Evaluation of miRNA Profile and Its Relationship with Metabolic Disorders in Obese and Pre-Obese Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Statistical Methods
3. Results
3.1. Demographic and Clinical Data
3.2. miRNA Expression Profiles
4. Discussion
4.1. Clinical and Biochemical Assessments
4.2. miRNA Expression Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Obesity and overweight. In Obesity and Overweight: Fact Sheets; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Arner, P.; Kulyté, A. MicroRNA regulatory networks in human adipose tissue and obesity. Nat. Rev. Endocrinol. 2015, 11, 276–288. [Google Scholar] [CrossRef] [PubMed]
- WHO. Obesity and Overweight, Key Facts, World Health Organization. 16 February 2018. Available online: https://www.who.int/en/news-room/fact-sheets/detail/obesity (accessed on 19 July 2022).
- Akman, M.; Budak, Ş.; Kendir, M. Obesity and related health problems: An adult outpatient clinical setting. Marmara Med. J. 2004, 17, 113–120. [Google Scholar]
- TÜİK. Türkiye’deki Obezite Oranı, Türkiye İstatistik Kurumu, Basın Odası Haberleri, 2015, Haber Bülten No:58/2015. 2015. Available online: https://data.tuik.gov.tr/Bulten/Index?p=Turkiye-Saglik-Arastirmasi-2019-33661 (accessed on 19 June 2022).
- OECD. Obesity Update 2017, Organisation for Economic Co-operation and Development. 2017. Available online: https://www.oecd.org/en/topics/obesity-diet-and-physical-activity.html (accessed on 5 June 2022).
- Altunkaynak, B.Z.; ve Özbek, E. Obezite: Nedenleri ve tedavi seçenekleri. Van. Tıp Derg. 2006, 13, 138–142. [Google Scholar]
- Lubrano, C.; Genovesi, G.; Specchia, P.; Costantini, D.; Mariani, S.; Petrangeli, E.; Lenzi, A.; Gnessi, L. Obesity and metabolic comorbidities: Environmental diseases? Oxid. Med. Cell. Longev. 2013, 2013, 640–673. [Google Scholar] [CrossRef]
- Arslan, M. Beslenme alışkanlıkları ve fiziksel aktivite düzeylerinin analizi: Marmara üniversitesi öğretim üyeleri üzerine bir çalışma. Dicle Tip Derg. 2018, 45, 59–69. [Google Scholar] [CrossRef]
- Xia, Q.; Grant, S.F. The genetics of human obesity. Ann. N. Y. Acad. Sci. 2013, 1281, 178–190. [Google Scholar] [CrossRef]
- Clement, K.; Boutin, P.; Froguel, P. Genetics of obesity. Am. J. Pharmacogenomics 2002, 2, 177–187. [Google Scholar] [CrossRef]
- Ortega, F.J.; Mercader, J.M.; Catalán, V.; Moreno-Navarrete, J.M.; Pueyo, N.; Sabater, M.; Gómez-Ambrosi, J.; Anglada, R.; Antonio Fernández-Formoso, J.; Ricart, W.; et al. Targeting the circulating microRNA signature of obesity. Clin. Chem. 2013, 59, 781–792. [Google Scholar] [CrossRef]
- Ferland-McCollough, D.; Ozanne, S.E.; Siddle, K.; Willis, A.E.; Bushell, M. The involvement of microRNAs in type 2 diabetes. Biochem. Soc. Trans. 2010, 38, 1565–1570. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Ambros, V. MicroRNAs: Tiny regulators with great potential. Cell 2001, 107, 823–826. [Google Scholar] [CrossRef] [PubMed]
