Uncovering Proteins Commonly Expressed Between Heart Failure and Dementia Using Bioinformatic Tools
Abstract
:1. Introduction
2. Methods and Materials
2.1. Literature Search
2.2. Bibliometric Analysis with VOSviewer
2.3. Gene–Disease Association Using the DisGeNET Database
2.4. Functional Enrichment Analysis
3. Results
3.1. Bibliometric Network Analysis
3.2. VOSviewer Results Overlaid on the DisGeNET Database
3.3. Analysis of PPI and Biological Processes
3.4. Expression Patterns Based on Literature
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, B.; Li, T.; Fan, Z.; Yang, Y.; Shu, J.; Zhu, H. Heart-brain connections: Phenotypic and genetic insights from magnetic resonance images. Science (1979) 2023, 380, abn6598. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, X.; Wu, Z.; Huang, K.; Yang, C.; Yang, L. Brain–heart communication in health and diseases. Brain Res. Bull. 2022, 183, 27–37. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Eur. J. Heart Fail. 2022, 24, 4–131. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the management of heart failure: A report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation 2022, 145, e895–e1032. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- Metra, M.; Teerlink, J.R. Heart failure. Lancet 2017, 390, 1981–1995. [Google Scholar] [CrossRef]
- Savarese, G.; Lund, L.H. Global public health burden of heart failure. Card. Fail. Rev. 2017, 3, 7–11. [Google Scholar] [CrossRef]
- Murphy, S.P.; Ibrahim, N.E.; Januzzi, J.L. Heart failure with reduced ejection fraction: A review. JAMA—J. Am. Med. Assoc. 2020, 324, 488–504. [Google Scholar] [CrossRef]
- Ziaeian, B.; Fonarow, G.C. Epidemiology and aetiology of heart failure. Nat. Rev. Cardiol. 2016, 13, 368–378. [Google Scholar] [CrossRef]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef]
- Chen, J.; Dharmarajan, K.; Wang, Y.; Krumholz, H.M. National trends in heart failure hospitalization stay rates, 2001 to 2009. J. Am. Coll. Cardiol. 2013, 61, 1078–1088. [Google Scholar] [CrossRef] [PubMed]
- Gale, S.A.; Acar, D.; Daffner, K.R. Dementia. Am. J. Med. 2018, 131, 1161–1169. [Google Scholar] [CrossRef]
- Perl, D.; Pendlebury, W. Neuropathology of dementia. Neurol. Clin. 1986, 4, 355–368. [Google Scholar] [CrossRef] [PubMed]
- Vogels, R.L.C.; Scheltens, P.; Schroeder-tanka, J.M.; Weinstein, H.C. Cognitive impairment in heart failure: A systematic review of the literature. Eur. J. Heart Fail. 2007, 9, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Festen, S.; De Rooij, S.E. Heart failure and brain failure: Two of a kind? Eur. J. Heart Fail. 2015, 17, 539–540. [Google Scholar] [CrossRef]
- Doehner, W. Dementia and the heart failure patient. Eur. Heart J. Suppl. 2019, 21, L28–L31. [Google Scholar] [CrossRef]
- Willis, M.S.; Patterson, C. Proteotoxicity and cardiac dysfunction—Alzheimer’s Disease of the heart? N. Engl. J. Med. 2013, 368, 455–464. [Google Scholar] [CrossRef]
- Troncone, L.; Luciani, M.; Coggins, M.; Wilker, E.H.; Ho, C.-Y.; Codispoti, K.E.; Frosch, M.P.; Kayed, R.; del Monte, F. Aβ amyloid pathology affects the hearts of patients with Alzheimer’s Disease. J. Am. Coll. Cardiol. 2016, 68, 2395–2407. [Google Scholar] [CrossRef]
- Evangelisti, A.; Butler, H.; del Monte, F. The heart of the Alzheimer’s: A mindful view of heart disease. Front. Physiol. 2021, 11, 625974. [Google Scholar] [CrossRef]
