%) | Ibrutinib; Zanubrutinib | Impact | TP53 mutations negatively affected the maximum response rate and PFS in patients treated with ibrutinib, but not in those treated with Zanubrutinib. | [39] |
TP53 mutation | In vitro | Ibrutinib; PrimaMet; CP-31398 | No impact | The sensitivity to ibrutinib-induced cell death was similar in both TP53 wild-type and TP53-mutant cell lines; treatment with CP-31398 and PrimaMet resulted in a significant decrease in viability in both Waldenström Macroglobulinemia (WM)-derived cell lines and primary WM cells, regardless of TP53 mutational status. | [32] |
TP53 mutation | Total (n = 49); Mutation (n = 24%) | Idelalisib; Obinutuzumab | No impact | No evidence was found for any predictive value of TP53 mutation for response. | [36] |
TP53 mutation | In vitro | PRIMA-1Met | No impact | No significant changes in TP53 levels following PRIMA-1Met treatment were observed; selectively knocking down TP53 did not affect PRIMA-1Met-induced apoptosis in WM cells. | [46] |
TP53 silencing | In vitro; Mice | G-1 | Impact | G-1 increased the protein expression of TP53 and its targets—p21, BAX, BAD, and PUMA—in BCWM-1 cells and CD19+ cells from a WM patient; increased TP53 protein expression was also observed in tumors retrieved from a SCID/NOD mouse treated with G-1. | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kampitsi, D.D.; Theotokis, P.; Evangelidis, P.; Meditskou, S.; Manthou, M.E.; Dermitzakis, I. Waldenström Macroglobulinemia: The Role of TP53 Mutations in Disease Progression and Therapeutic Response. Curr. Issues Mol. Biol. 2025, 47, 260. https://doi.org/10.3390/cimb47040260
Kampitsi DD, Theotokis P, Evangelidis P, Meditskou S, Manthou ME, Dermitzakis I. Waldenström Macroglobulinemia: The Role of TP53 Mutations in Disease Progression and Therapeutic Response. Current Issues in Molecular Biology. 2025; 47(4):260. https://doi.org/10.3390/cimb47040260
Chicago/Turabian StyleKampitsi, Despoina Dimitria, Paschalis Theotokis, Paschalis Evangelidis, Soultana Meditskou, Maria Eleni Manthou, and Iasonas Dermitzakis. 2025. "Waldenström Macroglobulinemia: The Role of TP53 Mutations in Disease Progression and Therapeutic Response" Current Issues in Molecular Biology 47, no. 4: 260. https://doi.org/10.3390/cimb47040260
APA StyleKampitsi, D. D., Theotokis, P., Evangelidis, P., Meditskou, S., Manthou, M. E., & Dermitzakis, I. (2025). Waldenström Macroglobulinemia: The Role of TP53 Mutations in Disease Progression and Therapeutic Response. Current Issues in Molecular Biology, 47(4), 260. https://doi.org/10.3390/cimb47040260