- Shenouda, S.K.; Alahari, S.K. MicroRNA function in cancer: Oncogene or a tumor suppressor? Cancer Metastasis Rev. 2009, 28, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Can, Ü. Obezitede Lipid Metabolizması İle İlgili Micro RNA’lar. ACU Sağlık Bil. Derg. 2015, 2016, 69–74. [Google Scholar]
- Fernández-Hernando, C.; Suárez, Y.; Rayner, K.J.; Moore, K.J. MicroRNAs in lipid metabolism. Curr. Opin. Lipidol. 2011, 22, 86–92. [Google Scholar] [CrossRef]
- Gerin, I.; Bommer, G.T.; McCoin, C.S.; Sousa, K.M.; Krishnan, V.; MacDougal, O.A. Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis. Am. J. Physiol. Endocrinol. Metab. 2010, 299, E198–E206. [Google Scholar] [CrossRef]
- Moore, K.J.; Rayner, K.J.; Suárez, Y.; Fernández-Hernando, C. The role of microRNAs in cholesterol efflux and hepatic lipid metabolism. Annu. Rev. Nutr. 2011, 31, 49–63. [Google Scholar] [CrossRef]
- Christian, P.; Su, Q. MicroRNA regulation of mitochondrial and ER stress signaling pathways: Implications for lipoprotein metabolism in metabolic syndrome. Am. J. Physiol. Endocrinol. Metab. 2014, 307, E729–E737. [Google Scholar] [CrossRef]
- Rotllan, N.; Fernández-Hernando, C. MicroRNA Regulation of Cholesterol Metabolism. Cholesterol 2012, 2012, 847849. [Google Scholar] [CrossRef]
- Smolle, E.; Haybaeck, J. Non-coding RNAs and lipid metabolism. Int. J. Mol. Sci. 2014, 15, 13494–13513. [Google Scholar] [CrossRef]
- Novák, J.; Bienertová-Vašků, J.; Kára, T.; Novák, M. MicroRNAs involved in the lipid metabolism and their possible implications for atherosclerosis development and treatment. Mediat. Inflamm. 2014, 2014, 275867. [Google Scholar] [CrossRef]
- Hou, J.; Zhao, D. MicroRNA regulation in renal pathophysiology. Int. J. Mol. Sci. 2013, 14, 13078–13092. [Google Scholar] [CrossRef] [PubMed]
- Güzelgül, F.; Aksoy, K. Bir Gen İfade Düzenleyicisi miRNA. Arch. Med. Rev. J. 2015, 24, 472–493. [Google Scholar]
- Grunweller, A.; Hartmann, R. RNA interference as a genespecifc approach for molecular medicine. Curr. Med. Chem. 2005, 12, 3143–3161. [Google Scholar] [CrossRef] [PubMed]
- Ayers, D.; Scerri, C. Non-coding RNA infuences in dementia. Non-Coding RNA Res. 2018, 3, 188–194. [Google Scholar] [CrossRef]
- Esau, C.; Davis, S.; Murray, S.F.; Yu, X.X.; Pandey, S.K.; Pear, M.; Watts, L.; Booten, S.L.; Graham, M.; McKay, R.; et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006, 3, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Takanabe, R.; Ono, K.; Abe, Y.; Takaya, T.; Horie, T.; Wada, H.; Kita, T.; Satoh, N.; Shimatsu, A.; Hasegawa, K. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet. Biochem. Biophys. Res. Commun. 2008, 376, 728–732. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Lim, B.; Lodish, H.F. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 2009, 58, 1050–1057. [Google Scholar] [CrossRef]
- Castaño, C.; Kalko, S.; Novials, A.; Párrizas, M. Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice. Proc. Natl. Acad. Sci. USA 2018, 115, 12158–12163. [Google Scholar] [CrossRef]
- Batkai, S.; Thum, T. MicroRNAs in hypertension: Mechanisms and therapeutic targets. Curr. Hypertens. Rep. 2012, 14, 79–87. [Google Scholar] [CrossRef]
