The TOX2 Gene Is Responsible for Conidiation and Full Virulence in Fusarium pseudograminearum
Abstract
1. Introduction
2. Methods
2.1. Strains and Growth Conditions
2.2. Genetic Methods
2.3. Analysis of Growth Rate, Conidiation, and Conidial Germination Rate
2.4. Analysis Utilization of Different Carbon Sources
2.5. Stress Assay
2.6. Plant Infection Assay
2.7. Determination of DON Production
2.8. RNA Extraction and qRT-PCR Assay
3. Results
3.1. Identification of Tox2 Gene and Mutant Construction
3.2. Tox2 Was Involved in Mycelial Growth and Conidiation
3.3. Analysis of Carbon Source Utilization and Abiotic Stress Responses
3.4. Tox2 Is Necessary for DON Synthesis
3.5. Tox2 Deletion Mutant Exhibits Reduced Virulence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smiley, R.W. Water and Temperature Parameters Associated with Winter Wheat Diseases Caused by Soilborne Pathogens. Plant Dis. 2009, 93, 73–80. [Google Scholar] [CrossRef]
- Powell, J.J.; Carere, J.; Fitzgerald, T.L.; Stiller, J.; Covarelli, L.; Xu, Q.; Gubler, F.; Colgrave, M.L.; Gardiner, D.M.; Manners, J.M.; et al. The Fusarium crown rot pathogen Fusarium pseudograminearum triggers a suite of transcriptional and metabolic changes in bread wheat (Triticum aestivum L.). Ann. Bot. 2017, 119, 853–867. [Google Scholar] [CrossRef]
- Akinsanmi, O.A.; Backhouse, D.; Simpfendorfer, S.; Chakraborty, S. Genetic diversity of Australian Fusarium graminearum and F. pseudograminearum. Plant Pathol. 2006, 55, 494–504. [Google Scholar] [CrossRef]
- Sørensen, J.L.; Benfield, A.H.; Wollenberg, R.D.; Westphal, K.; Wimmer, R.; Nielsen, M.R.; Nielsen, K.F.; Carere, J.; Covarelli, L.; Beccari, G.; et al. The cereal pathogen Fusarium pseudograminearum produces a new class of active cytokinins during infection. Mol. Plant Pathol. 2018, 19, 1140–1154. [Google Scholar] [CrossRef]
- Savary, S.; Ficke, A.; Aubertot, J.-N.; Hollier, C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur. 2012, 4, 519–537. [Google Scholar] [CrossRef]
- Murray, G.M.; Brennan, J.P. Estimating disease losses to the Australian wheat industry. Australas. Plant Pathol. 2009, 38, 558–570. [Google Scholar] [CrossRef]
- Kazan, K.; Gardiner, D.M. Fusarium crown rot caused by Fusarium pseudograminearum in cereal crops: Recent progress and future prospects. Mol. Plant Pathol. 2018, 19, 1547–1562. [Google Scholar] [CrossRef]
- Gardiner, D.M.; Benfield, A.H.; Stiller, J.; Stephen, S.; Aitken, K.; Liu, C.; Kazan, K. A high-resolution genetic map of the cereal crown rot pathogen Fusarium pseudograminearum provides a near-complete genome assembly. Mol. Plant Pathol. 2018, 19, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Song, Y.L.; Yang, G.Q.; Wang, J.M.; Liu, L.L.; Li, Y.H. First Report of Fusarium pseudograminearum from Wheat Heads with Fusarium Head Blight in North China Plain. Plant Dis. 2015, 99, 156. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Geng, X.; Ma, Y.; Zhao, J.; Chen, W.; Xing, X.; Shi, Y.; Sun, B.; Li, H. The ER Lumenal Hsp70 Protein FpLhs1 Is Important for Conidiation and Plant Infection in Fusarium pseudograminearum. Front. Microbiol. 2019, 10, 1401. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, D.M.; McDonald, M.C.; Covarelli, L.; Solomon, P.S.; Rusu, A.G.; Marshall, M.; Kazan, K.; Chakraborty, S.; McDonald, B.A.; Manners, J.M.; et al. Comparative Pathogenomics Reveals Horizontally Acquired Novel Virulence Genes in Fungi Infecting Cereal Hosts. PLOS Pathog. 2012, 8, e1002952. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.; Han, S.; Li, Q.; Kong, L. The global regulator FpLaeB is required for the regulation of growth, development, and virulence in Fusarium pseudograminearum. Front. Plant Sci. 2023, 14, 1132507. [Google Scholar] [CrossRef]
- Cary, J.W.; Gilbert, M.K.; Lebar, M.D.; Majumdar, R.; Calvo, A.M. Aspergillus flavus Secondary Metabolites: More than Just Aflatoxins. Food Saf. 2018, 6, 7–32. [Google Scholar] [CrossRef]
- Pusztahelyi, T.; Holb, I.J.; Pócsi, I. Secondary metabolites in fungus-plant interactions. Front. Plant Sci. 2015, 6, 573. [Google Scholar] [CrossRef]
- Perez-Nadales, E.; Nogueira, M.F.A.; Baldin, C.; Castanheira, S.; El Ghalid, M.; Grund, E.; Lengeler, K.; Marchegiani, E.; Mehrotra, P.V.; Moretti, M.; et al. Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genet. Biol. 2014, 70, 42–67. [Google Scholar] [CrossRef] [PubMed]
- Scharf, D.H.; Heinekamp, T.; Brakhage, A.A.; Heitman, J. Human and Plant Fungal Pathogens: The Role of Secondary Metabolites. PLoS Pathog. 2014, 10, e1003859. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Haque, M.S.; Islam, M.M.; Emdad, E.M.; Halim, A.; Hossen, Q.M.; Hossain, M.Z.; Ahmed, B.; Rahim, S.; Rahman, M.S.; et al. Tools to kill: Genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina. BMC Genom. 2012, 13, 493. [Google Scholar] [CrossRef]
- Sinha, R.P.; Singh, S.P.; Häder, D.-P. Database on mycosporines and mycosporine-like amino acids (MAAs) in fungi, cyanobacteria, macroalgae, phytoplankton and animals. J. Photochem. Photobiol. B Biol. 2007, 89, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Howlett, B.J. Secondary metabolite toxins and nutrition of plant pathogenic fungi. Curr. Opin. Plant Biol. 2006, 9, 371–375. [Google Scholar] [CrossRef]
- Desjardins, A.E.; Hohn, T.M.; McCormick, S.P. Trichothecene biosynthesis in Fusarium species: Chemistry, genetics, and significance. Microbiol. Rev. 1993, 57, 595–604. [Google Scholar] [CrossRef]
- Kimura, M.; Tokai, T.; Takahashi-Ando, N.; Ohsato, S.; Fujimura, M. Molecular and Genetic Studies of Fusarium Trichothecene Biosynthesis: Pathways, Genes, and Evolution. Biosci. Biotechnol. Biochem. 2007, 71, 2105–2123. [Google Scholar] [CrossRef]
- Gaffoor, I.; Trail, F. Characterization of Two Polyketide Synthase Genes Involved in Zearalenone Biosynthesis in Gibberella zeae. Appl. Environ. Microbiol. 2006, 72, 1793–1799. [Google Scholar] [CrossRef]
- Foroud, N.A.; Eudes, F. Trichothecenes in Cereal Grains. Int. J. Mol. Sci. 2009, 10, 147–173. [Google Scholar] [CrossRef]
- Audenaert, K.; Vanheule, A.; Höfte, M.; Haesaert, G. Deoxynivalenol: A Major Player in the Multifaceted Response of Fusarium to Its Environment. Toxins 2014, 6, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Turgeon, B.G.; Baker, S.E. Genetic and genomic dissection of the Cochliobolus heterostrophus Tox1 locus controlling biosynthesis of the polyketide virulence factor T-toxin. Adv. Genet. 2007, 57, 219–261. [Google Scholar] [CrossRef]