- Mielcarek, M.; Inuabasi, L.; Bondulich, M.K.; Muller, T.; Osborne, G.F.; Franklin, S.A.; Smith, D.L.; Neueder, A.; Rosinski, J.; Rattray, I.; et al. Dysfunction of the CNS-heart axis in mouse models of Huntington’s Disease. PLoS Genet. 2014, 10, e1004550. [Google Scholar] [CrossRef]
- Goyal, P.; Didomenico, R.J.; Pressler, S.J.; Ibeh, C.; White-Williams, C.; Allen, L.A.; Gorodeski, E.Z.; HFSA Scientific Statement Committee Members. Cognitive impairment in heart failure: A heart failure Society of America Scientific statement. J. Card. Fail. 2024, 30, 488–504. [Google Scholar] [CrossRef] [PubMed]
- Jefferson, A.L.; Tate, D.F.; Poppas, A.; Brickman, A.M.; Paul, R.H.; Gunstad, J.; Cohen, R.A. Lower cardiac output is associated with greater white matter hyperintensities in older adults with cardiovascular disease. J. Am. Geriatr. Soc. 2007, 55, 1044–1048. [Google Scholar] [CrossRef] [PubMed]
- Alosco, M.L.; Brickman, A.M.; Spitznagel, M.B.; Garcia, S.L.; Narkhede, A.; Griffith, E.Y.; Raz, N.; Cohen, R.; Sweet, L.H.; Colbert, L.H.; et al. Cerebral perfusion is associated with white matter hyperintensities in older adults with heart failure. Congest. Heart Fail. 2013, 19, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Dridi, H.; Liu, Y.; Reiken, S.; Liu, X.; Argyrousi, E.K.; Yuan, Q.; Miotto, M.C.; Sittenfeld, L.; Meddar, A.; Soni, R.K.; et al. Heart failure-induced cognitive dysfunction is mediated by intracellular Ca2+ leak through ryanodine receptor type 2. Nat Neurosci 2023, 26, 1365–1378. [Google Scholar] [CrossRef]
- Hartupee, J.; Mann, D.L. Neurohormonal activation in heart failure with reduced ejection fraction. Nat. Rev. Cardiol. 2017, 14, 30–38. [Google Scholar] [CrossRef]
- Díaz, H.S.; Toledo, C.; Andrade, D.C.; Marcus, N.J.; Del Rio, R. Neuroinflammation in heart failure: New insights for an old disease. J. Physiol. 2020, 598, 33–59. [Google Scholar] [CrossRef]
- Tran, S.; Kuruppu, S.; Rajapakse, N.W. Chronic renin-angiotensin system activation induced neuroinflammation: Common mechanisms underlying hypertension and dementia? J. Alzheimer’s Dis. 2022, 85, 943–955. [Google Scholar] [CrossRef]
- Li, J.; Wu, Y.; Zhang, D.; Nie, J. Associations between heart failure and risk of dementia: A PRISMA-compliant meta-analysis. Medicine 2020, 99, e18492. [Google Scholar] [CrossRef]
- Cermakova, P.; Eriksdotter, M.; Lund, L.H.; Winblad, B.; Religa, P.; Religa, D. Heart failure and Alzheimer′s disease. J. Intern. Med. 2015, 277, 406–425. [Google Scholar] [CrossRef]
- Roher, A.E. Cardiovascular system participation in Alzheimer’s Disease pathogenesis. J. Intern. Med. 2015, 277, 426–428. [Google Scholar] [CrossRef]
- Trindade, F.; Perpétuo, L.; Ferreira, R.; Leite-Moreira, A.; Falcão-Pires, I.; Guedes, S.; Vitorino, R. Automatic text-mining as an unbiased approach to uncover molecular associations between periodontitis and coronary artery disease. Biomarkers 2021, 26, 385–394. [Google Scholar] [CrossRef] [PubMed]
- van Eck, N.J.; Waltman, L. How to normalize cooccurrence data? An analysis of some well-known similarity measures. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 1635–1651. [Google Scholar] [CrossRef]
- Oliveros, J. An Interactive Tool for Comparing Lists with Venn’s Diagrams. Available online: https://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed on 3 May 2025).
