Cytochromes P450 of Caenorhabditis elegans: Implication in Biological Functions and Metabolism of Xenobiotics
Abstract
:1. Introduction
2. Genetic and Phylogenetic Analysis of C. elegans P450s
3. Implication of P450s in Biological Functions of C. elegans
4. P450s of C. elegans and Xenobiotics
4.1. Induction of C. elegans P450s by Xenobiotics
4.2. Metabolism of Xenobiotics by C. elegans P450s
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Brusca, R.; Moore, W.; Shuster, S. (Eds.) Invertebrates; Sinauer Associates: Sunderland, MA, USA, 2016. [Google Scholar]
- Meneely, P.; Dahlberg, C.; Rose, J. Working with Worms: Caenorhabditis elegans as a Model Organism. Curr. Protoc. Essent. Lab. Tech. 2019, 19, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Cassada, R.C.; Russell, R.L. The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev. Biol. 1975, 46, 326–342. [Google Scholar] [CrossRef]
- Klass, M.; Hirsh, D. Non-ageing developmental variant of Caenorhabditis elegans. Nature 1976, 260, 523–525. [Google Scholar] [CrossRef] [PubMed]
- Hunt, P.R. The C. elegans model in toxicity testing. J. Appl. Toxicol. 2017, 37, 50–59. [Google Scholar] [CrossRef]
- White, J.G.; Southgate, E.; Thomson, J.N.; Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R Soc. Lond. B Biol. Sci. 1986, 314, 1–340. [Google Scholar] [CrossRef]
- Kaletta, T.; Hengartner, M.O. Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov. 2006, 5, 387–398. [Google Scholar] [CrossRef]
- Leung, M.C.; Williams, P.L.; Benedetto, A.; Au, C.; Helmcke, K.J.; Aschner, M.; Meyer, J.N. Caenorhabditis elegans: An emerging model in biomedical and environmental toxicology. Toxicol. Sci. 2008, 106, 5–28. [Google Scholar] [CrossRef]
- Consortium CES. Genome sequence of the nematode C. elegans: A platform for investigating biology. Science 1998, 282, 2012–2018. [Google Scholar] [CrossRef]
- Mansuy, D.; Renaud, J.P. Heme-Thiolate Proteins Different from Cytochromes Catalyzing Monooxygenation. In Cytochrome P450: Structure, Mechanism, and Biochemistry, 2nd ed.; de Montellano, O.P.R., Ed.; Plenum Press: New York, NY, USA, 1995; pp. 537–574. [Google Scholar]
- De Montellano, O.P.R. Cytochrome P450: Structure, Mechanism, and Biochemistry, 4th ed.; Springer: New York, NY, USA, 2015. [Google Scholar]
- Guengerich, F.P. Human Cytochrome P450 Enzymes. In Cytochrome P450: Structure, Mechanism, and Biochemistry, 4th ed.; de Montellano, O.P.R., Ed.; Springer: New York, NY, USA, 2015; pp. 523–785. [Google Scholar]
- Nelson, D.R. Cytochrome P450 diversity in the tree of life. Biochim. Biophys. Acta Proteins Proteom. 2018, 1866, 141–154. [Google Scholar] [CrossRef]
- Danielson, P.B. The cytochrome P450 superfamily: Biochemistry, evolution and drug metabolism in humans. Curr Drug Metab. 2002, 3, 561–597. [Google Scholar] [CrossRef]
- Nelson, D.R. Cytochrome P450 and the individuality of species. Arch. Biochem. Biophys. 1999, 369, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, W.S.; Marko, P.B.; Nelson, D.R. The cytochrome P450 (CYP) gene superfamily in Daphnia pulex. BMC Genom. 2009, 10, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, D.R.; Goldstone, J.V.; Stegeman, J.J. The cytochrome P450 genesis locus: The origin and evolution of animal cytochrome P450s. Philos. Trans. R Soc. Lond. B Biol. Sci. 2013, 368, 20120474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulero-Navarro, S.; Fernandez-Salguero, P.M. New Trends in Aryl Hydrocarbon Receptor Biology. Front. Cell Dev. Biol. 2016, 4, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larigot, L.; Juricek, L.; Dairou, J.; Coumoul, X. AhR signaling pathways and regulatory functions. Biochim. Open 2018, 7, 1–9. [Google Scholar] [CrossRef]
- Cook, S.J.; Jarrell, T.A.; Brittin, C.A.; Wang, Y.; Bloniarz, A.E.; Yakovlev, M.A.; Nguyen, K.C.Q.; Tang, L.T.; Bayer, E.A.; Duerr, J.S.; et al. Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature 2019, 571, 63–71. [Google Scholar] [CrossRef]
- Nelson, D.R. A world of cytochrome P450s. Philos. Trans. R Soc. Lond. B Biol. Sci. 2013, 368, 20120430. [Google Scholar] [CrossRef]
- Nelson, D.R. Metazoan cytochrome P450 evolution. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 1998, 121, 15–22. [Google Scholar] [CrossRef]
- UniProt, version 2021.4; EMBL-EBI: Cambridge, UK, 2021.