- Horie, T.; Baba, O.; Kuwabara, Y.; Chujo, Y.; Watanabe, S.; Kinoshita, M.; Horiguchi, M.; Nakamura, T.; Chonabayashi, K.; Hishizawa, M.; et al. MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice. J. Am. Heart Assoc. 2012, 1, e003376. [Google Scholar] [CrossRef]
- Ruan, Q.; Wang, T.; Kameswaran, V.; Wei, Q.; Johnson, D.S.; Matschinsky, F.; Shi, W.; Chen, Y.H. The microRNA-21-PDCD4 axis prevents type 1 diabetes by blocking pancreatic beta cell death. Proc. Natl. Acad. Sci. USA 2011, 108, 12030–12035. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, H.; Wang, Y. The role of miRNAs in the development of obesity. Obes. Rev. 2017, 18, 747–757. [Google Scholar] [CrossRef]
- Cheng, M.; Zhang, X.; Li, M. The role of microRNAs in obesity and related metabolic disorders. Front. Endocrinol. 2020, 11, 625. [Google Scholar] [CrossRef]
- Gibson, P.; Patterson, L. Role of miRNAs in the regulation of metabolic diseases. Endocrinol. Metab. Clin. N. Am. 2019, 48, 279–292. [Google Scholar]
- Wang, Y.; Li, S. MicroRNA-34a and its role in obesity and metabolic syndrome. Front. Mol. Biosci. 2020, 7, 123. [Google Scholar] [CrossRef]
- Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2020, 444, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Gregor, M.F.; Hotamisligil, G.S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 2011, 29, 415–445. [Google Scholar] [CrossRef]
- Sharma, N.K.; Varma, V.; Ma, L.; Hasstedt, S.J.; Das, S.K. Obesity Associated Modulation of miRNA and Co-Regulated Target Transcripts in Human Adipose Tissue of Non-Diabetic Subjects. MicroRNA 2015, 4, 194–204. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iacomino, G.; Siani, A. Role of microRNAs in obesity and obesity-related diseases. Genes Nutr. 2017, 12, 23. [Google Scholar] [CrossRef]
- Goedeke, L.; Rotlla, N.; Canfrán-Duque, A.; Aranda, J.F.; Ramírez, C.M.; Araldi, E.; Lin, C.-S.; Anderson, N.N.; Wagschal, A.; de Cabo, R.; et al. MicroRNA-148a regulates LDL receptor and bile acid metabolism. Nat. Commun. 2014, 5, 1280–1289. [Google Scholar]
- Caporali, A.; Emanueli, C. Role of miR-503 in obesity-associated vascular dysfunction. Cardiovasc. Res. 2011, 90, 551–559. [Google Scholar]
- Fu, X.; Kemper, J.K. Role of miR-34a in mitochondrial dysfunction and insulin resistance in obesity. Sci. Rep. 2014, 4, 3819. [Google Scholar]
- Zheng, X.; Wang, G.; Yuan, J.; Li, N.; Yan, B.; Yan, J.; Sheng, Y. hsa-miR-34a-5p Ameliorates Hepatic Ischemia/Reperfusion Injury Via Targeting HNF4α. Turk. J. Gastroenterol. 2022, 33, 596–605. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mirra, D.; Cione, E.; Spaziano, G.; Esposito, R.; Sorgenti, M.; Granato, E.; Cerqua, I.; Muraca, L.; Iovino, P.; Gallelli, L.; et al. Circulating MicroRNAs Expression Profile in Lung Inflammation: A Preliminary Study. J. Clin. Med. 2022, 11, 5446. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ma, F.; Cao, D.; Liu, Z.; Li, Y.; Ouyang, S.; Wu, J. Identification of novel circulating miRNAs biomarkers for healthy obese and lean children. BMC Endocr. Disord. 2023, 23, 238. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karolina, D.S.; Tavintharan, S.; Armugam, A.; Sepramania, S.; Ting Pel, S.L.; Wong, M.T.K.; Lim, S.C.; Sum, C.F.; Jeyaseelan, K. MicroRNAs and oxidative stress in obesity. J. Clin. Endocrinol. Metab. 2012, 97, E1233–E1242. [Google Scholar]
