The Effect of Functional Electrical Stimulation and Therapeutic Exercises on Trunk Muscle Tone and Dynamic Sitting Balance in Persons with Chronic Spinal Cord Injury: A Crossover Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Intervention
2.3. Outcome Measures
2.3.1. Muscle Tone
2.3.2. Dynamic Sitting Balance
2.4. Statistical Analysis
3. Results
3.1. Muscle Tone
3.2. Dynamic Sitting Balance
3.3. Relationship between Muscle Tone and Dynamic Sitting Balance
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sabre, L.; Pedai, G.; Rekand, T.; Asser, T.; Linnamägi, U.; Kõrv, J. High Incidence of traumatic spinal cord injury in Estonia. Spinal Cord 2012, 50, 755–759. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Tetreault, L.; Kalsi-Ryan, S.; Nouri, A.; Fehlings, M.G. Global prevalence and incidence of traumatic spinal cord injury. Clin. Epidemiol. 2014, 6, 309–331. [Google Scholar] [PubMed] [Green Version]
- Kukke, S.N.; Triolo, R.J. The effects of trunk stimulation on bimanual seated workspace. IEEE Trans. Neural Syst. Rehabil. Eng. 2004, 12, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Milosevic, M.; Masani, K.; Kuipers, M.J.; Rahouni, H.; Verrier, M.C.; McConville, K.M.; Popovic, M.R. Trunk control impairment is responsible for postural instability during quiet sitting in individuals with cervical spinal cord injury. Clin. Biomech. 2015, 30, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.D. Targeting recovery: Priorities of the spinal cord-injured population. J. Neurotrauma 2004, 21, 1371–1383. [Google Scholar] [CrossRef] [PubMed]
- Abou, L.; de Freitas, G.R.; Palandi, J.; Ilha, J. Clinical Instruments for Measuring Unsupported Sitting Balance in Subjects with Spinal Cord Injury: A Systematic Review. Top. Spinal Cord Inj. Rehabil. 2018, 24, 177–193. [Google Scholar] [CrossRef] [PubMed]
- Tse, C.M.; Chisholm, A.E.; Lam, T.; Eng, J.J.; SCIRE Research Team. A systematic review of the effectiveness of task-specific rehabilitation interventions for improving independent sitting and standing function in spinal cord injury. J. Spinal Cord Med. 2018, 41, 254–266. [Google Scholar] [CrossRef]
- Masani, K.; Sin, V.W.; Vette, A.H.; Thrasher, T.A.; Kawashima, N.; Morris, A.; Preuss, R.; Popovic, M.R. Postural reactions of trunk muscles to multi-directional perturbations in sitting. Clin. Biomech. 2009, 24, 176–182. [Google Scholar] [CrossRef]
- Gauthier, C.; Gagnon, D.; Grangeon, M.; Jacquemin, G.; Nadeau, S.; Masani, K.; Popovic, M.R. Comparison of multidirectional seated postural stability between individuals with spinal cord injury and able-bodied individuals. J. Rehabil. Med. 2013, 45, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Feldman, A.G. The relationship between postural and movement stability. Adv. Exp. Med. Biol. 2016, 957, 105–120. [Google Scholar]
- Rusu, L.; Cosma, G.; Calina, M.L.; Dragomir, M.M.; Marin, M. Evaluation of two muscle training programs by assessment of the muscle tone. Sci. Sports 2015, 30, e65–e72. [Google Scholar] [CrossRef]
- Agyapong-Badu, S.; Warner, M.; Samuel, D.; Stokes, M. Measurement of ageing effects on muscle tone and mechanical properties of rectus femoris and biceps brachii in healthy males and females using a novel hand-held myometric device. Arch. Gerontol. Geriatr. 2016, 62, 59–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, C.Y.; Choi, H.J.; Ryu, J.; Kim, G. Between-day reliability of MyotonPRO device for the non-invasive measurement of muscle material properties in the lower extremities of patients with a chronic spinal cord injury. J. Biomech. 2018, 17, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Boswell-Ruys, C.L.; Harvey, L.A.; Barker, J.J.; Ben, M.; Middleton, J.W.; Lord, S.R. Training unsupported sitting in people with chronic spinal cord injuries: A randomized controlled trial. Spinal Cord 2010, 48, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.H.; Triolo, R.J.; Elias, A.L.; Kilgore, K.L.; DiMarco, A.F.; Bogie, K.; Vette, A.H.; Audu, M.L.; Kobetic, R.; Chang, S.R.; et al. Functional electrical stimulation and spinal cord injury. Phys. Med. Rehabil. Clin. N. Am. 2014, 25, 631–654. [Google Scholar] [CrossRef] [PubMed]