- Dereeper, A.; Guignon, V.; Blanc, G.; Audic, S.; Buffet, S.; Chevenet, F.; Dufayard, J.F.; Guindon, S.; Lefort, V.; Lescot, M.; et al. Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008, 36, W465–W469. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Gotoh, O. Divergent structures of Caenorhabditis elegans cytochrome P450 genes suggest the frequent loss and gain of introns during the evolution of nematodes. Mol. Biol. Evol. 1998, 15, 1447–1459. [Google Scholar] [CrossRef] [Green Version]
- Gotoh, O. Evolution of cytochrome p450 genes from the viewpoint of genome informatics. Biol. Pharm. Bull. 2012, 35, 812–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, J.H. Rapid birth-death evolution specific to xenobiotic cytochrome P450 genes in vertebrates. PLoS Genet. 2007, 3, e672007. [Google Scholar] [CrossRef] [Green Version]
- Albert, P.S.; Riddle, D.L. Mutants of Caenorhabditis elegans that form dauer-like larvae. Dev. Biol. 1988, 126, 270–293. [Google Scholar] [CrossRef]
- Gerisch, B.; Antebi, A. Hormonal signals produced by DAF-9/cytochrome P450 regulate C. elegans dauer diapause in response to environmental cues. Development 2004, 131, 1765–1776. [Google Scholar] [CrossRef] [Green Version]
- Gerisch, B.; Weitzel, C.; Kober-Eisermann, C.; Rottiers, V.; Antebi, A. A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Dev. Cell 2001, 1, 841–851. [Google Scholar] [CrossRef] [Green Version]
- Imanikia, S.; Hylands, P.; Sturzenbaum, S.R. The double mutation of cytochrome P450’s and fatty acid desaturases affect lipid regulation and longevity in C. elegans. Biochem. Biophys. Rep. 2015, 2, 172–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Sun, H. Functional genomic approach to identify novel genes involved in the regulation of oxidative stress resistance and animal lifespan. Aging Cell 2007, 6, 489–503. [Google Scholar] [CrossRef]
- Lee, S.J.; Kenyon, C. Regulation of the longevity response to temperature by thermosensory neurons in Caenorhabditis elegans. Curr. Biol. 2009, 19, 715–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McElwee, J.J.; Schuster, E.; Blanc, E.; Thomas, J.H.; Gems, D. Shared transcriptional signature in Caenorhabditis elegans Dauer larvae and long-lived daf-2 mutants implicates detoxification system in longevity assurance. J. Biol. Chem. 2004, 279, 44533–44543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, C.T.; McCarroll, S.A.; Bargmann, C.I.; Fraser, A.; Kamath, R.S.; Ahringer, J.; Li, H.; Kenyon, C. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 2003, 424, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Jia, K.; Albert, P.S.; Riddle, D.L. DAF-9, a cytochrome P450 regulating C. elegans larval development and adult longevity. Development 2002, 129, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Kamath, R.S.; Fraser, A.G.; Dong, Y.; Poulin, G.; Durbin, R.; Gotta, M.; Kanapin, A.; Le Bot, N.; Moreno, S.; Sohrmann, M.; et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003, 421, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Rual, J.F.; Ceron, J.; Koreth, J.; Hao, T.; Nicot, A.S.; Hirozane-Kishikawa, T.; Vandenhaute, J.; Orkin, S.H.; Hill, D.E.; van den Heuvel, S.; et al. Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res. 2004, 14, 2162–2168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuelson, A.V.; Klimczak, R.R.; Thompson, D.B.; Carr, C.E.; Ruvkun, G. Identification of Caenorhabditis elegans genes regulating longevity using enhanced RNAi-sensitive strains. Cold Spring Harb. Symp. Quant. Biol. 2007, 72, 489–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmer, F.; Moorman, C.; van der Linden, A.M.; Kuijk, E.; van den Berghe, P.V.; Kamath, R.S.; Fraser, A.G.; Ahringer, J.; Plasterk, R.H. Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol. 2003, 1, E122003. [Google Scholar] [CrossRef] [Green Version]
- Benenati, G.; Penkov, S.; Muller-Reichert, T.; Entchev, E.V.; Kurzchalia, T.V. Two cytochrome P450s in Caenorhabditis elegans are essential for the organization of eggshell, correct execution of meiosis and the polarization of embryo. Mech. Dev. 2009, 126, 382–393. [Google Scholar] [CrossRef]
- Sonnichsen, B.; Koski, L.B.; Walsh, A.; Marschall, P.; Neumann, B.; Brehm, M.; Alleaume, A.M.; Artelt, J.; Bettencourt, P.; Cassin, E.; et al. Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 2005, 434, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.H.; Kawasaki, I.; Shim, Y.H. A circulatory transcriptional regulation among daf-9, daf-12, and daf-16 mediates larval development upon cholesterol starvation in Caenorhabditis elegans. Dev. Dyn. 2010, 239, 1931–1940. [Google Scholar] [CrossRef]
- Hannich, J.T.; Entchev, E.V.; Mende, F.; Boytchev, H.; Martin, R.; Zagoriy, V.; Theumer, G.; Riezman, I.; Riezman, H.; Knolker, H.J.; et al. Methylation of the sterol nucleus by STRM-1 regulates dauer larva formation in Caenorhabditis elegans. Dev. Cell 2009, 16, 833–843. [Google Scholar] [CrossRef] [Green Version]
