A Comparative Study on the Mycelium and Fruiting Body of Meripilus giganteus: Chemical Composition and Biological Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stock Cultures
2.2. Solid Medium Cultures
2.3. Liquid Medium Cultures with Rotary Shaking
2.4. Bioreactor Cultures
2.5. Extraction
2.6. HPLC Analysis of Bioactive Compounds
2.7. Cell Culture and Conditions
2.8. Cell Viability Assay
2.9. DPPH Radical Scavenging Activity
- ADPPH—absorbance of DPPH 0.1 mM solution;
- ASample—absorbance of the test sample.
2.10. Statistical Analysis
3. Results and Discussion
3.1. Mycelial Growth
3.2. Biological Active Compounds’ Contents and Extraction Efficiency
3.3. Biotechnological and Pharmaceutical Implications
3.4. Therapeutic Properties of Bioactive Compounds
3.5. Biotechnological Relevance of Quantified Metabolites
3.6. Cytotoxicity
3.7. DPPH Radical Scavenging Activity
3.8. Cytotoxicity Data Interpretation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
CCD 841 CoN | Human normal colon epithelial cell line |
DAD-HPLC | Diode-Array Detection High-Performance Liquid Chromatography |
DLD-1 | Human colorectal adenocarcinoma cell line |
DMEM | Dulbecco’s Modified Eagle Medium |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
DW | Dry Weight |
FBS | Fetal Bovine Serum |
HCT116 | Human colorectal carcinoma cell line |
HepG2 | Human hepatocellular carcinoma cell line |
HPLC | High-Performance Liquid Chromatography |
HT29 | Human colorectal adenocarcinoma cell line |
LDL | Low-Density Lipoprotein |
MEA | Malt Extract Agar |
MEM | Minimum Essential Medium |
MTT | 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay |
MC | Mycelial Culture |
PVDF | Polyvinylidene Difluoride |
RPM | Revolutions Per Minute |
ROS | Reactive Oxygen Species |
References
- Arač, K.; Orlović, J.K.; Diminić, D. Effect of fungus Meripilus giganteus (Pers.) P. Karst. on occurrence and development of false heartwood and rot in Fagus sylvatica L. round wood. Croat. J. For. Eng. 2021, 42, 529–542. [Google Scholar] [CrossRef]
- Anke, T. Secondary metabolites from mushrooms. J. Antibiot. 2020, 73, 655–656. [Google Scholar] [CrossRef]
- Sułkowska-Ziaja, K.; Korczyński, M.; Trepa, M.; Kała, K.; Muszyńska, B. The giant polypore mushroom Meripilus giganteus (Agaricomycetes): Promising medicinal applications—A review. Int. J. Med. Mushrooms 2025, 27, 1–11. [Google Scholar] [CrossRef]
- Lenzi, M.; Cocchi, V.; Novaković, A.; Karaman, M.; Sakač, M.; Mandić, A.; Pojić, M.; Barbalace, M.C.; Angeloni, C.; Hrelia, P.; et al. Meripilus giganteus ethanolic extract exhibits pro-apoptotic and anti-proliferative effects in leukemic cell lines. BMC Complement. Altern. Med. 2018, 18, 300. [Google Scholar] [CrossRef]
- Sárközy, A.; Béni, Z.; Dékány, M.; Zomborszki, Z.P.; Rudolf, K.; Papp, V.; Hohmann, J.; Ványolós, A. Cerebrosides and steroids from the edible mushroom Meripilus giganteus with antioxidant potential. Molecules 2020, 25, 6006. [Google Scholar] [CrossRef] [PubMed]
- Kosanić, M.; Petrović, N.; Šeklić, D.; Živanović, M.; Kokanović, M. Bioactivities and medicinal value of the fruiting body extracts of Laetiporus sulphureus and Meripilus giganteus polypore mushrooms (Agaricomycetes). Int. J. Med. Mushrooms 2024, 26, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Petrović, N.; Tosti, T.; Srbljak, I.; Đurić, A.; Kosanić, M. Chemical composition and bioactivity of the giant polypore or black-staining mushroom, Meripilus giganteus (Agaricomycetes), from Serbia. Int. J. Med. Mushrooms 2022, 24, 21–40. [Google Scholar] [CrossRef]
- Turło, J. The biotechnology of higher fungi—Current state and perspectives. Folia Biol. Oecol. 2014, 10, 49–65. [Google Scholar] [CrossRef]