- Rath, M.; Vette, A.H.; Ramasubramaniam, S.; Li, K.; Burdick, J.; Edgerton, V.R.; Gerasimenko, Y.P.; Savenko, D.G. Trunk Stability Enabled by Noninvasive Spinal Electrical Stimulation after Spinal Cord Injury. J. Neurotrauma 2018, 35, 2540–2553. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.L.; Chan, K.M.; Purves, S.; Tsang, W.W.N. Reliability of dynamic sitting balance tests and their correlations with functional mobility for wheelchair users with chronic spinal cord injury. J. Orthop. Transl. 2014, 3, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Doucet, B.M.; Lam, A.; Griffin, L. Neuromuscular electrical stimulation for skeletal muscle function. Yale J. Biol. Med. 2012, 85, 201–215. [Google Scholar]
- Ibitoye, M.O.; Hamzaid, N.A.; Hasnan, N.; Abdul Wahab, A.K.; Davis, G.M. Strategies for rapid muscle fatigue reduction during FES exercise in individuals with spinal cord injury: A systematic review. PLoS ONE 2016, 11, e0149024. [Google Scholar] [CrossRef]
- Milosevic, M.; McConville, V.; Seidic, E.; Masani, K.; Kvan, M.J.; Popovic, M.R. Visualization of trunk muscle synergies during sitting perturbations using self-organizing maps (SOM). IEEE Trans. Biomed. Eng. 2012, 59, 2516–2523. [Google Scholar] [CrossRef]
- I-Tech Medical Division. Electrotherapy Model T-One Rehab; MNPG236 Rev.0 of 21/06/16; User manual; I-Tech Medical Division: Martellago, Italy, 2016. [Google Scholar]
- Myoton AS. MyotonPRO Digital Palpation; User manual; Myoton AS: Tallinn, Estonia, 2016. [Google Scholar]
- Lemay, J.F.; Gagnon, D.H.; Nadeau, S.; Grangeon, M.; Gauthier, C.; Duclos, C. Center-of-pressure total trajectory length is a complementary measure to maximum excursion to better differentiate multidirectional standing limits of stability between individuals with incomplete spinal cord injury and able-bodied individuals. J. Neuroeng. Rehabil. 2014, 11, 8. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, C.; Gagnon, D.; Jacquemin, G.; Duclos, C.; Masani, K.; Popovic, M.R. Which trunk inclination directions best predict multidirectional-seated limits of stability among individuals with spinal cord injury? J. Spinal Cord Med. 2012, 35, 343–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukaka, M.M. Statistics Corner: A guide to appropriate use of Correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar] [PubMed]
- McGough, J.J.; Faraone, S.V. Estimating the size of treatment effects: Moving beyond P values. Psychiatry 2009, 6, 21–29. [Google Scholar] [PubMed]
- Lance, J.W. The control of muscle tone, reflexes, and movement: Robert Wartenbeg Lecture. Neurology 1980, 30, 1303–1313. [Google Scholar] [CrossRef] [PubMed]
- Bobath, B. Adult Hemiplegia Evaluation and Treatment, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 1990. [Google Scholar]
- Naro, A.; Leo, A.; Russo, M.; Casella, C.; Buda, A.; Crespantini, A.; Porcari, B.; Carioti, L.; Billeri, L.; Bramanti, A.; et al. Breakthroughs in the spasticity management: Are non-pharmacological treatments the future? J. Clin. Neurosci. 2017, 39, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Krause, P.; Szecsi, J.; Straube, A. Changes in spastic muscle tone increase in patients with spinal cord injury using functional electrical stimulation and passive leg movements. Clin. Rehabil. 2008, 22, 627–634. [Google Scholar] [CrossRef]
- Lo, H.C.; Tsau, K.H.; Su, F.C.; Chang, G.L.; Yeh, C.Y. Effects of a functional electrical stimulation-assisted leg-cycling wheelchair on reducing spasticity of patients after stroke. J. Rehabil. Med. 2009, 41, 242–246. [Google Scholar] [CrossRef] [Green Version]