- Jensen, V.L.; Simonsen, K.T.; Lee, Y.H.; Park, D.; Riddle, D.L. RNAi screen of DAF-16/FOXO target genes in C. elegans links pathogenesis and dauer formation. PLoS ONE 2010, 5, e159022010. [Google Scholar] [CrossRef] [Green Version]
- Kulas, J.; Schmidt, C.; Rothe, M.; Schunck, W.H.; Menzel, R. Cytochrome P450-dependent metabolism of eicosapentaenoic acid in the nematode Caenorhabditis elegans. Arch. Biochem. Biophys. 2008, 472, 65–75. [Google Scholar] [CrossRef]
- Lam, S.M.; Wang, Z.; Li, J.; Huang, X.; Shui, G. Sequestration of polyunsaturated fatty acids in membrane phospholipids of Caenorhabditis elegans dauer larva attenuates eicosanoid biosynthesis for prolonged survival. Redox. Biol. 2017, 12, 967–977. [Google Scholar] [CrossRef]
- Magner, D.B.; Antebi, A. Caenorhabditis elegans nuclear receptors: Insights into life traits. Trends Endocrinol. Metab. 2008, 19, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Motola, D.L.; Cummins, C.L.; Rottiers, V.; Sharma, K.K.; Li, T.; Li, Y.; Suino-Powell, K.; Xu, H.E.; Auchus, R.J.; Antebi, A.; et al. Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell 2006, 124, 1209–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoang, H.D.; Prasain, J.K.; Dorand, D.; Miller, M.A. A heterogeneous mixture of F-series prostaglandins promotes sperm guidance in the Caenorhabditis elegans reproductive tract. PLoS Genet. 2013, 9, e10032712013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleemann, G.; Jia, L.; Emmons, S.W. Regulation of Caenorhabditis elegans male mate searching behavior by the nuclear receptor DAF-12. Genetics 2008, 180, 2111–2122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roh, J.Y.; Park, Y.K.; Park, K.; Choi, J. Ecotoxicological investigation of CeO(2) and TiO(2) nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environ. Toxicol. Pharmacol. 2010, 29, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Aarnio, V.; Lehtonen, M.; Storvik, M.; Callaway, J.C.; Lakso, M.; Wong, G. Caenorhabditis Elegans Mutants Predict Regulation of Fatty Acids and Endocannabinoids by the CYP-35A Gene Family. Front. Pharmacol. 2011, 2, 12. [Google Scholar] [CrossRef] [Green Version]
- Kosel, M.; Wild, W.; Bell, A.; Rothe, M.; Lindschau, C.; Steinberg, C.E.; Schunck, W.H.; Menzel, R. Eicosanoid formation by a cytochrome P450 isoform expressed in the pharynx of Caenorhabditis elegans. Biochem. J. 2011, 435, 689–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menzel, R.; Yeo, H.L.; Rienau, S.; Li, S.; Steinberg, C.E.; Sturzenbaum, S.R. Cytochrome P450s and short-chain dehydrogenases mediate the toxicogenomic response of PCB52 in the nematode Caenorhabditis elegans. J. Mol. Biol. 2007, 370, 1–13. [Google Scholar] [CrossRef]
- Aguilaniu, H.; Fabrizio, P.; Witting, M. The Role of Dafachronic Acid Signaling in Development and Longevity in Caenorhabditis elegans: Digging Deeper Using Cutting-Edge Analytical Chemistry. Front. Endocrinol. 2016, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Keller, J.; Ellieva, A.; Ma, D.K.; Ju, J.; Nehk, E.; Konkel, A.; Falck, J.R.; Schunck, W.H.; Menzel, R. CYP-13A12 of the nematode Caenorhabditis elegans is a PUFA-epoxygenase involved in behavioural response to reoxygenation. Biochem. J. 2014, 464, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Laing, S.T.; Ivens, A.; Butler, V.; Ravikumar, S.P.; Laing, R.; Woods, D.J.; Gilleard, J.S. The transcriptional response of Caenorhabditis elegans to Ivermectin exposure identifies novel genes involved in the response to reduced food intake. PLoS ONE 2012, 7, e313672012. [Google Scholar] [CrossRef]
- Mahanti, P.; Bose, N.; Bethke, A.; Judkins, J.C.; Wollam, J.; Dumas, K.J.; Zimmerman, A.M.; Campbell, S.L.; Hu, P.J.; Antebi, A.; et al. Comparative metabolomics reveals endogenous ligands of DAF-12, a nuclear hormone receptor, regulating C elegans development and lifespan. Cell Metab. 2014, 19, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Sharma, K.K.; Wang, Z.; Motola, D.L.; Cummins, C.L.; Mangelsdorf, D.J.; Auchus, R.J. Synthesis and activity of dafachronic acid ligands for the C. elegans DAF-12 nuclear hormone receptor. Mol. Endocrinol. 2009, 23, 640–648. [Google Scholar] [CrossRef] [Green Version]
- Ceron, J.; Rual, J.F.; Chandra, A.; Dupuy, D.; Vidal, M.; van den Heuvel, S. Large-scale RNAi screens identify novel genes that interact with the C. elegans retinoblastoma pathway as well as splicing-related components with synMuv B activity. BMC Dev. Biol. 2007, 7, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Falck, J.R.; Rothe, M.; Schunck, W.H.; Menzel, R. Role of CYP eicosanoids in the regulation of pharyngeal pumping and food uptake in Caenorhabditis elegans. J. Lipid Res. 2015, 56, 2110–2123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubagawa, H.M.; Watts, J.L.; Corrigan, C.; Edmonds, J.W.; Sztul, E.; Browse, J.; Miller, M.A. Oocyte signals derived from polyunsaturated fatty acids control sperm recruitment in vivo. Nat. Cell Biol. 2006, 8, 1143–1148. [Google Scholar] [CrossRef] [PubMed]