- Kamal, S.; Akhter, N.; Khan, S.G.; Kiran, S.; Farooq, T.; Akram, M.; Shah, S.M.A.; Tahir, I.M.; Akhlaq, M.; Said, F.; et al. Enhanced production of lovastatin by filamentous fungi through solid state fermentation. Pak. J. Pharm. Sci. 2018, 31, 1583–1589. [Google Scholar]
- Kurl, S.; Kaur, S.; Mittal, N.; Kaur, G. Mushrooms and colorectal cancer: Unveiling mechanistic insights and therapeutic innovations. Phytother. Res. 2025, 39, 23–36. [Google Scholar] [CrossRef]
- Keszthelyi, D.; Troost, F.J.; Masclee, A.A.M. Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroenterol. Motil. 2009, 21, 1239–1249. [Google Scholar] [CrossRef] [PubMed]
- Berovic, M.; Podgornik, B.B. Cultivation of medicinal fungi in bioreactors. In Mushroom Bio-technology: Developments and Applications; Petre, M., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 155–171. [Google Scholar]
- Pansuriya, R.C.; Singhal, R.S. Response surface methodology for optimization of production of lovastatin by solid state fermentation. Braz. J. Microbiol. 2010, 41, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Liu, Q.; Jiang, W.; Chen, N. A new strategy for quantitative analysis of ergothioneine in fermentation broth by RP-HPLC. In Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012), Tianjin, China, 18–19 October 2012; Zhang, T.C., Ouyang, P., Kaplan, S., Skarnes, B., Eds.; Lecture Notes in Electrical Engineering. Springer: Berlin/Heidelberg, Germany, 2014; Volume 249, pp. 313–321. [Google Scholar]
- Kysilka, R.; Wurst, M. High-performance liquid chromatographic determination of hallucinogenic indoleamines with simultaneous UV photometric and voltammetric detection. J. Chromatogr. 1968, 320, 414–420. [Google Scholar] [CrossRef]
- Muszyńska, B.; Sułkowska-Ziaja, K. Analysis of indole compounds in edible Basidiomycota species after thermal processing. Food Chem. 2012, 132, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Ellnain-Wojtaszek, M.; Zgórka, G. High-performance liquid chromatography and thin-layer chromatography of phenolic acids from Ginkgo biloba L. leaves collected within vegetative period. J. Liq. Chromatogr. Relat. Technol. 1999, 22, 1457–1471. [Google Scholar] [CrossRef]
- Sułkowska-Ziaja, K.; Maślanka, A.; Szewczyk, A.; Muszyńska, B. Physiologically active compounds in four species of Phellinus. Nat. Prod. Commun. 2017, 12, 363–366. [Google Scholar] [CrossRef]
- Yuan, J.P.; Kuang, H.C.; Wang, J.H.; Liu, X. Evaluation of ergosterol and its esters in the pileus, gill, and stipe tissues of agaric fungi and their relative changes in the comminuted fungal tissues. Appl. Microbiol. Biotechnol. 2008, 80, 459–465. [Google Scholar] [CrossRef]
- Sułkowska-Ziaja, K.; Muszyńska, B.; Końska, G. Biologically active compounds of fungal origin displaying antitumor activity. Acta Pol. Pharm. 2005, 62, 153–159. [Google Scholar]
- Galanty, A.; Juncewicz, P.; Podolak, I.; Grabowska, K.; Służały, P.; Paśko, P. Comparative analysis of polyphenolic profile and chemopreventive potential of hemp sprouts, leaves, and flowers of the sofia variety. Plants 2024, 13, 2023. [Google Scholar] [CrossRef]
- Prieto, J.M. Procedure: Preparation of DPPH radical, and antioxidant scavenging assay. Dr. Prieto’s DPPH Microplate Protocol. 2012, 2, 1–3. [Google Scholar]
- Jordá, T.; Puig, S. Regulation of ergosterol biosynthesis in Saccharomyces cerevisiae. Genes 2020, 11, 795. [Google Scholar] [CrossRef]
- Petre, M.; Petre, V. Biotechnology of mushroom growth through submerged cultivation. In Mushroom Bio-Technology; Petre, M., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 1–18. [Google Scholar]
- Jasinghe, V.J.; Perera, C.O.; Barlow, P.J. Bioavailability of vitamin D2 from irradiated mushrooms: An in vivo study. Br. J. Nutr. 2005, 93, 951–955. [Google Scholar] [CrossRef] [PubMed]
