Preliminary Analysis of the Salt-Tolerance Mechanisms of Different Varieties of Dandelion (Taraxacum mongolicum Hand.-Mazz.) Under Salt Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Measurement of Physiological Indicators
2.3. Primary Metabolome Profiling
2.4. Transcriptome Profiling
2.5. Combined Profiling of Metabolome and Transcriptome Profiling
2.6. Data Analysis
3. Results
3.1. Salt Stress Affected Physiological Index
3.1.1. Changes in Soluble Sugar and MDA Content in Leaves of Varieties A and B Under Salt Stress
3.1.2. Changes in Leaf Active Oxygen Enzyme Scavenging System of Varieties A and B Under Salt Stress
3.2. Changes in Primary Metabolome in Variety A and B
3.3. Salt Stress Triggers Transcriptional Reprogramming of Varieties A and B
3.4. KEGG Pathways of the DEGs
3.5. Verification of RNA-Seq Data
3.6. Integrative Metabolome and Transcriptome Analysis Revealed Key Metabolic Pathways Affected by Saline Stress
4. Discussion
4.1. Glycoside Hydrolase Family
4.2. Adenylate Esterases Family
4.3. P450 Cytochrome Family
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Z.; Xue, Z.; Li, H.; Zhang, X.; Wang, X.; Lu, X. Cultivation of dandelion (Taraxacum erythropodium) on coastal saline land based on the control of salinity and fertilizer. Folia Hortic. 2019, 31, 277–284. [Google Scholar] [CrossRef]
- Wu, Z.; Xue, Z.; Lu, X.; Jia, Y.; Wang, X.; Zhang, X. Salt-tolerance identification and quality evaluation of Abelmoschus manihot (L.) Medik. Can. J. Plant Sci. 2020, 100, 568–574. [Google Scholar] [CrossRef]
- Muchate, N.S.; Nikalje, G.C.; Rajurkar, N.S.; Suprasanna, P.; Nikam, T.D. Plant Salt Stress: Adaptive Responses, Tolerance Mechanism and Bioengineering for Salt Tolerance. Bot. Rev. 2016, 82, 371–406. [Google Scholar] [CrossRef]
- Wu, Z.; Meng, R.; Li, Z.; Feng, W.; Meng, R.; Wang, X.; Wu, C. The Breeding of High-Quality Dandelions by NaCl Induced Callus Variation Combined with a Drosophila Tumor Cell Migration Test. Horticulturae 2022, 8, 1167. [Google Scholar] [CrossRef]
- Xiao, F.; Huang, S.; Chen, L.; Shi, B.; Gao, L.; Guan, Y.; Jian, H. Research Progress on the Value and Product Development Trends of Dandelion and Its Formula. Food Ind. Technol. 2021, 42, 368–375. [Google Scholar] [CrossRef]
- Yang, R.; Qiao, H.; Liu, W.; Wang, H.; Sun, T. Study on the in vitro antioxidant active sites of traditional Chinese medicine dandelion flowers. Chin. J. Mater. Medica Clin. Med. 2016, 16, 8–11. [Google Scholar]
- Fan, M.; Zhang, X.; Song, H.; Zhang, Y. Dandelion (Taraxacum Genus): A Review of Chemical Constituents and Pharmacological Effects. Molecules 2023, 28, 5022. [Google Scholar] [CrossRef]
- Gazda, P.; Glibowski, P. Mniszek lekarski—Roślina lecznicza o właściwościach prozdrowotnych. Przemysł Spożywczy 2024, 78, 66–70. [Google Scholar] [CrossRef]
- Jedrejek, D.; Pawelec, S. Comprehensive Qualitative and Quantitative Analysis of Flavonoids in Dandelion (Taraxacum officinale) Flowers and Food Products. J. Agric. Food Chem. 2024, 72, 17368–17376. [Google Scholar] [CrossRef]
- Han, A.; Liu, J.; Du, P.; Li, W.; Quan, H.; Lin, Z.; Chen , L. Taraxasterol regulates p53 transcriptional activity to inhibit pancreatic cancer by inducing MDM2 ubiquitination degradation. Phytomedicine 2025, 136, 156298. [Google Scholar] [CrossRef]