- Pender, C.L.; Horvitz, H.R. Hypoxia-inducible factor cell non-autonomously regulates C. elegans stress responses and behavior via a nuclear receptor. eLife 2018, 7, e36828. [Google Scholar] [CrossRef] [PubMed]
- Cong, Y.; Yang, H.; Zhang, P.; Xie, Y.; Cao, X.; Zhang, L. Transcriptome Analysis of the Nematode Caenorhabditis elegans in Acidic Stress Environments. Front. Physiol. 2020, 11, 1107. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, M.; Chaudhari, S.N.; Balachandran, R.S.; Vagasi, A.S.; Kipreos, E.T. Dafachronic acid inhibits C. elegans germ cell proliferation in a DAF-12-dependent manner. Dev. Biol. 2017, 432, 215–221. [Google Scholar] [CrossRef]
- Hannemann, F.; Bichet, A.; Ewen, K.M.; Bernhardt, R. Cytochrome P450 systems—Biological variations of electron transport chains. Biochim. Biophys. Acta. 2007, 1770, 330–344. [Google Scholar] [CrossRef]
- Rappleye, C.A.; Tagawa, A.; Le Bot, N.; Ahringer, J.; Aroian, R.V. Involvement of fatty acid pathways and cortical interaction of the pronuclear complex in Caenorhabditis elegans embryonic polarity. BMC. Dev. Biol. 2003, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Patananan, A.N.; Budenholzer, L.M.; Eskin, A.; Torres, E.R.; Clarke, S.G. Ethanol-induced differential gene expression and acetyl-CoA metabolism in a longevity model of the nematode Caenorhabditis elegans. Exp. Gerontol. 2015, 61, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Peltonen, J.; Aarnio, V.; Heikkinen, L.; Lakso, M.; Wong, G. Chronic ethanol exposure increases cytochrome P-450 and decreases activated in blocked unfolded protein response gene family transcripts in Caenorhabditis elegans. J. Biochem. Mol. Toxicol. 2013, 27, 219–228. [Google Scholar] [CrossRef]
- Min, H.; Kawasaki, I.; Gong, J.; Shim, Y.H. Caffeine induces high expression of cyp-35A family genes and inhibits the early larval development in Caenorhabditis elegans. Mol. Cells 2015, 38, 236–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menzel, R.; Bogaert, T.; Achazi, R. A systematic gene expression screen of Caenorhabditis elegans cytochrome P450 genes reveals CYP35 as strongly xenobiotic inducible. Arch. Biochem. Biophys. 2001, 395, 158–168. [Google Scholar] [CrossRef]
- Menzel, R.; Rodel, M.; Kulas, J.; Steinberg, C.E. CYP35: Xenobiotically induced gene expression in the nematode Caenorhabditis elegans. Arch. Biochem. Biophys. 2005, 438, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Reichert, K.; Menzel, R. Expression profiling of five different xenobiotics using a Caenorhabditis elegans whole genome microarray. Chemosphere 2005, 61, 229–237. [Google Scholar] [CrossRef]
- Chakrapani, B.P.; Kumar, S.; Subramaniam, J.R. Development and evaluation of an in vivo assay in Caenorhabditis elegans for screening of compounds for their effect on cytochrome P450 expression. J. Biosci. 2008, 33, 269–277. [Google Scholar] [CrossRef]
- Anbalagan, C.; Lafayette, I.; Antoniou-Kourounioti, M.; Gutierrez, C.; Martin, J.R.; Chowdhuri, D.K.; De Pomerai, D.I. Use of transgenic GFP reporter strains of the nematode Caenorhabditis elegans to investigate the patterns of stress responses induced by pesticides and by organic extracts from agricultural soils. Ecotoxicology 2013, 22, 72–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, L.M.; Rayson, S.J.; Flemming, A.J.; Urwin, P.E. Adaptive and specialised transcriptional responses to xenobiotic stress in Caenorhabditis elegans are regulated by nuclear hormone receptors. PLoS ONE 2013, 8, e699562013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roh, J.Y.; Choi, J. Cyp35a2 gene expression is involved in toxicity of fenitrothion in the soil nematode Caenorhabditis elegans. Chemosphere 2011, 84, 1356–1361. [Google Scholar] [CrossRef]
- Zhou, D.; Yang, J.; Li, H.; Cui, C.; Yu, Y.; Liu, Y.; Lin, K. The chronic toxicity of bisphenol A to Caenorhabditis elegans after long-term exposure at environmentally relevant concentrations. Chemosphere 2016, 154, 546–551. [Google Scholar] [CrossRef]
- Zhou, D.; Yang, J.; Li, H.; Lu, Q.; Liu, Y.D.; Lin, K.F. Ecotoxicological evaluation of low-concentration bisphenol A exposure on the soil nematode Caenorhabditis elegans and intrinsic mechanisms of stress response in vivo. Environ. Toxicol. Chem. 2016, 35, 2041–2047. [Google Scholar] [CrossRef]
- Zhou, D.; Yang, J.; Li, H.; Lu, Q.; Liu, Y.D.; Lin, K.F. Ecotoxicity of bisphenol A to Caenorhabditis elegans by multigenerational exposure and variations of stress response in vivo across generations. Environ. Pollut. 2016, 208, 767–773. [Google Scholar] [CrossRef]