- Markham, J.E.; Hille, J. Host-selective toxins as agents of cell death in plant–fungus interactions. Mol. Plant Pathol. 2001, 2, 229–239. [Google Scholar] [CrossRef]
- Abbas, H.K.; Yoshizawa, T.; Shier, W.T. Cytotoxicity and phytotoxicity of trichothecene mycotoxins produced by Fusarium spp. Toxicon 2013, 74, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Vicente, I.; Quaratiello, G.; Baroncelli, R.; Vannacci, G.; Sarrocco, S. Insights on KP4 Killer Toxin-like Proteins of Fusarium Species in Interspecific Interactions. J. Fungi 2022, 8, 968. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Khimani, A.; Rane, S.G.; Flurkey, W.H.; Bozarth, R.F.; Smith, T.J. Structure and function of a virally encoded fungal toxin from Ustilago maydis: A fungal and mammalian Ca2+ channel inhibitor. Structure 1995, 3, 805–814. [Google Scholar] [CrossRef]
- Gage, M.J.; Bruenn, J.; Fischer, M.; Sanders, D.; Smith, T.J. KP4 fungal toxin inhibits growth in Ustilago maydis by blocking calcium uptake. Mol. Microbiol. 2001, 41, 775–785. [Google Scholar] [CrossRef]
- Gage, M.J.; Rane, S.G.; Hockerman, G.H.; Smith, T.J. The Virally Encoded Fungal Toxin KP4 Specifically Blocks L-Type Voltage-Gated Calcium Channels. Mol. Pharmacol. 2002, 61, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Faris, J.D. Fusarium graminearum KP4-like proteins possess root growth-inhibiting activity against wheat and potentially contribute to fungal virulence in seedling rot. Fungal Genet. Biol. 2019, 123, 1–13. [Google Scholar] [CrossRef]
- Day, P.; Anagnostakis, S. The killer system in Ustilago maydis: Heterokaryon transfer and loss of determinants. Phytopathology 1973, 63, 1017–1018. [Google Scholar] [CrossRef]
- Koltin, Y.; Day, P.R. Specificity of Ustilago maydis Killer Proteins. Appl. Microbiol. 1975, 30, 694–696. [Google Scholar] [CrossRef]
- Brown, D.W. The KP4 killer protein gene family. Curr. Genet. 2010, 57, 51–62. [Google Scholar] [CrossRef]
- Allen, A.; Snyder, A.K.; Preuss, M.; Nielsen, E.E.; Shah, D.M.; Smith, T.J. Plant defensins and virally encoded fungal toxin KP4 inhibit plant root growth. Planta 2008, 227, 331–339. [Google Scholar] [CrossRef]
- Seidl, V.; Huemer, B.; Seiboth, B.; Kubicek, C.P. A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J. 2005, 272, 5923–5939. [Google Scholar] [CrossRef]
- Lutz, M.P.; Feichtinger, G.; Défago, G.; Duffy, B. Mycotoxigenic Fusarium and Deoxynivalenol Production Repress Chitinase Gene Expression in the Biocontrol Agent Trichoderma atroviride P1. Appl. Environ. Microbiol. 2003, 69, 3077–3084. [Google Scholar] [CrossRef]
- Zhang, J.; Miao, Y.; Rahimi, M.J.; Zhu, H.; Steindorff, A.S.; Schiessler, S.; Cai, F.; Pang, G.; Chenthamara, K.; Xu, Y.; et al. Guttation capsules containing hydrogen peroxide: An evolutionarily conserved NADPH oxidase gains a role in wars between related fungi. Environ. Microbiol. 2019, 21, 2644–2658. [Google Scholar] [CrossRef]
- Boynton, P.J. The ecology of killer yeasts: Interference competition in natural habitats. Yeast 2019, 36, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Allen, A.; Islamovic, E.; Kaur, J.; Gold, S.; Shah, D.; Smith, T.J. Transgenic maize plants expressing the Totivirus antifungal protein, KP4, are highly resistant to corn smut. Plant Biotechnol. J. 2011, 9, 857–864. [Google Scholar] [CrossRef]