- Jordan, S.D.; Krüger, M.; Willmes, D.M.; Redemann, N.; Wunderlich, F.T.; Brönneke, H.S.; Merkwirth, C.; Kashkar, H.; Olkkonen, V.M.; Böttger, T.; et al. miR-143-3p regulates adipocyte differentiation and metabolism. Nat. Cell Biol. 2011, 13, 249–256. [Google Scholar]
- Sun, Q. The role of miR-124 in regulating metabolic and inflammatory pathways. J. Mol. Endocrinol. 2015, 54, R73–R84. [Google Scholar]
- Liu, H. miR-124 suppresses adipogenesis and influences insulin signaling pathways. Diabetes 2016, 65, 602–610. [Google Scholar]
- Zhou, X. miR-218 and vascular inflammation: Molecular mechanisms and therapeutic implications. Cardiovasc. Res. 2018, 114, 234–243. [Google Scholar]
- Wang, L.; Yuan, X.; Song, Y.; Zhai, J.; Wei, H.; Wang, L.; Li, D.; Chen, Q. The role of miR-218 in glucose metabolism and insulin resistance. Mol. Endocrinol. 2019, 33, 459–472. [Google Scholar]
- Yang, X. miR-519b and adipocyte differentiation: Molecular insights. Mol. Cell. Endocrinol. 2020, 503, 110714. [Google Scholar]
- Chen, J. Role of miR-384 in hypothalamic inflammation and energy homeostasis. Endocr. Rev. 2018, 39, 543–560. [Google Scholar]
- Zhang, Y. miR-488 as a regulator of insulin sensitivity in obesity. Diabetologia 2019, 62, 814–825. [Google Scholar]
- Li, C.; Zhu, Y.; Han, H.; Zhang, Q.; Cui, K.; Shen, H.; Zhang, J.; Yan, J.; Prochownik, E.; Li, Y. miR-148a and hepatic lipid metabolism in obesity. Hepatology 2017, 65, 861–872. [Google Scholar]
- Ghosh, S. miR-877 and vascular inflammation in metabolic syndrome. Cardiovasc. Diabetol. 2019, 18, 34. [Google Scholar]
- Yang, X. miR-503 and its role in adipose tissue differentiation and inflammation. J. Cell. Physiol. 2021, 236, 3542–3551. [Google Scholar]
- Sun, C. Role of miR-503 in vascular inflammation and obesity-associated metabolic syndrome. Cardiovasc. Res. 2019, 115, 687–696. [Google Scholar]
- Cui, X.; You, L.; Zhu, L.; Wang, X.; Zhou, Y. miR-503 regulates vascular endothelial function in obesity-related insulin resistance. Horm. Metab. Res. 2017, 49, 421–427. [Google Scholar] [CrossRef]
- Gibson, M.; Patterson, K. Regulation of adipogenesis by miR-34a-5p via SIRT1 signaling. Trends Endocrinol. Metab. 2019, 30, 654–662. [Google Scholar]
- Zhang, Y.; Feng, C.; Wang, C.; Chen, L. miR-199a-3p targets IGF1R and HIF1A genes in metabolic syndrome. Obes. Res. Clin. Pract. 2019, 13, 23–30. [Google Scholar]
- Fu, X.; Dong, B.; Tian, Y.; Lefebvre, P. MicroRNA-34a Inhibits Adipocyte Differentiation. Endocrinology 2012, 153, 2102–2110. [Google Scholar]