- Reimand, J.; Kull, M.; Peterson, H.; Hansen, J.; Vilo, J. g:Profiler—A web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. 2007, 35, 193–200. [Google Scholar] [CrossRef]
- Singh-Manoux, A.; Dugravot, A.; Brunner, E.; Kumari, M.; Shipley, M.; Elbaz, A.; Kivimaki, M. Interleukin-6 and c-reactive protein as predictors of cognitive decline in late midlife. Neurology 2014, 86, 486–493. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Zhao, N.; Caulfield, T.R.; Liu, C.-C.; Bu, G. Apolipoprotein E and Alzheimer disease: Pathobiology and targeting strategies. Nat. Rev. Neurol. 2019, 15, 501–518. [Google Scholar] [CrossRef]
- Jiang, F.; Yang, J.; Zhang, Y.; Dong, M.; Wang, S.; Zhang, Q.; Liu, F.F.; Zhang, K.; Zhang, C. Angiotensin-converting enzyme 2 and angiotensin 1–7: Novel therapeutic targets. Nat. Rev. Cardiol. 2014, 11, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Cuddy, L.K.; Prokopenko, D.; Cunningham, E.P.; Brimberry, R.; Song, P.; Kirchner, R.; Chapman, B.A.; Hofmann, O.; Hide, W.; Procissi, D.; et al. Aβ-accelerated neurodegeneration caused by Alzheimer’s-associated ACE variant R1279Q is rescued by angiotensin system inhibition in mice. Sci. Transl. Med. 2020, 12, eaaz2541. [Google Scholar] [CrossRef]
- Pressler, S.; Kim, J.; Riley, P.; Ronis, D.L.; Gradus-Pizlo, I. Memory dysfunction, psychomotor slowing, and decreased executive function predict mortality in patients with heart failure and low ejection fraction. J. Card. Fail. 2010, 16, 750–760. [Google Scholar] [CrossRef]
- Yap, N.L.X.; Kor, Q.; Teo, Y.N.; Teo, Y.H.; Syn, N.L.; Evangelista, L.K.M.; Tan, B.Y.Q.; Lin, W.; Yeo, L.L.L.; Kong, W.K.F.; et al. Prevalence and incidence of cognitive impairment and dementia in heart failure—A systematic review, meta-analysis and meta-regression. Hell. J. Cardiol. 2022, 67, 48–58. [Google Scholar] [CrossRef]
- Vishwanath, S.; Qaderi, V.; Steves, C.J.; Reid, C.M.; Hopper, I.; Ryan, J. Cognitive decline and risk of dementia in individuals with heart failure: A systematic review and meta-analysis. J. Card. Fail. 2022, 28, 1337–1348. [Google Scholar] [CrossRef]
- Witt, L.S.; Rotter, J.; Stearns, S.C.; Gottesman, R.F.; Kucharska-Newton, A.M.; Sharrett, A.R.; Wruck, L.M.; Bressler, J.; Sueta, C.A.; Chang, P.P. Heart failure and cognitive impairment in the atherosclerosis risk in communities (ARIC) study. J. Gen. Intern. Med. 2018, 33, 1721–1728. [Google Scholar] [CrossRef]
- Wolters, F.J.; Segufa, R.A.; Darweesh, S.K.L.; Bos, D. Coronary heart disease, heart failure, and the risk of dementia: A systematic review and meta-analysis. Alzheimer’s Dement. 2018, 14, 1493–1504. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Apostolova, L.G.; Gao, S.; Burney, H.N.; Lai, D.; Saykin, A.J.; Pressler, S.J. Association of heart failure with cognitive decline and development of mild cognitive impairment and dementia. J. Cardiovasc. Nurs. 2024, 39, E80–E85. [Google Scholar] [CrossRef]
- Woo, M.A.; Kumar, R.; Macey, P.M.; Fonarow, G.C.; Harper, R.M. Brain injury in autonomic, emotional, and cognitive regulatory area in patients with heart failure. J. Card. Fail. 2009, 15, 214–223. [Google Scholar] [CrossRef]