- Schafer, P.; Muller, M.; Kruger, A.; Steinberg, C.E.; Menzel, R. Cytochrome P450-dependent metabolism of PCB52 in the nematode Caenorhabditis elegans. Arch. Biochem. Biophys. 2009, 488, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Leung, M.C.; Rooney, J.P.; Ryde, I.T.; Bernal, A.J.; Bess, A.S.; Crocker, T.L.; Ji, A.Q.; Meyer, J.N. Effects of early life exposure to ultraviolet C radiation on mitochondrial DNA content, transcription, ATP production, and oxygen consumption in developing Caenorhabditis elegans. BMC Pharmacol. Toxicol. 2013, 14, 9. [Google Scholar] [CrossRef] [Green Version]
- Luz, A.L.; Meyer, J.N. Effects of reduced mitochondrial DNA content on secondary mitochondrial toxicant exposure in Caenorhabditis elegans. Mitochondrion 2016, 30, 255–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Y.; McBride, S.J.; Boyd, W.A.; Alper, S.; Freedman, J.H. Toxicogenomic analysis of Caenorhabditis elegans reveals novel genes and pathways involved in the resistance to cadmium toxicity. Genome Biol. 2007, 8, R122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roh, J.Y.; Lee, J.; Choi, J. Assessment of stress-related gene expression in the heavy metal-exposed nematode Caenorhabditis elegans: A potential biomarker for metal-induced toxicity monitoring and environmental risk assessment. Environ. Toxicol. Chem. 2006, 25, 2946–2956. [Google Scholar] [CrossRef] [PubMed]
- Baberschke, N.; Steinberg, C.E.; Saul, N. Low concentrations of dibromoacetic acid and N-nitrosodimethylamine induce several stimulatory effects in the invertebrate model Caenorhabditis elegans. Chemosphere 2015, 124, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Eom, H.J.; Ahn, J.M.; Kim, Y.; Choi, J. Hypoxia inducible factor-1 (HIF-1)-flavin containing monooxygenase-2 (FMO-2) signaling acts in silver nanoparticles and silver ion toxicity in the nematode, Caenorhabditis elegans. Toxicol. Appl. Pharmacol. 2013, 270, 106–113. [Google Scholar] [CrossRef]
- Hasegawa, K.; Miwa, S.; Isomura, K.; Tsutsumiuchi, K.; Taniguchi, H.; Miwa, J. Acrylamide-responsive genes in the nematode Caenorhabditis elegans. Toxicol. Sci. 2008, 101, 215–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roh, J.Y.; Jung, I.H.; Lee, J.Y.; Choi, J. Toxic effects of di(2-ethylhexyl)phthalate on mortality, growth, reproduction and stress-related gene expression in the soil nematode Caenorhabditis elegans. Toxicology 2007, 237, 126–133. [Google Scholar] [CrossRef]
- Viswanathan, M.; Kim, S.K.; Berdichevsky, A.; Guarente, L. A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev. Cell 2005, 9, 605–615. [Google Scholar] [CrossRef] [Green Version]
- Custodia, N.; Won, S.J.; Novillo, A.; Wieland, M.; Li, C.; Callard, I.P. Caenorhabditis elegans as an environmental monitor using DNA microarray analysis. Ann. N. Y. Acad Sci. 2001, 948, 32–42. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, Y.; Zhang, M.; Luo, Q.; Cao, X.; Cui, C.; Lin, K.; Huang, K. Toxicological assessment and underlying mechanisms of tetrabromobisphenol A exposure on the soil nematode Caenorhabditis elegans. Chemosphere 2020, 242, 125078. [Google Scholar] [CrossRef]
- Lindblom, T.H.; Dodd, A.K. Xenobiotic detoxification in the nematode Caenorhabditis elegans. J. Exp. Zool. A Comp. Exp. Biol. 2006, 305, 720–730. [Google Scholar] [CrossRef] [Green Version]
- Jones, L.M.; Flemming, A.J.; Urwin, P.E. NHR-176 regulates cyp-35d1 to control hydroxylation-dependent metabolism of thiabendazole in Caenorhabditis elegans. Biochem. J. 2015, 466, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Harlow, P.H.; Perry, S.J.; Stevens, A.J.; Flemming, A.J. Comparative metabolism of xenobiotic chemicals by cytochrome P450s in the nematode Caenorhabditis elegans. Sci. Rep. 2018, 8, 13333. [Google Scholar] [CrossRef]
- Leung, M.C.; Goldstone, J.V.; Boyd, W.A.; Freedman, J.H.; Meyer, J.N. Caenorhabditis elegans generates biologically relevant levels of genotoxic metabolites from aflatoxin B1 but not benzo[a]pyrene in vivo. Toxicol. Sci. 2010, 118, 444–453. [Google Scholar] [CrossRef] [Green Version]
- Abbass, M.; Chen, Y.; Arlt, V.M.; Sturzenbaum, S.R. Benzo[a]pyrene and Caenorhabditis elegans: Defining the genotoxic potential in an organism lacking the classical CYP1A1 pathway. Arch. Toxicol. 2021, 95, 1055–1069. [Google Scholar] [CrossRef]
- Gu, Q.L.; Zhang, Y.; Fu, X.M.; Lu, Z.L.; Yu, Y.; Chen, G.; Ma, R.; Kou, W.; Lan, Y.M. Toxicity and metabolism of 3-bromopyruvate in Caenorhabditis elegans. J. Zhejiang Univ. Sci. B 2020, 21, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.B.; Hartman, J.H.; Luz, A.L.; Wilson, J.Y.; Dinyari, A.; Meyer, J.N. Zebrafish CYP1A expression in transgenic Caenorhabditis elegans protects from exposures to benzo[a]pyrene and a complex polycyclic aromatic hydrocarbon mixture. Toxicology 2020, 440, 152473. [Google Scholar] [CrossRef]