- Nuridullaeva, N.K.; Karieva, S.E.; Khalilov, M.R. Development of Industrial Technology of Inulin Production from Dandelion Roots (Taraxacum officinale Wigg.). Pharm. Chem. J. 2023, 57, 1298–1303. [Google Scholar] [CrossRef]
- Radoman, K.; Zivkovic, V.; Zdravkovic, N.; Chichkova, N.V.; Bolevich, S.; Jakovljevic, V. Effects of dandelion root on rat heart function and oxidative status. BMC Complement. Med. Ther. 2023, 23, 78. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Z.; Shi, G.; Gao, Y.; Zhang, H.; Liu, K. Combined transcriptome and metabolome analysis revealed the toxicity mechanism of individual or combined of microplastic and salt stress on maize. Ecotoxicol. Environ. Saf. 2025, 293, 118034. [Google Scholar] [CrossRef]
- Fukushima, A.; Kusano, M.; Redestig, H.; Arita, M.; Saito, K. Integrated omics approaches in plant systems biology. Curr. Opin. Chem. Biol. 2009, 13, 532–538. [Google Scholar] [CrossRef]
- Wang, C.; Huang, R.; Wang, J.; Jin, J.; Malik, K.; Niu, X.; Tang, R.; Hou, W.; Cheng, C.; Liu, Y.; et al. Comprehensive Analysis of Transcriptome and Metabolome Elucidates the Molecular Regulatory Mechanism of Salt Resistance in Roots of Achnatherum inebrians Mediated by Epichloë gansuensis. J. Fungi 2022, 8, 1092. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhou, Y.; Liu, X.; Meng, F.; Xu, C.; Chen, M. Integrated transcriptomic and metabolomic analyses uncover the key pathways of Limonium bicolor in response to salt stress. Plant Biotechnol. J. 2024, 23, 715–730. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhu, K.; Wang, C.; Li, Y.; Li, M.; Sun, Y. Comparative Metabolome and Transcriptome Analyses Reveal Molecular Mechanisms Involved in the Responses of Two Carex rigescens Varieties to Salt Stress. Plants 2024, 13, 2984. [Google Scholar] [CrossRef]
- Ma, B.; Song, Y.; Feng, X.; Guo, P.; Zhou, L.; Jia, S.; Guo, Q.; Zhang, C. Integrated Metabolome and Transcriptome Analyses Reveal the Mechanisms Regulating Flavonoid Biosynthesis in Blueberry Leaves under Salt Stress. Horticulturae 2024, 10, 1084. [Google Scholar] [CrossRef]
- Hu, Y.; Luan, T.; Wang, X.; Luan, Z.; Hu, Y.; Li, M. Integrated Metabolomics and Transcriptomics Analyses Reveal Resistance to Salt Stress in Wild Soybean (Glycine soja) During the Post-Germination Growth Period. J. Agron. Crop. Sci. 2024, 210, e12748. [Google Scholar] [CrossRef]
- Hu, , Y.; Liu, J.; Lin, Y.; Xu, X.; Xia, Y.; Bai, J.; Yu, Y.; Xiao, F.; Ding, Y.; Ding, C.; et al. Sucrose nonfermenting-1-related protein kinase 1 regulates sheath-to panicle transport of nonstructural carbohydrates during rice grain filling. Plant Physiol. 2022, 189, 1694–1714. [Google Scholar] [CrossRef]
- Li, P.; Ruan, Z.; Fei, Z.; Yan, J.; Tang, G. Integrated transcriptome and metabolome analysis revealed that flavonoid biosynthesis may dominate the resistance of zanthoxylum bungeanum against stem canker. J. Agric. Food Chem. 2021, 69, 6360–6378. [Google Scholar] [CrossRef]
- Lu, Y.; Yue, D.; Xie, J.; Cheng, L.; Wang, X. Ontology Specific Alternative Splicing Changes in Alzheimer’s Disease. Front. Genet. 2022, 13, 926049. [Google Scholar] [CrossRef]
- Mukhopadhyay, R.; Sarkar, B.; Jat, H.S.; Sharma, P.C.; Bolan, N.S. Soil salinity under climate change: Challenges for sustainable agriculture and food security. J. Environ. Manag. 2021, 280, 111736. [Google Scholar] [CrossRef]