- Jordan, S.; Zhao, Y.; Huang, Z. miR-143-3p in insulin resistance: Role in IRS1/AKT signaling. Mol. Cell. Endocrinol. 2018, 474, 162–170. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; Tang, H. The role of miR-124-3p in FOXO1 modulation in obesity-induced inflammation. Cytokine 2020, 125, 154798. [Google Scholar] [CrossRef]
- Shen, H.; Sun, T.; Chen, Z. Leptin signaling regulation by miR-218-1-3p in obesity. Nat. Rev. Endocrinol. 2018, 14, 567–578. [Google Scholar]
- Li, H.; Xu, W.; Zhang, Y. The oncogenic role of miR-519b-3p in obesity-related cellular stress. Cell. Mol. Biol. Lett. 2019, 24, 10–20. [Google Scholar]
- Kong, X.; Zhao, Y.; Liu, Z. miR-384 modulates insulin resistance via IRS2/PIK3R1 signaling pathway. Diabetes Res. Clin. Pract. 2017, 128, 98–106. [Google Scholar] [CrossRef]
- Liao, L. miR-488-3p and Leptin Regulation in Obesity. Obes. Res. Clin. Pract. 2020, 14, 25–34. [Google Scholar]
- Sun, H. Role of miR-877-3p in Insulin Resistance and Lipid Metabolism. J. Endocrinol. 2021, 249, 15–24. [Google Scholar]
Obese (Mean ± SD) | Pre-Obese (Mean ± SD) | Control (Mean ± SD) | p-Value | |
---|---|---|---|---|
Age, years | 36.13 ± 13.29 | 44.63 ± 15.33 | 43.53 ± 18.61 | 0.085 |
Weight, kg | 123.2 ± 22.51 a | 79.87 ± 9.63 b | 64.6 ± 9.64 c | <0.0001 * |
Height, cm | 168.17 ± 10.88 | 170 ± 9.50 | 171.20 ± 11.19 | 0.536 |
BMI, kg/m2 | 43.72 ± 7.07 a | 27.52 ± 1.50 b | 21.85 ± 1.45 c | <0.0001 * |
HDL, mg/dL | 37.64 ± 10.78 | 40.43 ± 14.48 | 44.61 ± 13.11 | 0.114 |
LDL, mg/dL | 117.7 ± 34.64 | 116.22 ± 31.73 | 104.48 ± 31.07 | 0.231 |
CHOL, mg/dL | 184.23 ± 35.32 a | 168.93 ± 37.65 a | 141.27 ± 41.31 b | <0.0001 * |
Triglyceride, mg/dL | 186.03 ± 90.96 a | 158.77 ± 61.47 ab | 129.93 ± 64.88 b | 0.016 * |
Hemoglobin, g/dL | 13.84 ± 1.82 | 13.68 ± 1.58 | 13.71 ± 2.11 | 0.936 |
Neutrophil, mL | 5623.67 ± 2139.73 | 5207.33 ± 2596.09 | 5113.33 ± 2427.94 | 0.681 |
Lymphocyte, mcL | 3188.67 ± 1057.27 a | 2404.67 ± 895.57 b | 2146 ± 1179.12 b | 0.001 * |
Monocyte, mcL | 644.33 ± 219.23 | 628.3 ± 246.15 | 628.67 ± 256.36 | 0.958 |
Platelet, mcL | 295,766.67 ± 77,440.38 | 274,866.67 ± 94,739.47 | 281,473.33 ± 124,724.71 | 0.715 |
Position | miRNA ID | Fold Regulation | p-Value |
---|---|---|---|
22 | hsa-miR-148a-3p | −2.09 | <0.0001 |
43 | hsa-miR-503-3p | −2.16 | 0.011 |
Position | miRNA ID | Fold Regulation | p-Value |
---|---|---|---|
5 | hsa-miR-34a-5p | −2.03 | 0.007 |
9 | hsa-miR-199a-3p | −2.09 | 0.005 |
22 | hsa-miR-148a-3p | −2.39 | 0.005 |
23 | hsa-miR-34a-3p | −2.36 | 0.006 |
57 | hsa-miR-143-3p | −2.69 | 0.017 |
Position | miRNA ID | Fold Regulation | p-Value |
---|---|---|---|
77 | hsa-miR-124-3p | −2.20 | 0.035 |
Position | miRNA ID | Fold Regulation | p-Value |
---|---|---|---|
63 | hsa-miR-218-1-3p | −3.04 | 0.034 |
Position | miRNA ID | Fold Regulation | p-Value |
---|---|---|---|
29 | hsa-miR-519b-3p | 3.23 | 0.040 |
15 | hsa-miR-384 | −4.75 | 0.013 |
16 | hsa-miR-488-3p | −3.45 | 0.006 |
22 | hsa-miR-148a-3p | −2.23 | 0.007 |
23 | hsa-miR-34a-3p | −2.18 | 0.006 |
34 | hsa-miR-877-3p | −2.08 | 0.020 |
Position | miRNA ID | Fold Regulation | p-Value |
---|---|---|---|
43 | hsa-miR-503-3p | −2.33 | 0.032 |