- Back, P.; Matthijssens, F.; Vlaeminck, C.; Braeckman, B.P.; Vanfleteren, J.R. Effects of sod gene overexpression and deletion mutation on the expression profiles of reporter genes of major detoxification pathways in Caenorhabditis elegans. Exp. Gerontol. 2010, 45, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Herholz, M.; Cepeda, E.; Baumann, L.; Kukat, A.; Hermeling, J.; Maciej, S.; Szczepanowska, K.; Pavlenko, V.; Frommolt, P.; Trifunovic, A. KLF-1 orchestrates a xenobiotic detoxification program essential for longevity of mitochondrial mutants. Nat. Commun. 2019, 10, 3323. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, Q.; Kong, Y.; Wu, S.; Cui, Q.; Zhang, M.; Zhang, S.O. Specific regulation of thermosensitive lipid droplet fusion by a nuclear hormone receptor pathway. Proc. Natl. Acad. Sci. USA 2017, 114, 8841–8846. [Google Scholar] [CrossRef] [Green Version]
Family | Transcript | Transcript Length (nt) | Protein | Protein Length (aa) |
---|---|---|---|---|
13 | T10B9.8.1 | 1771 | CYP-13A1 | 519 |
T10B9.7.1 | 2258 | CYP-13A2 | 515 | |
T10B9.5.1 | 1677 | CYP-13A3 | 520 | |
T10B9.1.1 | 1655 | CYP-13A4 | 520 | |
T10B9.2.1 | 1665 | CYP-13A5 | 520 | |
T10B9.3.1 | 1759 | CYP-13A6 | 518 | |
T10B9.10.1 | 1623 | CYP-13A7 | 518 | |
T10B9.4.1 | 1594 | CYP-13A8 | 509 | |
T10B9.6 | 1423 | CYP-13A9 | ||
ZK1320.4.1 | 1680 | CYP-13A10 | 519 | |
F14F7.2.1 | 1653 | CYP-13A11 | 517 | |
F14F7.3.1 | 1726 | CYP-13A12 | 518 | |
F02C12.5.1 | 1652 | CYP-13B1 | 510 | |
K06G5.2.1 | 1786 | CYP-13B2 | 511 | |
14 | K09A11.2.1 | 1533 | CYP-14A1 | 491 |
K09A11.3.1 | 1535 | CYP-14A2 | 492 | |
K09A11.4.1 | 1541 | CYP-14A3 | 498 | |
R04D3.1.1 | 1549 | CYP-14A4 | 491 | |
F08F3.7.1 | 1561 | CYP-14A5 | 492 | |
22 | T13C5.1 | 1999 | CYP-22A1 (daf-9) | 572 |
23 | B0304.3.1 | 1719 | CYP-23A1 | 534 |
25 | C36A4.1 | 1631 | CYP-25A1 | 502 |
C36A4.2 | 1570 | CYP-25A2 | 502 | |
C36A4.3 | 1775 | CYP-25A3 | 502 | |
C36A4.6 | 1677 | CYP-25A4 | 501 | |
F42A6.4 | 1506 | CYP-25A5 | ||
K06B9.1 | 708 | CYP-25A6 | 236 | |
29 | C44C10.2 | 1515 | CYP-29A1 | |
T19B10.1 | 1733 | CYP-29A2 | 503 | |
Y38C9B.1 | 1743 | CYP-29A3 | 503 | |
B0331.1 | 1682 | CYP-29A4 | 502 | |
31 | C01F6.3 | 1389 | CYP-31A1 | |
H02I12.8 | 1631 | CYP-31A2 | 495 | |
Y17G9B.3 | 1597 | CYP-31A3 | 495 | |
Y62E10A.15b2 3 | 1077 | CYP-31A5 | 308 | |
32 | C26F1.2 | 1691 | CYP-32A1 | 529 |
Y5H2B.5 | 1648 | CYP-32B1 | 516 | |
33 | C12D5.7 | 1591 | CYP-33A1 | 492 |
C25E10.21 | 1491 | CYP-33B1 | 496 | |
C45H4.21 | 1739 | CYP-33C1 | 495 | |
C45H4.17a2 | 1585 | CYP-33C2 | 495 | |
F41B5.4 | 1784 | CYP-33C3 | 500 | |
F44C8.1 | 1583 | CYP-33C4 | 493 | |
F41B5.3a.1 | 1568 | CYP-33C5 | 494 | |
F41B5.7a1 | 1778 | CYP-33C6 | 494 | |
F41B5.4 | 1560 | CYP-33C7 | 494 | |
R08F11.3 | 1667 | CYP-33C8 | 494 | |
C50H11.15 | 1616 | CYP-33C9 | 496 | |
Y49C4A.9 | 1738 | CYP-33C11 | 495 | |
Y5H2B.61 | 2035 | CYP-33C12 | 426 | |
K05D4.4 | 1597 | CYP-33D1 | 492 | |
Y17D7A.41 2 | 1579 | CYP-33D3 | 495 | |
C49C8.41 | 1753 | CYP-33E1 | 494 | |
F42A9.51 | 1687 | CYP-33E2 | 494 | |
F42A9.4 | 890 | CYP-33E3 | 236 | |
34 | T10H4.10 | 1595 | CYP-34A1 | 504 |
T10H4.11 | 1766 | CYP-34A2 | 502 | |
C41G6.1 | 1481 | CYP-34A3 | ||
T09H2.1.1 | 1680 | CYP-34A4 | 500 | |
B0213.10 | 1591 | CYP-34A5 | 499 | |
B0213.11 | 1722 | CYP-34A6 | 498 | |
B0213.12 | 1579 | CYP-34A7 | 499 | |
B0213.14 | 1584 | CYP-34A8 | 499 | |
B0213.15 | 1665 | CYP-34A9 | 516 | |
B0213.16 | 1571 | CYP-34A10 | 499 | |
35 | C03G6.14 | 1546 | CYP-35A1 | 494 |
C03G6.15 | 1588 | CYP-35A2 | 494 | |
K09D9.2 | 587 | CYP-35A3 | 494 | |
C49G7.8 | 1552 | CYP-35A4 | 494 | |
K07C6.5 | 1727 | CYP-35A5 | 494 | |
K07C6.4 | 1648 | CYP-35B1 | 499 | |
K07C6.3 | 1621 | CYP-35B2 | 499 | |
K07C6.2 | 1500 | CYP-35B3 | 499 | |
C06B3.3 | 1534 | CYP-35C1 | 495 | |
F14H3.10 | 1576 | CYP-35D1 | 499 | |
F14H3.13 | 558 | CYP-35D2 | ||
36 | C34B7.3 | 1750 | CYP-36A1 | 493 |
37 | F01D5.9 | 1561 | CYP-37A1 | 508 |
F28G4.1 | 1736 | CYP-37B1 | 509 | |
42 | Y80D3A.5 | 1826 | CYP-42A1 | 511 |
43 | E03E2.1 | 1698 | CYP-43A1 | 526 |
44 | ZK177.5 | 1551 | CYP-44A1 | 489 |
Biological Functions | P450s | Ref. |
---|---|---|
Survival/life span | 22A1 | [29,30,31,32,33,34,35,36] |
Morphology | 22A1, 33E2 | [37,38,39,40,41] |
Embryonic development | 22A1,31A2, 31A3 | [37,42,43] |
Larval development | 22A1, 32A1, 32B1, 33B1, 33C1, 33C2, 33D1 | [35,37,42,44] |
Dauer formation | 13A5, 13A7, 14A1, 14A3, 22A1, 29A3, 32A1, 32B1, 33B1, 33C1, 33C2, 33D1, 33E2, 34A2, 34A5, 34A6, 34A7, 34A8, 34A9, 35B1, 35B2 | [29,30,31,35,45,46,47,48,49,50] |
Reproduction | 31A2, 31A3, 35A2 | [31,42,51,52,53] |
Fat content | 29A3, 31A2, 31A3, 33E2, 35A1, 35A2, 35A3, 35A4, 35A5 | [42,47,48,51,53,54,55,56] |
Lipid metabolism | 13A12, 22A1, 29A3, 31A2, 31A3, 33E2, 35A1, 35A2, 35A4, 35A5, 37B1 | [32,40,42,47,48,50,51,54,55,57,58,59,60,61] |
Endobiotics | Metabolite(s) | Reaction(s) | P450(s) Involved | Ref. |
---|---|---|---|---|