- Aghaei, K.; Komatsu, S. Crop and medicinal plants proteomics in response to salt stress. Front. Plant Sci. 2013, 4, 8. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Meng, R.; Feng, W.; Wongsnansilp, T.; Li, Z.; Lu, X.; Wang, X. Study of Dandelion (Taraxacum mongolicum Hand.-Mazz.) Salt Response and Caffeic Acid Metabolism under Saline Stress by Transcriptome Analysis. Genes 2024, 15, 220. [Google Scholar] [CrossRef]
- Matesanz, S.; Gianoli, E.; Valladares, F. Global change and the evolution of phenotypic plasticity in plants. Ann. N. Y. Acad. Sci. 2010, 1206, 35–55. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Fan, J.; Yan, C.; Xu, C. Starch Deficiency Enhances Lipid Biosynthesis and Turnover in Leaves. Plant Physiol. 2018, 178, 118–129. [Google Scholar] [CrossRef]
- Baysal, C.; He, W.; Drapal, M.; Villorbina, G.; Medina, V.; Capell, T.; Khush, G.S.; Zhu, C.; Fraser, P.D.; Christou, P. Inactivation of rice starch branching enzyme IIb triggers broad and unexpected changes in metabolism by transcriptional reprogramming. Proc. Natl. Acad. Sci. USA 2020, 117, 26503–26512. [Google Scholar] [CrossRef]
- Ying, Y.; Deng, B.; Zhang, L.; Ya, Q.H.; Lei, L.; Jin, S.B.; Fei, F.X. Multi-omics analyses reveal mechanism for high resistant starch formation in an indica rice SSIIIa mutant. Carbohydr. Polym. 2025, 347, 122708. [Google Scholar] [CrossRef] [PubMed]
- Hendry, G.A.F.; Wallace, R.K. The origin, distribution and evolutionary significance of fructans. In Science and Technology of Frcutans; Suzuki, M., Chatterton, N.J., Eds.; CRC Press: Boca Raton, FL, USA, 1993; pp. 119–139. [Google Scholar]
- Willem, L.; Katrien, R.L.; Lindsey, S.; Van Laere, A.; Rabijns, A.; Van den Ende, W. Structural insights into glycoside hydrolase family 32 and 68 enzymes: Functional implications. J. Exp. Bot. 2009, 60, 727–740. [Google Scholar]
- Le Roy, K.; Lammens, W.; Van Laere, A.; Van den Ende, W. Influencing the binding configuration of sucrose in the active sites of chicory 1-FEH IIa and sugar beet 6-FEH. New Phytol. 2008, 178, 572–580. [Google Scholar] [CrossRef]
- Ahn, O.Y.; Zheng, M.; Bevan, R.D.; Esen, A.; Shiu, S.-H.; Benson, J.; Peng, H.-P.; Miller, J.T.; Cheng, C.-L.; Poulton, J.E.; et al. Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 35. Phytochemistry 2007, 68, 1510–1520. [Google Scholar] [CrossRef]
- Zhao, Y.; Lv, S.; Chen, J.; Luo, Y.; Jiang, H.; Tian, Z.; Hu, X. Research progress on the regulatory role of cAMP in plant growth, development, and stress adaptation. J. Henan Agric. Univ. 2023, 57, 1–9. [Google Scholar] [CrossRef]
- Ilona, T.; Chris, G. Peptide-Mediated Cyclic Nucleotide Signaling in Plants: Identification and Characterization of Interactor Proteins with Nucleotide Cyclase Activity. Methods Mol. Biol. 2024, 2731, 179–204. [Google Scholar]
- Yuan, Y.; Zhao, X.; Li, J.; Liu, Z.; Liu , M. Research progress on plant adenylate cyclase. J. Agric. Biotechnol. 2022, 30, 2212–2223. [Google Scholar]
- Kong, Y.; Chai, X.; Li, Y.; Fang, J.; Yu, K. Cloning and Bioinformatics Analysis of Cytochrome P450 Gene in Atractylodes macrocephala [J/OL]. Molecular Plant Breeding. 3 January 2020. pp. 1–11. Available online: http://kns.cnki.net/kcms/detail/46.1068.S.20240923.1522.010.html (accessed on 27 April 2025).