miRNA | Target Gene | Function | Related Pathway |
---|---|---|---|
hsa-mir-148a-3p | PPARGC1A, FTO, LEP | Regulates PPARGC1A in adipogenesis, modulates leptin signaling, and influences energy metabolism. | Wnt/β-catenin, TGF-β signaling pathway |
hsa-mir-503-3p | VEGFA, FGF2 | Interact with vascular responses and tissue oxygenation by suppressing VEGFA. | IGF-1 and angiogenesis signaling pathway |
hsa-mir-34a-5p | SIRT1, PPRAG | Enhances lipogenesis and inflammation by suppressing SIRT1; regulates PRAG | P53 PPAR signaling pathway |
hsa-mir-199a-3p | HIF1A, IGF1R | Regulates energy homeostasis and metabolic adaptation by suppressing HIF1A and IGF1R. | mTOR hypoxia and IGF-1 signaling pathway |
hsa-mir-34a-3p | SIRT1, PPRAG | Increases fat accumulation by suppressing SIRT and supports inflammation. | Lipid metabolism, PPARγ |
hsa-mir-143-3p | AKT1, IRS1 | Regulates insulin signaling by targeting IRS1 and AKT1 and interacts with glucose uptake. | PI3K/AKT, signaling pathway |
hsa-mir-124-3p | FOXO1, MAPK14 | Enhances adiposity differentiation. It is related to inflammation and metabolic stress. | JAK/STAT, MAPK |
hsa-mir-218-1-3p | SH2B1, SOCS3 | Decreases energy consumption by suppressing SH2B1 in leptin signaling. | Leptin-S TAT3 signaling pathway |
hsa-mir-519b-3p | TP53, CCND1 | Related to cellular stress due to obesity through targeting cell cycle regulatory genes. | Cell cycle and apoptosis signaling pathway |
hsa-mir-384 | IRS2, PIK3R1 | Interact with glucose metabolism by suppressing regulatory genes of insulin signaling. | PI3K/AKT, insulin signaling pathway |
hsa-488-3p | FOXO1, LEPR | Regulates leptin receptors and influences energy metabolism; it also suppresses FOXO1. | Nervous system signaling pathway |
hsa-mir-877-3p | IGFR1, IRS1 | Impairs insulin resistance and glucose metabolism by suppressing IGFR1 and IRS1. | IGF-1 and insulin signaling pathway |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kargün, K.; Aygen, E.; Ebiloğlu, M.F.; Alayunt, N.Ö.; Dalkılıç, L.K. Evaluation of miRNA Profile and Its Relationship with Metabolic Disorders in Obese and Pre-Obese Patients. Curr. Issues Mol. Biol. 2025, 47, 280. https://doi.org/10.3390/cimb47040280
Kargün K, Aygen E, Ebiloğlu MF, Alayunt NÖ, Dalkılıç LK. Evaluation of miRNA Profile and Its Relationship with Metabolic Disorders in Obese and Pre-Obese Patients. Current Issues in Molecular Biology. 2025; 47(4):280. https://doi.org/10.3390/cimb47040280
Chicago/Turabian StyleKargün, Kürşat, Erhan Aygen, Mehmet Fatih Ebiloğlu, Naci Ömer Alayunt, and Lütfiye Kadıoğlu Dalkılıç. 2025. "Evaluation of miRNA Profile and Its Relationship with Metabolic Disorders in Obese and Pre-Obese Patients" Current Issues in Molecular Biology 47, no. 4: 280. https://doi.org/10.3390/cimb47040280
APA StyleKargün, K., Aygen, E., Ebiloğlu, M. F., Alayunt, N. Ö., & Dalkılıç, L. K. (2025). Evaluation of miRNA Profile and Its Relationship with Metabolic Disorders in Obese and Pre-Obese Patients. Current Issues in Molecular Biology, 47(4), 280. https://doi.org/10.3390/cimb47040280