Comparison of X-Ray Imaging and Computed Tomography Scan in the Evaluation of Knee Trauma
Abstract
:1. Introduction
2. Materials and Method
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Limitation
Author Contributions
Funding
Conflicts of Interest
References
- Oei, E.H.; Nikken, J.J.; Ginai, A.Z.; Krestin, G.P.; Verhaar, J.A.; van Vugt, A.B.; Hunink, M.M. Acute knee trauma: Value of a short dedicated extremity MR imaging examination for prediction of subsequent treatment. Radiology 2005, 234, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Teh, J.; Kambouroglou, G.; Newton, J. Investigation of acute knee injury. BMJ 2012, 344, e3167. [Google Scholar] [CrossRef] [PubMed]
- Mustonen, A.O.; Koskinen, S.K.; Kiuru, M.J. Acute knee trauma: Analysis of multidetector computed tomography findings and comparison with conventional radiography. ActaRadiol. 2005, 46, 866–874. [Google Scholar] [CrossRef]
- Pinto, A.; Berritto, D.; Russo, A.; Riccitiello, F.; Caruso, M.; Belfiore, M.P.; Papapietro, V.R.; Carotti, M.; Pinto, F.; Giovagnoni, A.; et al. Traumatic fractures in adults: Missed diagnosis on plain radiographs in the Emergency Department. Acta Bio Med. Atenei Parmensis 2018, 8 (Suppl. 1), 111–123. [Google Scholar] [CrossRef]
- Avci, M.; Kozaci, N.; Yuksel, S.; Etli, I.; Yilmaz, Y. Comparison of radiography and computed tomography in emergency department evaluation of ankle trauma. Ann. Med. Res. 2019, 26, 867–872. [Google Scholar] [CrossRef]
- Bengtzen, R.R.; Glaspy, J.N.; Steele, M.T. Knee Injuries. In Tintinalli’s Emergency Medicine—A Comprehensive Study Guide, 8th ed.; Tintinalli, J.E., Stapczynski, J.S., Ma, O.J., Yealy, D.M., Meckler, G.D., Cline, D.M., Eds.; McGraw-Hill Education: New York, NY, USA, 2016. [Google Scholar]
- Venkatasamya, A.; Ehlingerb, M.; Bierrya, G. Acute traumatic knee radiographs: Beware of lesions of little expression but of great significance. Diagn. Interv. Imaging 2014, 95, 551–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caracchini, G.; Pietragalla, M.; De Renzis, A.; Galluzzo, M.; Carbone, M.; Zappia, M.; Russo, A.; Greco, F.; Miele, V. Talar fractures: Radiological and CT evaluation and classification systems. ActaBiomed. 2018, 89 (Suppl. 1), 151–165. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, K.; Qiang, M.; Li, H.; Dai, H. Comparison of plain radiography and CT in postoperative evaluation of ankle fractures. Clin. Radiol. 2015, 70, e74–e82. [Google Scholar] [CrossRef]
- Olsson, O.; Isacsson, A.; Englund, M.; Frobell, R.B. Epidemiology of intra- and peri-articular structural injuries in traumatic knee joint hemarthrosis- data from 1145 consecutive knees with subacute MRI. Osteoarthr. Cartil. 2016, 24, 1890–1897. [Google Scholar] [CrossRef]
- Kozaci, N.; Ay, M.O.; Avci, M.; Turhan, S.; Donertas, E.; Celik, A.; Ararat, E.; Akgun, E. The comparison of point-of-care ultrasonography and radiography in the diagnosis of tibia and fibula fractures. Injury 2017, 48, 1628–1635. [Google Scholar] [CrossRef]