- Li, J.; Ma, Q.C.; Salt, T. Verification of Wheat Cytochrome Enzyme Gene TaCYP71C1. J. Jilin Agric. Univ. 2024. [Google Scholar] [CrossRef]
- Yue, Y.; Liu, J.; Wang, L. The potential application of cytochrome P450 genes in plant ornamental and stress resistance improvement. Chin. J. Plant Physiol. 2023, 59, 2255–2265. [Google Scholar] [CrossRef]
- Chu, K.L.; Le, T.N.; Tran, T.H.; Nguyen, N.H.; Phan, Q.; Le, H.N.; Stacey, G.; Stacey, M.G.; Nguyen, C.X.; Chu, H.H.; et al. Overexpression of a Soybean Cytochrome P450 Gene, GmCYP, Improves Drought and Insect Tolerance in Tobacco. J. Plant Biol. 2024, 67, 419–426. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Z.; Zhu, J.; Chen, L.; Wang, W.; Qi, Z.; Bi, Z.; Yao, P.; Sun, C.; Liu, Y. Comprehensive genomic analysis and expression profiling of the cytochrome P450 genes during abiotic stress and flavonoid biosynthesis in potato (Solanum tuberosum). Food Biosci. 2024, 62, 105049. [Google Scholar] [CrossRef]
AS_Type | EventNum.JC | SigEventNum.JC | EventNum.JCEC | SigEventNum.JCEC |
---|---|---|---|---|
A3SS | 950 | 96 (62;34) | 950 | 101 (65;36) |
A5SS | 426 | 29 (17;12) | 429 | 32 (20;12) |
MXE | 199 | 26 (14;12) | 201 | 32 (17;15) |
RI | 1154 | 83 (59;24) | 1155 | 83 (60;23) |
SE | 2900 | 131 (32;99) | 2924 | 141 (39;102) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, W.; Meng, R.; Chen, Y.; Li, Z.; Lu, X.; Wang, X.; Wu, Z. Preliminary Analysis of the Salt-Tolerance Mechanisms of Different Varieties of Dandelion (Taraxacum mongolicum Hand.-Mazz.) Under Salt Stress. Curr. Issues Mol. Biol. 2025, 47, 449. https://doi.org/10.3390/cimb47060449
Feng W, Meng R, Chen Y, Li Z, Lu X, Wang X, Wu Z. Preliminary Analysis of the Salt-Tolerance Mechanisms of Different Varieties of Dandelion (Taraxacum mongolicum Hand.-Mazz.) Under Salt Stress. Current Issues in Molecular Biology. 2025; 47(6):449. https://doi.org/10.3390/cimb47060449
Chicago/Turabian StyleFeng, Wei, Ran Meng, Yue Chen, Zhaojia Li, Xuelin Lu, Xiuping Wang, and Zhe Wu. 2025. "Preliminary Analysis of the Salt-Tolerance Mechanisms of Different Varieties of Dandelion (Taraxacum mongolicum Hand.-Mazz.) Under Salt Stress" Current Issues in Molecular Biology 47, no. 6: 449. https://doi.org/10.3390/cimb47060449
APA StyleFeng, W., Meng, R., Chen, Y., Li, Z., Lu, X., Wang, X., & Wu, Z. (2025). Preliminary Analysis of the Salt-Tolerance Mechanisms of Different Varieties of Dandelion (Taraxacum mongolicum Hand.-Mazz.) Under Salt Stress. Current Issues in Molecular Biology, 47(6), 449. https://doi.org/10.3390/cimb47060449