Comparative Analysis of Mitochondrial Genome from Phormictopus cancerides (Arachnida: Theraphosidae) with Phylogenetic Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and DNA Extraction
2.2. Next-Generation Sequencing
2.3. Annotation and Sequence Analysis
2.4. Phylogenetic Analysis
3. Results
3.1. Mitochondrial Genome Organization
3.2. Protein-Coding Genes and Codon Usage
3.3. Transfer RNA, Ribosomal RNA Genes, and Control Region
3.4. Phylogenetic Analyses
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allegue, M.; Schwerdt, L.; Ferretti, N. Conservation biogeography and diversity of tarantulas in Argentina. Biol. J. Linn. Soc. 2024, 143, blae002. [Google Scholar] [CrossRef]
- Ferretti, N.; Chaparro, J.C.; Ochoa, J.A.; West, R. A new tarantula (Mygalomorphae: Theraphosidae) genus endemic from Peru with a novel genitalic morphology among theraphosinae and its phylogenetic placement. Zool. Anz. 2023, 302, 102–112. [Google Scholar] [CrossRef]
- Willett, T.R. Spiders and Other Arthropods as Indicators in Old-Growth Versus Logged Redwood Stands. Restor. Ecol. 2001, 9, 410–420. [Google Scholar] [CrossRef]
- Schwerdt, L.; Villalobos, A.E.; Miles, F.P. Spiders as potential bioindicators of mountain grasslands health: The Argentine tarantula Grammostola vachoni (Araneae, Theraphosidae). Wildl. Res. 2018, 45, 64–71. [Google Scholar] [CrossRef]
- Aguilera, M.A.; Montenegro, R.; Casanueva, M.E. Impact of disturbed areas on Theraphosidae spiders diversity (Araneae) and first population data of Grammostola rosea (Walckenaer) in Panul Park. Ecol. Evol. 2019, 9, 5802–5809. [Google Scholar] [CrossRef] [PubMed]
- Cameron, S.L. Insect Mitochondrial Genomics: Implications for Evolution and Phylogeny. Annu. Rev. Entomol. 2014, 59, 95–117. [Google Scholar] [CrossRef]
- Niu, Y.; Shi, F.; Li, X.; Zhang, S.; Xu, Y.; Tao, J.; Li, M.; Zhao, Y.; Zong, S. Comparative Mitochondrial Genomic Analysis of Longhorn Beetles (Coleoptera: Chrysomeloidea) with Phylogenetic Implications. Arthropod Syst. Phylogeny 2024, 82, 133–150. [Google Scholar] [CrossRef]
- Jia, Y.; Qiu, G.; Cao, C.; Wang, X.; Jiang, L.; Zhang, T.; Geng, Z.; Jin, S. Mitochondrial genome and phylogenetic analysis of Chaohu duck. Gene 2023, 851, 147018. [Google Scholar] [CrossRef]
- Kang, Z.; Xu, Y.; Wang, G.; Yang, D.; Zhang, X. First mitochondrial genomes of the crane fly tribe Elephantomyiini (Diptera, Tipuloidea, Limoniidae): Comparative analysis and phylogenetic implications. Arthropod Syst. Phylogeny 2023, 81, 731–746. [Google Scholar] [CrossRef]
- Hua, Y.; Li, N.; Su, J.; Hua, B.; Tao, S.; Xing, L. Comparative analysis of complete mitochondrial genomes of Panorpidae (Insecta: Mecoptera) and new perspectives on the phylogenetic position of Furcatopanorpa. Arthropod Syst. Phylogeny 2024, 82, 119–131. [Google Scholar] [CrossRef]
- Jiang, P.; Li, H.; Song, F.; Cai, Y.; Wang, J.; Liu, J.; Cai, W. Duplication and Remolding of tRNA Genes in the Mitochondrial Genome of Reduvius tenebrosus (Hemiptera: Reduviidae). International J. Mol. Sci. 2016, 17, 951. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Wu, Y.; Yang, C.; Gu, X.; Wilson, J.J.; Li, H.; Cai, W.; Yang, H.; Song, F. Evolution of tRNA gene rearrangement in the mitochondrial genome of ichneumonoid wasps (Hymenoptera: Ichneumonoidea). Int. J. Biol. Macromol. 2020, 164, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Song, D.; Zhou, K.; Sun, H. The mitochondrial sequences of Heptathela hangzhouensis and Ornithoctonus huwena reveal unique gene arrangements and atypical tRNAs. J. Mol. Evol. 2005, 60, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wu, H.; Wang, N.; Zhong, S.; Zhou, Y.; Liang, B. A mitogenomic phylogeny of spiders and complete mitochondrial genome of Cyriopagopus hainanus (Araneae: Theraphosidae). Mitochondrial DNA Part B Resour. 2020, 5, 782–783. [Google Scholar] [CrossRef]