- Woo, M.A.; Ogren, J.A.; Abouzeid, C.M.; Macey, P.M.; Sairafian, K.G.; Saharan, P.S.; Thompson, P.M.; Fonarow, G.C.; Hamilton, M.A.; Harper, R.M.; et al. Regional hippocampal damage in heart failure. Eur. J. Heart Fail. 2015, 17, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Roy, B.; Woo, M.A.; Wang, D.J.J.; Fonarow, G.C.; Harper, R.M.; Kumar, R. Reduced regional cerebral blood flow in patients with heart failure. Eur. J. Heart Fail. 2017, 19, 1294–1302. [Google Scholar] [CrossRef] [PubMed]
- Keegan, A.P.; Paris, D.; Luis, C.A.; Abdullah, L.; Ait-Ghezala, G.; Beaulieu-Abdelahad, D.; Pryor, M.; Chaykin, J.; Crynen, G.; Crawford, F.; et al. Plasma cytokine IL-6 levels and subjective cognitive decline: Preliminary findings. Int. J. Geriatr. Psychiatry 2018, 33, 358–363. [Google Scholar] [CrossRef]
- Monje, M.L.; Toda, H.; Palmer, T.D. Inflammatory blockade restores adult hippocampal neurogenesis. Science (1979) 2003, 302, 1760–1765. [Google Scholar] [CrossRef]
- Engelhart, M.J.; Geerlings, M.I.; Meijer, J.; Kiliaan, A.; Ruitenberg, A.; van Swieten, J.C.; Stijnen, T.; Hofman, A.; Witteman, J.C.M.; Breteler, M.M.B. Inflammatory proteins in plasma and the risk of dementia: The Rotterdam study. Arch. Neurol. 2004, 61, 668–672. [Google Scholar] [CrossRef]
- Baumgarten, G.; Knuefermann, P.; Kalra, D.; Gao, F.; Taffet, G.E.; Michael, L.; Blackshear, P.J.; Carballo, E.; Sivasubramanian, N.; Mann, D.L. Load-dependent and -independent regulation of proinflammatory cytokine and cytokine receptor gene expression in the adult mammalian heart. Circulation 2002, 105, 2192–2197. [Google Scholar] [CrossRef]
- Hanna, A.; Frangogiannis, N.G. Inflammatory cytokines and chemokines as therapeutic targets in heart failure. Cardiovasc. Drugs Ther. 2020, 34, 849–863. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Apostolova, L.G.; Gao, S.; Burney, H.N.; Lai, D.; Foroud, T.; Saykin, A.J.; Pressler, S.J. Testing influences of APOE and BDNF genes and heart failure on cognitive function. Heart Lung 2021, 50, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Strickland, M.R.; Soranno, A.; Holtzman, D.M. Apolipoprotein E: Structural insights and links to Alzheimer disease pathogenesis. Neuron 2021, 109, 205–221. [Google Scholar] [CrossRef]
- Mahley, R.W. Apolipoprotein E: From cardiovascular disease to neurodegenerative disorders. J. Mol. Med. 2016, 94, 739–746. [Google Scholar] [CrossRef]
- Paul, M.; Mehr, A.P.; Kreutz, R. Physiology of local renin-angiotensin systems. Physiol. Rev. 2006, 86, 747–803. [Google Scholar] [CrossRef] [PubMed]
- Huber, G.; Schuster, F.; Raasch, W. Brain renin-angiotensin system in the pathophysiology of cardiovascular diseases. Pharmacol. Res. 2017, 125, 72–90. [Google Scholar] [CrossRef]
- Le, D.; Brown, L.; Malik, K.; Murakami, S. Two opposing functions of angiotensin-converting enzyme (ACE) that links hypertension, dementia, and aging. Int. J. Mol. Sci. 2021, 22, 13178. [Google Scholar] [CrossRef]
- Carey, R.M. Update on angiotensin AT2 receptors. Curr. Opin. Nephrol. Hypertens. 2017, 26, 91–96. [Google Scholar] [CrossRef]