- Deb, D.; Shrestha, A.; Maiti, I.B.; Dey, N. Recombinant Promoter (MUASCsV8CP) Driven Totiviral Killer Protein 4 (KP4) Imparts Resistance Against Fungal Pathogens in Transgenic Tobacco. Front. Plant Sci. 2018, 9, 278. [Google Scholar] [CrossRef] [PubMed]
- Clausen, M.; Kräuter, R.; Schachermayr, G.; Potrykus, I.; Sautter, C. Antifungal activity of a virally encoded gene in transgenic wheat. Nat. Biotechnol. 2000, 18, 446–449. [Google Scholar] [CrossRef]
- Quijano, C.D.; Wichmann, F.; Schlaich, T.; Fammartino, A.; Huckauf, J.; Schmidt, K.; Unger, C.; Broer, I.; Sautter, C. KP4 to control Ustilago tritici in wheat: Enhanced greenhouse resistance to loose smut and changes in transcript abundance of pathogen related genes in infected KP4 plants. Biotechnol. Rep. 2016, 11, 90–98. [Google Scholar] [CrossRef]
- Qian, G.L.; Wang, Y.S.; Qian, D.Y.; Fan, J.Q.; Hu, B.S.; Liu, F.Q. Selection of available suicide vectors for gene mutagenesis using chiA (a chitinase encoding gene) as a new reporter and primary functional analysis of chiA in Lysobacter enzymogenes strain OH11. World J. Microbiol. Biotechnol. 2012, 28, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Li, X.; Wei, L.; Chen, B.; Han, C.; Duan, Y.; Chen, C. Functional Differentiation of the Succinate Dehydrogenase Subunit SdhC Governs the Sensitivity to SDHI Fungicides, ROS Homeostasis, and Pathogenicity in Fusarium asiaticum. J. Agric. Food Chem. 2024, 72, 10314–10327. [Google Scholar] [CrossRef]
- Xia, H.; Chen, L.; Fan, Z.; Peng, M.; Zhao, J.; Chen, W.; Li, H.; Shi, Y.; Ding, S.; Li, H. Heat Stress Tolerance Gene FpHsp104 Affects Conidiation and Pathogenicity of Fusarium pseudograminearum. Front. Microbiol. 2021, 12, 695535. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Edwards, M.C. Genome-Wide Analysis of Small Secreted Cysteine-Rich Proteins Identifies Candidate Effector Proteins Potentially Involved in Fusarium graminearum−Wheat Interactions. Phytopathology 2016, 106, 166–176. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.; Zhao, S.; Wang, Y.; Li, Q.; Sun, M.; Kong, L.; Chen, X.; Gao, J.; Wu, Y. The TOX2 Gene Is Responsible for Conidiation and Full Virulence in Fusarium pseudograminearum. Curr. Issues Mol. Biol. 2025, 47, 714. https://doi.org/10.3390/cimb47090714
Han S, Zhao S, Wang Y, Li Q, Sun M, Kong L, Chen X, Gao J, Wu Y. The TOX2 Gene Is Responsible for Conidiation and Full Virulence in Fusarium pseudograminearum. Current Issues in Molecular Biology. 2025; 47(9):714. https://doi.org/10.3390/cimb47090714
Chicago/Turabian StyleHan, Sen, Shaobo Zhao, Yajiao Wang, Qiusheng Li, Mengwei Sun, Lingxiao Kong, Xianghong Chen, Jianhai Gao, and Yuxing Wu. 2025. "The TOX2 Gene Is Responsible for Conidiation and Full Virulence in Fusarium pseudograminearum" Current Issues in Molecular Biology 47, no. 9: 714. https://doi.org/10.3390/cimb47090714
APA StyleHan, S., Zhao, S., Wang, Y., Li, Q., Sun, M., Kong, L., Chen, X., Gao, J., & Wu, Y. (2025). The TOX2 Gene Is Responsible for Conidiation and Full Virulence in Fusarium pseudograminearum. Current Issues in Molecular Biology, 47(9), 714. https://doi.org/10.3390/cimb47090714