- Powell, A.F.L.A.; Barker, F.K.; Lanyon, S.M. Empirical evaluation of partitioning schemes for phylogenetic analyses of mitogenomic data: An avian case study. Mol. Phylogenetics Evol. 2013, 66, 69–79. [Google Scholar] [CrossRef]
- Kremkow, B.G.; Lee, K.H. Sequencing technologies for animal cell culture research. Biotechnol. Lett. 2015, 37, 55–65. [Google Scholar] [CrossRef]
- Marchler-Bauer, A.; Bryant, S.H. CD-Search: Protein domain annotations on the fly. Nucleic Acids Res. 2004, 32, W327–W331. [Google Scholar] [CrossRef]
- Bernt, M.; Donath, A.; Jühling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenetics Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef]
- Grant, J.R.; Stothard, P. The CGView Server: A comparative genomics tool for circular genomes. Nucleic Acids Res. 2008, 36, W181–W184. [Google Scholar] [CrossRef]
- Perna, N.T.; Kocher, T.D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 1995, 41, 353–358. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Suleski, M.; Sanderford, M.; Sharma, S.; Tamura, K. MEGA12: Molecular Evolutionary Genetic Analysis Version 12 for Adaptive and Green Computing. Mol. Biol. Evol. 2024, 41, msae263. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, F.; Jakovlic, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Tyagi, K.; Chakraborty, R.; Prasad, P.; Kundu, S.; Tyagi, I.; Chandra, K. The complete mitochondrial genome of endemic giant tarantula, Lyrognathus crotalus (Araneae: Theraphosidae) and comparative analysis. Sci. Rep. 2020, 10, 74. [Google Scholar] [CrossRef]
- Hurst, L.D. The Ka/Ks ratio: Diagnosing the form of sequence evolution. Trends Genet. 2002, 18, 486–487. [Google Scholar] [CrossRef]
- Hassanin, A.; Léger, N.; Deutsch, J. Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of Metazoa, and consequences for phylogenetic inferences. Syst. Biol. 2005, 54, 277–298. [Google Scholar] [CrossRef]
- Xu, T.J.; Xu, W.; Zhang, G.J.; Liu, Z.Y.; Liu, H.Y. Characterization of the complete mitochondrial genomes of four tarantulas (Arachnida: Theraphosidae) with phylogenetic analysis. Gene 2025, 933, 148954. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chen, W.T.; Zhang, Q.L.; Liu, M.; Xing, C.W.; Cao, Y.; Luo, F.Z.; Yuan, M.L. Mitochondrial phylogenomics provides insights into the phylogeny and evolution of spiders (Arthropoda: Araneae). Zool. Res. 2022, 43, 566–584. [Google Scholar] [CrossRef] [PubMed]
- Guadanucci, J.P.L. Theraphosidae phylogeny: Relationships of the ‘Ischnocolinae’ genera (Araneae, Mygalomorphae). Zool. Scr. 2014, 43, 508–518. [Google Scholar] [CrossRef]
Family | Subfamily | Species | GenBank ID | Size (bp) |
---|---|---|---|---|
Theraphosidae | Theraphosinae | Brachypelma albiceps | OK298473.1 | 13,856 |
Brachypelma boehmei | OK105082.1 | 13,852 | ||
Grammostola pulchripes | PP718135.1 | 14,011 | ||
Phormictopus atrichomatus | PP718136.1 | 13,822 | ||
Phormictopus cancerides | PV072888 | 13,776 | ||
Pterinopelma sazimai | PP810236.1 | 13,856 | ||
Harpactirinae | Pterinochilus murinus | PP718137.1 | 13,865 | |
Ornithoctoninae | Cyriopagopus hainanus | MN877932.1 | 13,874 | |
Ornithoctonus huwena | AY309259.1 | 13,874 | ||
Selenocosmiinae | Lyrognathus crotalus | MN072398.1 | 13,866 | |
Salticidae | Asemoneinae | Asemonea sichuanensis | MN651970.1 | 15,419 |