- Gavras, H.; Brunner, H.R.; Laragh, J.H.; Sealey, J.E.; Gavras, I.; Vukovich, R.A. An angiotensin converting-enzyme inhibitor to identify and treat vasoconstrictor and volume factors in hypertensive patients. N. Engl. J. Med. 1974, 291, 817–821. [Google Scholar] [CrossRef]
- Lang, C.C.; Struthers, A.D. Targeting the renin-angiotensin-aldosterone system in heart failure. Nat. Rev. Cardiol. 2013, 10, 125–134. [Google Scholar] [CrossRef]
- Zou, K.; Yamaguchi, H.; Akatsu, H.; Sakamoto, T.; Ko, M.; Mizoguchi, K.; Gong, J.-S.; Yu, W.; Yamamoto, T.; Kosaka, K.; et al. Angiotensin-converting enzyme converts amyloid β-protein 1-42 (Aβ1-42) to Aβ1-40, and its inhibition enhances brain Aβ deposition. J. Neurosci. 2007, 27, 8628–8635. [Google Scholar] [CrossRef] [PubMed]
- John, S.K.K.; Bailey, M.H.; Ridge, P.G.; Perry, R.; Wadsworth, M.E.; Hoyt, K.L.; Staley, L.A.; Karch, C.M.; Harari, O.; Cruchaga, C.; et al. Genome-wide association study of CSF levels of 59 Alzheimer’s disease candidate proteins: Significant associations with proteins involved in amyloid processing and inflammation. PLoS Genet. 2014, 10, e1004758. [Google Scholar] [CrossRef]
- Santiago, T.C.; Parra, L.; Nani, J.V.; Fidalgo, T.M.; Bradshaw, N.J.; Hayashi, M.A.F. Angiotensin-converting enzymes as druggable features of psychiatric and neurodegenerative disorders. J. Neurochem. 2023, 166, 138–155. [Google Scholar] [CrossRef] [PubMed]
Proteins | Gene | UniProtKB Entry |
---|---|---|
Adiponectin | ADIPOQ | Q15848 |
Amyloid β | APP | P05067 |
Angiotensin-Converting Enzyme | ACE | P12821 |
Apolipoprotein E | APOE | P02649 |
C-Reactive Protein | CRP | P02741 |
Interleukin 6 | IL6 | P05231 |
Leptin | LEP | P41159 |
Methylenetetrahydrofolate reductase | MTHFR | P42898 |
Microtubule-Associated Protein Tau | MAPT | P10636 |
Natriuretic Peptide B | NPPB | P16860 |
Neuron-Specific Enolase | ENO2 | P09104 |
Renin | REN | P00797 |
Synaptophysin | SYP | P08247 |
Von Willebrand Factor | VWF | P04275 |
Proteins | VOSviewer Software | g:Profiler | Venn Diagram | STRING |
---|---|---|---|---|
ADIPOQ | ✓ | ✓ | ||
APP | ✓ | ✓ | ||
ACE | ✓ | ✓ | ✓ | ✓ |
APOE | ✓ | ✓ | ✓ | |
CRP | ✓ | ✓ | ✓ | ✓ |
IL6 | ✓ | ✓ | ✓ | ✓ |
MAPT | ✓ | ✓ | ||
NPPB | ✓ | ✓ | ||
REN | ✓ | ✓ | ✓ | |
VWF | ✓ | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, F.J.; Vitorino, R.; Ribeiro, F.; Almeida, R.D. Uncovering Proteins Commonly Expressed Between Heart Failure and Dementia Using Bioinformatic Tools. Curr. Issues Mol. Biol. 2025, 47, 437. https://doi.org/10.3390/cimb47060437
Costa FJ, Vitorino R, Ribeiro F, Almeida RD. Uncovering Proteins Commonly Expressed Between Heart Failure and Dementia Using Bioinformatic Tools. Current Issues in Molecular Biology. 2025; 47(6):437. https://doi.org/10.3390/cimb47060437
Chicago/Turabian StyleCosta, Filipa J., Rui Vitorino, Fernando Ribeiro, and Ramiro D. Almeida. 2025. "Uncovering Proteins Commonly Expressed Between Heart Failure and Dementia Using Bioinformatic Tools" Current Issues in Molecular Biology 47, no. 6: 437. https://doi.org/10.3390/cimb47060437
APA StyleCosta, F. J., Vitorino, R., Ribeiro, F., & Almeida, R. D. (2025). Uncovering Proteins Commonly Expressed Between Heart Failure and Dementia Using Bioinformatic Tools. Current Issues in Molecular Biology, 47(6), 437. https://doi.org/10.3390/cimb47060437