- Weete, J.D. Structure and function of sterols in fungi. In Advances in Lipid Research; Paoletti, R., Kritchevsky, D., Eds.; Academic Press: New York, NY, USA, 1989; Volume 22, pp. 311–346. [Google Scholar]
- Dushkov, A.; Vosáhlová, Z.; Tzintzarov, A.; Kalíková, K.; Křížek, T.; Ugrinova, I. Analysis of the ibotenic acid, muscimol, and ergosterol content of an Amanita muscaria hydroalcoholic extract with an evaluation of its cytotoxic effect against a panel of lung cell lines in vitro. Molecules 2023, 28, 6824. [Google Scholar] [CrossRef] [PubMed]
- Fiume, M.M.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W. Safety assessment of tocopherols and tocotrienols as used in cosmetics. Int. J. Toxicol. 2018, 37, 61S–94S. [Google Scholar] [CrossRef]
- Yang, C.S.; Luo, P.; Zeng, Z.; Wang, H.; Malafa, M.; Suh, N. Vitamin E and cancer prevention: Studies with different forms of tocopherols and tocotrienols. Mol. Carcinog. 2020, 59, 365–389. [Google Scholar] [CrossRef] [PubMed]
- Berman, K.; Brodaty, H. Tocopherol (Vitamin E) in Alzheimer’s disease and other neurodegenerative disorders. CNS Drugs 2004, 18, 807–825. [Google Scholar] [CrossRef]
- Kim, H.K.; Han, S.N. Vitamin E: Regulatory role on gene and protein expression and metabolomics profiles. IUBMB Life 2019, 71, 442–455. [Google Scholar] [CrossRef]
- Endo, A. The origin of the statins. Int. Congr. Ser. 2004, 1262, 3–8. [Google Scholar] [CrossRef]
- Oesterle, A.; Laufs, U.; Liao, J.K. Pleiotropic effects of statins on the cardiovascular system. Circ. Res. 2017, 120, 229–243. [Google Scholar] [CrossRef]
- Sirtori, C.R. The pharmacology of statins. Pharmacol. Res. 2014, 88, 3–11. [Google Scholar] [CrossRef]
- Cheah, I.K.; Halliwell, B. Ergothioneine; antioxidant potential, physiological function and role in disease. Biochim. Biophys. Acta 2012, 1822, 784–793. [Google Scholar] [CrossRef] [PubMed]
- Cheah, I.K.; Halliwell, B. Ergothioneine, recent developments. Redox Biol. 2021, 42, 101868. [Google Scholar] [CrossRef]
- Fernstrom, J.D.; Fernstrom, M.H. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J. Nutr. 2007, 137, 1539S–1547S. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep. 2014, 4, 86–93. [Google Scholar] [CrossRef]
- Bartel, I.; Mandryk, I.; Horbańczuk, J.O.; Wierzbicka, A.; Koszarska, M. Nutraceutical properties of syringic acid in civilization diseases–review. Nutrients 2024, 16, 10. [Google Scholar] [CrossRef]
- Xie, Y.; Li, X.; Meng, Q.; Li, J.; Wang, X.; Zhu, L.; Wang, W.; Li, X. Interplay between gut microbiota and tryptophan metabolism in type 2 diabetic mice treated with metformin. Microbiol. Spectr. 2024, 12, e0029124. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Pei, Z.; Pan, T.; Wang, H.; Chen, W.; Lu, W. Indole metabolites and colorectal cancer: Gut microbial tryptophan metabolism, host gut microbiome biomarkers, and potential intervention mechanisms. Microbiol. Res. 2023, 272, 127392. [Google Scholar] [CrossRef] [PubMed]
- Dubost, N.J.; Beelman, R.B.; Peterson, D.; Royse, D.J. Identification and quantification of ergothioneine in cultivated mushrooms by liquid chromatography-mass spectroscopy. Int. J. Med. Mushrooms 2006, 8, 215–222. [Google Scholar] [CrossRef]
- Reis, F.S.; Martins, A.; Barros, L.; Ferreira, I.C.F.R. Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: A comparative study between in vivo and in vitro samples. Food Chem. Toxicol. 2012, 50, 1201–1207. [Google Scholar] [CrossRef]
- Acquaviva, R.; Tomasello, B.; Di Giacomo, C.; Santangelo, R.; La Mantia, A.; Naletova, I.; Sarpietro, M.G.; Castelli, F.; Malfa, G.A. Protocatechuic acid, a simple plant secondary metabolite, induced apoptosis by promoting oxidative stress through HO-1 downregulation and P21 upregulation in colon cancer cells. Biomolecules 2021, 11, 1485. [Google Scholar] [CrossRef]