- Avci, M.; Kozaci, N.; Tulubas, G.; Caliskan, G.; Yuksel, A.; Karaca, A.; Doganay, F.; Etli, I. Comparison of Point-of-Care Ultrasonography and Radiography in the Diagnosis of Long-Bone Fractures. Medicina 2019, 55, e355. [Google Scholar] [CrossRef] [PubMed]
- Kozaci, N.; Ay, M.O.; Avci, M.; Beydilli, I.; Turhan, S.; Donertas, E.; Ararat, E. The comparison of radiography and point-of-care ultrasonography in the diagnosis and management of metatarsal fractures. Injury 2017, 48, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Atilla, O.D.; Yesilaras, M.; Kilic, T.Y.; Tur, F.C.; Reisoglu, A.; Sever, M.; Aksay, E. The Accuracy of Bedside Ultrasonography as a Diagnostic Tool for Fractures in the Ankle and Foot. Acad. Emerg. Med. 2014, 21, 1058–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozaci, N.; Ay, M.O.; Akcimen, M.; Sasmaz, I.; Turhan, G.; Boz, A. The effectiveness of bedside point-of-care ultrasonography in the diagnosis and management of metacarpal fractures. Am. J. Emerg. Med. 2015, 33, 1468–1472. [Google Scholar] [CrossRef] [PubMed]
- Kozaci, N.; Ay, M.O.; Akcimen, M.; Turhan, G.; Sasmaz, I.; Turhan, S.; Celik, A. Evaluation of the effectiveness of bedside point-of-care ultrasound in the diagnosis and management of distal radius fractures. Am. J. Emerg. Med. 2015, 33, 67–71. [Google Scholar] [CrossRef]
- Avcı, M.; Kozacı, N.; Beydilli, İ.; Yılmaz, F.; Eden, A.O.; Turhan, S. The comparison of bedside point-of-care ultrasound and computed tomography in elbow injuries. Am. J. Emerg. Med. 2016, 34, 2186–2190. [Google Scholar] [CrossRef] [PubMed]
- Mui, L.W.; Engelsohn, E.; Umans, H. Comparison of CT and MRI in patients with tibial plateau fracture: Can CT findings predict ligament tear or meniscal injury? Skeletal. Radiol. 2007, 36, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kumar, A.; Kumar, S.; Kumar, P. Functional Ultrasonography in Diagnosing Anterior Cruciate Ligament Injury as Compared to Magnetic Resonance Imaging. Indian J. Orthop. 2018, 52, 638–644. [Google Scholar] [CrossRef]
- Wicky, S.; Blaser, P.F.; Blanc, C.H.; Leyvraz, P.F.; Schnyder, P.; Meuli, R.A. Comparison between standard radiography and spiral CT with 3D reconstruction in the evaluation, classification and management of tibial plateau fractures. Eur. Radiol. 2000, 10, 1227–1232. [Google Scholar] [CrossRef]
- Hwang, J.S.; Koury, K.L.; Gorgy, G.; Sirkin, M.S.; Reilly, M.C.; Lelkes, V.; Adams, M.R. Evaluation of Intra-articular Fracture Extension After Gunshot Wounds to the Lower Extremity: Plain Radiographs Versus Computer Tomography. J. Orthop. Trauma 2017, 31, 334–338. [Google Scholar] [CrossRef]
- Lemburg, S.P.; Lilienthal, E.; Heyer, C.M. Growth plate fractures of the distal tibia: Is CT imaging necessary? Arch. Orthop. Trauma Surg. 2010, 130, 1411–1417. [Google Scholar] [CrossRef] [PubMed]
- Fleiss, J.L. Statistical Methods for Rates and Proportions, 2nd ed.; John Wiley & Sons Inc.: New York, NY, USA, 1981. [Google Scholar]
- Raschke, M.J.; Kittl, C.; Domnick, C. Partial proximal tibia fractures. EFORTOpenRev. 2017, 2, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Draghi, F.; Urciuoli, L.; Alessandrino, F.; Corti, R.; Scudeller, L.; Grassi, R. Joint effusion of the knee: Potentialities and limitations of ultrasonography. J. Ultrasound 2015, 18, 361–371. [Google Scholar] [CrossRef] [PubMed]