Gene | Position | Size (bp) | Orientation | Codon | Intergenic Nucleotides (bp) | ||
---|---|---|---|---|---|---|---|
From | To | Start | Stop | ||||
COX1 | 1 | 1545 | 1545 | + | ATA | TAG | −14 |
COX2 | 1594 | 2211 | 618 | + | ATG | TAG | 48 |
tRNA-Lys | 2211 | 2270 | 60 | + | −1 | ||
tRNA-Asp | 2254 | 2310 | 57 | + | −17 | ||
ATP8 | 2301 | 2450 | 150 | + | ATT | TAA | −10 |
ATP6 | 2444 | 3112 | 669 | + | ATG | TAG | −7 |
COX3 | 3116 | 3898 | 783 | + | ATG | TAG | 3 |
tRNA-Gly | 3898 | 3952 | 55 | + | −1 | ||
ND3 | 3985 | 4348 | 364 | + | ATG | T | 32 |
tRNA-Leu2 | 4295 | 4371 | 77 | − | −54 | ||
tRNA-Asn | 4366 | 4419 | 54 | + | −6 | ||
tRNA-Ala | 4399 | 4455 | 57 | + | −21 | ||
tRNA-Ser1 | 4438 | 4495 | 58 | + | −18 | ||
tRNA-Arg | 4496 | 4548 | 53 | + | 0 | ||
tRNA-Glu | 4540 | 4598 | 59 | + | −9 | ||
tRNA-Phe | 4564 | 4616 | 53 | − | −35 | ||
ND5 | 4631 | 6235 | 1605 | − | ATT | TAA | 14 |
tRNA-His | 6263 | 6313 | 51 | − | 27 | ||
ND4 | 6294 | 7604 | 1311 | − | ATA | TAA | −20 |
ND4L | 7608 | 7896 | 289 | − | ATG | T | 3 |
tRNA-Pro | 7854 | 7916 | 63 | − | −43 | ||
ND6 | 7933 | 8337 | 405 | + | ATA | TAA | 16 |
Cytb | 8345 | 9475 | 1131 | + | ATT | TAG | 7 |
tRNA-Ser2 | 9466 | 9528 | 63 | + | −10 | ||
tRNA-Thr | 9528 | 9588 | 61 | + | −1 | ||
ND1 | 9566 | 10,477 | 912 | − | ATG | TAA | −23 |
tRNA-Leu1 | 10,470 | 10,532 | 63 | − | −8 | ||
16S rRNA | 10,514 | 11,521 | 1008 | − | −19 | ||
tRNA-Val | 11,496 | 11,545 | 50 | − | −26 | ||
12S rRNA | 11,545 | 12,196 | 652 | − | −1 | ||
tRNA-Ile | 12,197 | 12,269 | 73 | − | 0 | ||
tRNA-Gln | 12,271 | 12,322 | 52 | − | 1 | ||
CR | 12,323 | 12,675 | 353 | / | 0 | ||
tRNA-Met | 12,676 | 12,739 | 64 | + | 0 | ||
ND2 | 12,722 | 13,721 | 1000 | + | ATT | T | −18 |
tRNA-Trp | 13,657 | 13,718 | 62 | + | −65 | ||
tRNA-Tyr | 13,689 | 13,743 | 55 | − | −30 | ||
tRNA-Cys | 13,743 | 14 | 48 | − | −1 |
Region | Size (bp) | A (%) | T (%) | G (%) | C (%) | A + T (%) | G + C (%) | AT-Skew | GC-Skew |
---|---|---|---|---|---|---|---|---|---|
Total genome | 13,776 | 27.47 | 37.80 | 24.32 | 10.40 | 65.27 | 34.72 | −0.158 | 0.401 |
PCGs | 10,782 | 26.28 | 38.32 | 25.38 | 10.03 | 64.60 | 35.41 | −0.186 | 0.433 |
tRNAs | 1290 | 33.41 | 35.04 | 20.85 | 10.70 | 68.45 | 31.55 | −0.024 | 0.322 |
rRNAs | 1660 | 31.27 | 36.99 | 18.31 | 13.43 | 68.26 | 31.74 | −0.084 | 0.154 |
CR | 353 | 26.49 | 35.41 | 20.68 | 14.45 | 61.90 | 35.13 | −0.144 | 0.177 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Xu, W.; Liu, H.; Yang, Y.; Gao, M. Comparative Analysis of Mitochondrial Genome from Phormictopus cancerides (Arachnida: Theraphosidae) with Phylogenetic Implications. Curr. Issues Mol. Biol. 2025, 47, 448. https://doi.org/10.3390/cimb47060448
Chen H, Xu W, Liu H, Yang Y, Gao M. Comparative Analysis of Mitochondrial Genome from Phormictopus cancerides (Arachnida: Theraphosidae) with Phylogenetic Implications. Current Issues in Molecular Biology. 2025; 47(6):448. https://doi.org/10.3390/cimb47060448
Chicago/Turabian StyleChen, Hongjian, Wei Xu, Hongyi Liu, Yiwen Yang, and Ming Gao. 2025. "Comparative Analysis of Mitochondrial Genome from Phormictopus cancerides (Arachnida: Theraphosidae) with Phylogenetic Implications" Current Issues in Molecular Biology 47, no. 6: 448. https://doi.org/10.3390/cimb47060448
APA StyleChen, H., Xu, W., Liu, H., Yang, Y., & Gao, M. (2025). Comparative Analysis of Mitochondrial Genome from Phormictopus cancerides (Arachnida: Theraphosidae) with Phylogenetic Implications. Current Issues in Molecular Biology, 47(6), 448. https://doi.org/10.3390/cimb47060448