- Cadena-Iñiguez, J.; Santiago-Osorio, E.; Sánchez-Flores, N.; Salazar-Aguilar, S.; Soto-Hernández, R.M.; Riviello-Flores, M.d.l.L.; Macías-Zaragoza, V.M.; Aguiñiga-Sánchez, I. The cancer-protective potential of protocatechuic acid: A narrative review. Molecules 2024, 29, 1439. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef] [PubMed]
- Jan, R.; Chaudhry, G.E. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv. Pharm. Bull. 2019, 9, 205–218. [Google Scholar] [CrossRef]
- Tsai, C.C.; Li, Y.S.; Lin, P.P. Inonotus obliquus extract induces apoptosis in the human colorectal carcinoma’s HCT-116 cell line. Biomed. Pharmacother. 2017, 96, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Palacios, I.; Lozano, M.; Moro, C.; D’Arrigo, M.; Rostagno, M.A.; Martínez, J.A.; García-Lafuente, A.; Guillamón, E.; Villares, A. Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chem. 2011, 128, 674–678. [Google Scholar] [CrossRef]
- Olszowy-Tomczyk, M. How to express the antioxidant properties of substances properly? Chem. Pap. 2021, 75, 6157–6167. [Google Scholar] [CrossRef]
- Meng, X.; Liang, H.; Luo, L. Antitumor polysaccharides from mushrooms: A review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydr. Res. 2016, 424, 30–41. [Google Scholar] [CrossRef]
Analyzed Compounds | Mg-MeOH-FB | Mg-MeOH-MC | Mg-EtOH-FB | Mg-EtOH-MC | |
---|---|---|---|---|---|
Sterols | Ergosterol | 147.85 ± 0.54 b | 89.56 ± 2.58 c | 57.21 ± 1.71 d | 178.67 ± 0.66 a |
Tocopherol | 40.59 ± 0.23 c | 54.23 ± 6.53 b | 25.91 ± 5.02 d | 69.00 ± 0.21 a | |
Ergosterol peroxide | * | * | * | * | |
Indole compounds | L-Tryptophan | 7.05 ± 0.12 a | 28.37 ± 1.04 c | 38.16 ± 0.95 b | 57.13 ± 0.25 a |
Serotonin | 1.82 ± 0.02 b | 17.22 ± 6.27 a | 2.92 ± 0.04 b | 3.53 ± 0.30 b | |
5-Hydroxy-tryptophan | nd | 0.41 ± 0.03 b | nd | 0.82 ± 0.01 a | |
Proteinogenic amino acid | L-phenylalanine | 4.95 ± 0.35 a | 1.89 ± 0.05 b | 2.02 ± 0.49 b | 1.09 ± 0.02 c |
Phenolic acids | Syringic acid | nd | 0.26 ± 0.03 a | nd | 0.16 ± 0.02 b |
Statins | Lovastatin | 12.46 ± 0.08 a | 3.42 ± 0.01 c | 5.02 ± 0.01 b | 2.27 ± 0.08 d |
Sulfur-containing antioxidants | Ergothioneine | 21.17 ± 2.98 b | 44.31 ± 7.73 a | 8.50 ± 1.10 c | 17.63 ± 3.56 b,c |
Extract | EC50 [mg/mL] | TEAC [µg of TE/g of Sample] |
---|---|---|
Methanol extracts | ||
Mg-MC | 48.05 | 103.1 |
Mg-FB | 28.18 | 175.66 |
Ethanol extracts | ||
Mg-MC | 63.43 | 92.86 |
Mg-FB | 114.39 | 51.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sułkowska-Ziaja, K.; Korczyński, M.; Trepa, M.; Galanty, A.; Lazur, J.; Kubica, P.; Kała, K.; Paśko, P.; Muszyńska, B. A Comparative Study on the Mycelium and Fruiting Body of Meripilus giganteus: Chemical Composition and Biological Activity. Curr. Issues Mol. Biol. 2025, 47, 302. https://doi.org/10.3390/cimb47050302
Sułkowska-Ziaja K, Korczyński M, Trepa M, Galanty A, Lazur J, Kubica P, Kała K, Paśko P, Muszyńska B. A Comparative Study on the Mycelium and Fruiting Body of Meripilus giganteus: Chemical Composition and Biological Activity. Current Issues in Molecular Biology. 2025; 47(5):302. https://doi.org/10.3390/cimb47050302
Chicago/Turabian StyleSułkowska-Ziaja, Katarzyna, Mateusz Korczyński, Monika Trepa, Agnieszka Galanty, Jan Lazur, Paweł Kubica, Katarzyna Kała, Paweł Paśko, and Bożena Muszyńska. 2025. "A Comparative Study on the Mycelium and Fruiting Body of Meripilus giganteus: Chemical Composition and Biological Activity" Current Issues in Molecular Biology 47, no. 5: 302. https://doi.org/10.3390/cimb47050302
APA StyleSułkowska-Ziaja, K., Korczyński, M., Trepa, M., Galanty, A., Lazur, J., Kubica, P., Kała, K., Paśko, P., & Muszyńska, B. (2025). A Comparative Study on the Mycelium and Fruiting Body of Meripilus giganteus: Chemical Composition and Biological Activity. Current Issues in Molecular Biology, 47(5), 302. https://doi.org/10.3390/cimb47050302