1 | Detection presence of fracture (cortical deterioration) |
2 | Determine the type (fissure, linear, fragmented, torus) and localization of fracture. |
3 | Measure the degree of angulation of the fracture. |
4 | Measure the distance of stepping off. |
5 | Is there an extension of the fracture into the joint space or epiphyseal line? |
6 | Does the fracture include the epiphyseal line? (Growth plate fracture?) |
7 | Detect the presence of concomitant adjacent bone fracture. |
8 | Control of the joint space and the presence of joint dislocation. |
Bone | XR, N (%) | CT, N (%) | Sensitivity/Specificity | AUC (95% CI) |
---|---|---|---|---|
Femur | 28 (5.1) | 42 (7.7) | 67/100 | 0.833 (0.746–0.921) |
Tibia | 120 (21.9) | 130 (23.7) | 80/96 | 0.881 (0.839–0.923) |
Patella | 48 (8.8) | 46 (8.4) | 100/100 | 0.998 (0.995–1.000) |
Fibula | 18 (3.3) | 22 (4.1) | 82/100 | 0.909 (0.813–1.000) |
Bone | XR, N (%) | CT, N (%) |
---|---|---|
Femur + patella | 2 (0.4) | 4 (0.7) |
Femur + tibia | - | 4 (0.7) |
Femur + fibula | - | 2 (0.4) |
Tibia + patella | 2 (0.4) | 2 (0.4) |
Tibia + fibula | 12 (2.2) | 12 (2.2) |
Femur + fibula + tibia | - | 4 (0.7) |
Type of Fracture | XR, N (%) | CT, N (%) | Sensitivity/Specificity | AUC (95% CI) | Kappavalue |
---|---|---|---|---|---|
Fissure | 48 (8.8) | 22(4.0) | 55/93 | 0.739 (0.609–0.868) | 0.305 |
Linear | 40 (7.3) | 24 (4.4) | 58/95 | 0.767 (0.644–0.889) | 0.405 |
Spiral | 24 (4.4) | 18(3.3) | 44/97 | 0.707 (0.556–0.858) | 0.357 |
Fragmented | 68 (12.4) | 118 (21.5) | 58/100 | 0.788 (0.731–0.845) | 0.681 |
Avulsion | 20 (3.6) | 26 (4.7) | 69/100 | 0.844 (0.736–0.952) | 0.773 |
Fracture Characteristics | XR, N (%) | CT, N (%) | Sensitivity/Specificity | AUC (95% CI) | Kappa Values |
---|---|---|---|---|---|
Extension of the fracture into the joint space | 150 (27.4) | 176 (32.1) | 78/96 | 0.872 (0.834–0.910) | 0.782 |
Growth plate fracture | 8 (1.5) | 8 (1.5) | 75/100 | 0.873 (0.693–1.000) | 0.746 |
Angulation | 90 (16.4) | 118 (21.5) | 75/100 | 0.871 (0.823–0.918) | 0.811 |
Stepping off | 94 (17.2) | 126 (23.0) | 71/99 | 0.852 (0.804–0.901) | 0.774 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avci, M.; Kozaci, N. Comparison of X-Ray Imaging and Computed Tomography Scan in the Evaluation of Knee Trauma. Medicina 2019, 55, 623. https://doi.org/10.3390/medicina55100623
Avci M, Kozaci N. Comparison of X-Ray Imaging and Computed Tomography Scan in the Evaluation of Knee Trauma. Medicina. 2019; 55(10):623. https://doi.org/10.3390/medicina55100623
Chicago/Turabian StyleAvci, Mustafa, and Nalan Kozaci. 2019. "Comparison of X-Ray Imaging and Computed Tomography Scan in the Evaluation of Knee Trauma" Medicina 55, no. 10: 623. https://doi.org/10.3390/medicina55100623
APA StyleAvci, M., & Kozaci, N. (2019). Comparison of X-Ray Imaging and Computed Tomography Scan in the Evaluation of Knee Trauma. Medicina, 55(10), 623. https://doi.org/10.3390/medicina55100623