EPA | 17,18-epoxy-eicosatetraenoic acid | Epoxidation | 13A12, 29A3, 33E2 | [47,55,58] |
AA | 19-hydroxy-AA | C-H bond hydroxylation | 33E2 | [55] |
AA | 14,15-epoxy-eicosatrienoic acid | Epoxidation | 13A12 | [58] |
Cholesten-3-ones | Dafachronic acids | Oxidation of CH3 to COOH | 22A1 (DAF-9) | [57,60] |
Chemical Class | Compounds | P450s Induced | Ref. |
---|---|---|---|
Alcohol | Ethanol | 13A12, 13B1, 25A1, 25A2, 29A2, 32B1, 33B1, 33C6, 34A4, 34A6, 35A3, 35A5, 35B1, 35B2, 35C1, 36A1, 37B1 | [70,71] |
Alkaloid | Caffeine | 13A8, 13A12, 14A1, 14A2, 14A4, 14A5, 32A1, 33C3, 33C4, 33C6, 33C7, 33C9, 33E1, 33E2, 33E3,33E4, 34A7, 34A9, 35A2, 35A3, 35A4, 35A5, 35B1, 35B2, 43A1 | [72] |
Aromatic compound | Ethidium bromide, 2,2′,5,5′-tetrachlorobiphenyl (PCB52) | 13A7, 14A3, 14A5, 33C3, 33C4, 33C5, 33C6, 33C7, 33D3, 34A6, 35A1, 35A2, 35A3, 35A4, 35A5, 35B1, 35B2, 35B3, 35C1 | [56,73,74,83,84,85] |
Drug | Rifampicine, Lansoprazole, primaquine, phenobarbital | 13A7, 31A3, 35A1, 35A2, 35A3, 35A4, 35A5, 35C1 | [73,74,75,76] |
Hormone | Progesterone, 17-β-estradiol | 25A2, 25A6, 29A2, 37A1, 37B1 | [93] |
Metal ion | Zinc, mercury, copper, arsenic, aluminum, cadmium | 13A4, 13A5, 13A6, 13A7, 14A4, 29A2, 33C5, 33C7, 34A9, 35A2 | [86,87] |
Nanoparticle | Silver and titane nanoparticles | 35A2 | [53,89] |
Organic compound | Acrylamide, pyrazole | 13A12; 31A1, 31A3 | [73,90] |
Pesticide | Glyphosate, paraquat, endosulfan, cyperméthrine, chlorpyrifos, dichlorvos, dichlorodiphenyltrichloroethane (DDT), pyridazine, rotenone, atrazine, fenitrothion, thiabendazole | 22A1, 29A2, 34A9, 35A1, 35A2, 35A5, 35B1, 35B2, 35B3, 35C1, 35D1 | [73,74,75,77,78,79] |
Phtalate | Diethylhexylphtalate (DEHP) | 35A2 | [91] |
Polycyclic aromatic hydrocarbons | Beta-naphthoflavone, fluoranthene | 14A5, 35A1, 35A2, 35A3, 35A4, 35A5, 35B1, 35B2, 35C1, 37B1 | [73,74,75] |
Phenol/Polyphenol | Bisphenol A, tetrabromobisphenol A, resveratrol | 13A6, 13A7, 35A2 | [80,81,82,92,94] |
Xenobiotic | Metabolite(s) | Reaction(s) | P450(s) Involved | Ref. |
---|---|---|---|---|
2,2′,5,5′-tetrachlorobiphenyl (PCB52) | 3-,4- or 6- hydroxy-PCB52 | Aromatic hydroxylations | 14A members, 34A6 | [83] |
Thiabendazole (TB) | 5-hydroxy-TB | Aromatic hydroxylation | 35D1 | [96] |
Tolbutamide (TA) | Hydroxy-TA | C-H bond hydroxylation | 34A9, 34A10 and 36A1 | [97] |
Amitriptyline | Nortriptyline E-10-hydroxyamitriptyline | Oxidative N-demethylation C-H bond hydroxylation | Many P450s n.d. | [97] |
Dextromethorphan | Dextrorphan 3-methoxymorphinan | O-demethylation N-demethylation | Many P450s n.d. | [97] |
Diclofenac | 4′-hydroxy-diclofenac | Aromatic hydroxylation | n.d. | [97] |
Nifedipine | Oxidized nifedipine | Dehydrogenation | n.d. | [97] |
Clomipramine | Norclomipramine | N-demethylation | n.d. | [97] |
Xenobiotic | Biological Effect(s) | P450(s) Involved | P450 Role | Ref. |
---|---|---|---|---|
Aflatoxine B1 | DNA damage, growth inhibition | n.d. P450 reductase involved | Toxic activation | [98] |
Tetrabromobisphenol A | Toxicity | 13A7 | Detoxication | [94] |
3-bromopyruvate | Toxicity | 35A1, 35A2, 35A4, 35B3, 35C1 | Detoxication | [100] |
Fenitrothion | Toxicity | 35A2 | Toxic activation | [79] |
Benzo(a)pyrene | Toxicity | 35A2, 35A3, 35A5 | Toxic activation | [99] |
Family | P450s | Endogenous Function(s) | Inducers | Xenobiotic(s) Metabolized | Ref. |
---|---|---|---|---|---|
13 | 13A1 | - | - | - | - |
13A2 | - | - | - | - | |
13A3 | - | - | - | - | |
13A4 | - | Cadmium | - | [86,102] | |
13A5 | Dauer larvae and long-lived state | Cadmium | - | [35,86] | |
13A6 | - | Cadmium Resveratrol | - | [86,92] | |
13A7 | Dauer larvae and long-lived state | Ethidium Bromide Cadmium Rifampicine | Tetrabromobisphenol A | [35,76,84,86,94] | |
13A8 | - | Caffeine | - | [72] | |
13A10 | - | - | - | - | |
13A11 | - | - | - | - | |
13A12 | Lipid metabolism/fat content | Acrylamide Caffeine Ethanol | - | [58,71,72,90] | |
13B1 | - | Ethanol | - | [71] | |
13B2 | - | - | - | - | |
14 | 14A1 | Dauer larvae and long-lived state | Caffeine | PCB52 | [35,72,83] |
14A2 | - | Caffeine | PCB52 | [72,83] | |
14A3 | Dauer larvae and long-lived state | PCB52 | PCB52 | [35,56,83] | |
14A4 | - | Caffeine Cadmium | PCB52 | [72,83,86] | |
14A5 | - | Beta-naphthoflavone Caffeine PCB52 | PCB52 | [72,75,83] | |
22 | 22A1 (DAF-9) | Survival/life span morphology Embryonic development Larval development/dauer formation Lipid metabolism/fat content | Atrazine | - | [29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,55,57,60,62,75] |
23 | 23A1 | - | - | - | - |
25 | 25A1 | - | Ethanol | - | [71] |
25A2 | - | Ethanol Progesterone | - | [70,71,93] | |
25A3 | - | - | - | - | |
25A4 | - | - | - | - | |
25A6 | - | Progesterone | - | [93] | |
29 | 29A1 | - | - | - | - |
29A2 | - | Ethanol Progesterone Aluminum, cadmium, copper, zinc Glyphosate, paraquat, dichlorvos, rotenone | - | [71,77,86,93] | |