- Douglas, A.J.; Walsh, E.G.; Wright, G.W. The effects of neuromuscular stimulation on muscle tone at the knee in paraplegia. Exp. Physiol. 1991, 76, 357–367. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.; Sosnoff, J.J. Spinal Cord Injury and Seated Postural Control: A Test of the Rambling and Trembling Hypothesis. Mot. Control 2017, 21, 443–456. [Google Scholar] [CrossRef]
Variable | SCI | CG |
---|---|---|
Participants (n) | 5 | 8 |
Age (years) | ||
Mean ± SD | 39.2 ± 7.1 | 30.3 ± 7.9 |
95% CI | 30.4, 48.0 | 17.7, 42.8 |
Weight (kg) | ||
Mean ± SD | 76.9 ± 26.6 | 90.5 ± 14.4 |
95% CI | 46.3, 107.4 | 67.6, 113.4 |
Height (cm) | ||
Mean ± SD | 183.0 ± 8.8 | 184.9 ± 5.3 |
95% CI | 172.1, 193.9 | 180.5, 189.4 |
BMI (kg∙m−2) | ||
Mean ± SD | 23.0 ± 7.7 | 24.3 ± 4.1 |
95% CI | 13.4, 32.7 | 20.8, 27.7 |
Time Post Injury (years) | ||
Mean ± SD | 10.8 ± 6.0 | N/A |
95% CI | 3.4, 18.2 | |
Level of the injury | C5–C6 | N/A |
AIS—B/C (n) | 4/1 | N/A |
SCI_FES+TE (n = 5) | SCI_TE (n = 5) | CG (n = 8) | |||||
---|---|---|---|---|---|---|---|
Pre-Intervention | Post-Intervention | Effect Size | Pre-Intervention | Post-Intervention | Effect Size | Reference Value | |
Muscle Oscillation Frequency (Hz) | |||||||
ES | 17.10 (1.05) | 18.13 (1.07) | −0.88, (−2.18, 0.42) | 17.56 (0.97) | 17.36 (1.06) | 0.18, (−1.06. 1.4) | 16.99 (3.36) |
RA | 12.14 (1.37) | 12.88 (2.04) | −0.38, (−1.64, 0.87) | 12.34 (1.44) | 12.88 (2.04) | −0.17, (−1.41, 1.0) | 11.44 (1.66) |
Limits of Stability (cm, Normalized to Body Height) | |||||||
Flexion | 0.018 (0.016) | 0.023 (0.023) | −0.23, (−1.47, 1.02) | 0.022 (0.016) | 0.020 (0.013) | 0.12, (−1.12, 1.36) | 0.049 (0.010) |
Lateral flexion R | 0.022 (0.015) | 0.023 (0.017) | −0.06, (−1.3, 1.18) | 0.021 (0.013) | 0.021 (0.012) | −0.00, (−1.24, 1.24) | 0.039 (0.008) |
Lateral flexion L | 0.018 (0.014) | 0.022 (0.016) | −0.24, (−1.48, 1.00) | 0.020 (0.010) | 0.025 (0.011) | −0.43, (−1.68, 0.82) | 0.038 (0.007) |
Muscle Oscillation Frequency | ||
---|---|---|
Limits of Stability | ES | RA |
SCI Group | ||
Flexion | −0.600 | −0.500 |
Lateral flexion R | −0.600 | −0.500 |
Lateral flexion L | −0.700 | −0.300 |
CG group | ||
Flexion | −0.252 | 0.120 |
Lateral flexion R | −0.071 | 0.286 |
Lateral flexion L | −0.333 | −0.190 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergmann, M.; Zahharova, A.; Reinvee, M.; Asser, T.; Gapeyeva, H.; Vahtrik, D. The Effect of Functional Electrical Stimulation and Therapeutic Exercises on Trunk Muscle Tone and Dynamic Sitting Balance in Persons with Chronic Spinal Cord Injury: A Crossover Trial. Medicina 2019, 55, 619. https://doi.org/10.3390/medicina55100619
Bergmann M, Zahharova A, Reinvee M, Asser T, Gapeyeva H, Vahtrik D. The Effect of Functional Electrical Stimulation and Therapeutic Exercises on Trunk Muscle Tone and Dynamic Sitting Balance in Persons with Chronic Spinal Cord Injury: A Crossover Trial. Medicina. 2019; 55(10):619. https://doi.org/10.3390/medicina55100619
Chicago/Turabian StyleBergmann, Margot, Anna Zahharova, Märt Reinvee, Toomas Asser, Helena Gapeyeva, and Doris Vahtrik. 2019. "The Effect of Functional Electrical Stimulation and Therapeutic Exercises on Trunk Muscle Tone and Dynamic Sitting Balance in Persons with Chronic Spinal Cord Injury: A Crossover Trial" Medicina 55, no. 10: 619. https://doi.org/10.3390/medicina55100619
APA StyleBergmann, M., Zahharova, A., Reinvee, M., Asser, T., Gapeyeva, H., & Vahtrik, D. (2019). The Effect of Functional Electrical Stimulation and Therapeutic Exercises on Trunk Muscle Tone and Dynamic Sitting Balance in Persons with Chronic Spinal Cord Injury: A Crossover Trial. Medicina, 55(10), 619. https://doi.org/10.3390/medicina55100619