29A3 | Dauer larvae Lipid metabolism/fat content | - | - | [47] | |
29A4 | - | - | - | - | |
31 | 31A2 | Embryonic development Reproduction Lipid metabolism/fat content | - | - | [35,48,97,103] |
31A3 | Embryonic development Lipid metabolism/fat content | Atrazine Lansoprazole, phenobarbital, primaquine Pyrazole, toluene | - | [73,97,103] | |
31A5 | - | - | - | ||
32 | 32A1 | Larval development | Caffeine | - | [35,72] |
32B1 | Larval development/dauer formation | Ethanol | - | [35,70] | |
33 | 33A1 | - | - | - | - |
33B1 | - | - | - | - | |
33C1 | Larval development/dauer formation | - | - | [35] | |
33C2 | Larval development/dauer formation | - | - | [35] | |
33C3 | - | Caffeine Ethidium bromide | - | [72,84] | |
33C4 | - | Caffeine Ethidium bromide | - | [72,84] | |
33C5 | - | Cadmium Ethidium bromide | - | [84,86] | |
33C6 | - | Caffeine Ethanol Ethidium bromide | - | [70,72,84] | |
33C7 | - | CadmiumCaffeine Ethidium bromide | - | [70,72,84] | |
33C8 | - | - | - | - | |
33C9 | - | Caffeine | - | [72] | |
33C11 | - | - | - | - | |
33C12 | - | - | - | - | |
33D1 | Larval development/dauer formation | - | - | [35] | |
33D3 | - | Ethidium bromide | - | [84] | |
33E1 | - | Caffeine | - | [72] | |
33E2 | - | Caffeine | - | [72] | |
33E3 | Morphology Dauer formation Lipid metabolism/fat content | Caffeine | - | [35,47,48,55,72] | |
33E4 | - | Caffeine | - | [72] | |
34 | 34A1 | - | - | - | - |
34A2 | Dauer formation | - | - | [35] | |
34A4 | - | Ethanol | - | [70] | |
34A5 | Dauer formation | - | - | [35] | |
34A6 | Dauer formation | Ethanol | PCB52 | [35,70,83] | |
34A7 | Dauer formation | Caffeine | - | [35,72] | |
34A8 | Dauer formation | - | - | [35] | |
34A9 | Dauer formation | Caffeine Arsenic, cadmium, nickel, zinc | Tolbutamide | [35,72,77,86,97] | |
34A10 | - | - | Tolbutamide | [97] | |
35 | 35A1 | Lipid metabolism/fat content | Atrazine Beta-naphthoflavone, fluoranthene Caffeine Ethidium bromide, PCB52 Lansoprazole, primaquine | 3-bromopyruvate | [54,56,73,74,75,84,100] |
35A2 | Reproduction Lipid metabolism/fat content | Aluminum, arsenic, cadmium, copper, mercury, zincAtrazine, dichlorvos, dichlorodiphenyltrichloroethane (DDT), rotenone, fenitrothion Beta-naphthoflavone, fluoranthene Bisphenol A CaffeineEthidium bromide, PCB52 N-Nitrosodiethylamine (NDMA), dibromoacetic acid (DBAA), Lansoprazole, primaquine Silver and titane nanoparticles | 3-bromopyruvate, fenitrothion, B(a)P | [32,53,54,56,72,73,74,77,79,80,81,82,86,87,89,91,100] | |
35A3 | Lipid metabolism/fat content | Beta-naphthoflavone Caffeine Ethanol PCB52 Lansoprazole, primaquine | B(a)P | [56,71,72,73,84] | |
35A4 | Lipid metabolism/fat content | Beta-naphthoflavone Caffeine Lansoprazole, primaquine PCB52 | 3-bromopyruvate | [56,72,73,100] | |
35A5 | Lipid metabolism/fat content | Atrazine Beta-naphthoflavone, fluoranthene Caffeine Ethanol Ethidium bromide, PCB52 Lansoprazole, primaquine | B(a)P | [56,71,72,73,74,75,84] | |
35B1 | Dauer formation | Atrazine Beta-naphthoflavone Caffeine Ethanol Ethidium bromide Lansoprazole | - | [35,71,72,73,75,84] | |
35B2 | Dauer formation | Atrazine Beta-naphthoflavone Caffeine Ethanol Ethidium bromide Lansoprazole, primaquine | - | [35,71,72,73,75,84,85] | |
35B3 | - | Ethidium bromide | 3-bromopyruvate | [84,100] | |
35C1 | - | Atrazine Beta-naphthoflavone, fluoranthene EthanolLansoprazole, primaquine PCB52 | 3-bromopyruvate | [71,73,74,75,100] | |
35D1 | - | Thiabendazole | Thiabendazole | [78,96] | |
36 | 36A1 | - | Ethanol | Tolbutamide | [71,97] |
37 | 37A1 | Lipid metabolism/fat content | Progesterone | - | [93,104] |
37B1 | Lipid metabolism/fat content | Ethanol Fluoranthene Progesterone, 17-ß-estradiol | - | [59,70,75,93] | |
42 | 42A1 | - | - | - | - |
43 | 43A1 | - | Caffeine | - | [72] |
44 | 44A1 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larigot, L.; Mansuy, D.; Borowski, I.; Coumoul, X.; Dairou, J. Cytochromes P450 of Caenorhabditis elegans: Implication in Biological Functions and Metabolism of Xenobiotics. Biomolecules 2022, 12, 342. https://doi.org/10.3390/biom12030342
Larigot L, Mansuy D, Borowski I, Coumoul X, Dairou J. Cytochromes P450 of Caenorhabditis elegans: Implication in Biological Functions and Metabolism of Xenobiotics. Biomolecules. 2022; 12(3):342. https://doi.org/10.3390/biom12030342
Chicago/Turabian StyleLarigot, Lucie, Daniel Mansuy, Ilona Borowski, Xavier Coumoul, and Julien Dairou. 2022. "Cytochromes P450 of Caenorhabditis elegans: Implication in Biological Functions and Metabolism of Xenobiotics" Biomolecules 12, no. 3: 342. https://doi.org/10.3390/biom12030342
APA StyleLarigot, L., Mansuy, D., Borowski, I., Coumoul, X., & Dairou, J. (2022). Cytochromes P450 of Caenorhabditis elegans: Implication in Biological Functions and Metabolism of Xenobiotics. Biomolecules, 12(3), 342. https://doi.org/10.3390/biom12030342