Formaldehyde Exposure and Acute Myeloid Leukemia: A Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ladeira, C.; Viegas, S.; Carolino, E.; Prista, J.; Gomes, M.C.; Brito, M. Genotoxicity biomarkers in occupational exposure to formaldehyde--the case of histopathology laboratories. Mutat. Res. 2011, 721, 15–20. [Google Scholar] [CrossRef] [PubMed]
- National Toxicology Program. Final report on carcinogens background document for formaldehyde. Rep. Carcinog. Backgr. Doc. 2010, 10-5981, 512. [Google Scholar]
- Scarselli, A.; Corfiati, M.; Di Marzio, D.; Iavicoli, S. National Estimates of Exposure to Formaldehyde in Italian Workplaces. Ann. Work Expo. Health 2017, 161, 33–43. [Google Scholar]
- WHO Guidelines for Indoor Air Quality: Selected Pollutants; World Health Organization: Geneva, Switzerland, 2010.
- Committee to Review the Formaldehyde Assessment in the National Toxicology Program 12th Report on Carcinogens; Board on Environmental Studies and Toxicology; Division on Earth and Life Sciences; National Research Council. Review of the Formaldehyde Assessment in the National Toxicology Program 12th Report on Carcinogens; National Academies Press (US): Washington, DC, USA, September 2014. [Google Scholar]
- Baan, R.; Grosse, Y.; Straif, K.; Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; et al. A review of human carcinogens--Part F: Chemical agents and related occupations. Lancet Oncol. 2009, 10, 1143–1144. [Google Scholar] [CrossRef]
- Enviromental Protection Agency (EPA). Toxicological Review of Formaldehyde-Inhalation Assessment (CAS Noo. 50-00-0). In Support of Summary Information on the Integrated Risk Information System (IRIS); EPA: Washington, DC, USA, 2010; Volume I of IV, EPA/635/-10/002A. [Google Scholar]
- National Research Council (US); Committee to Review EPA’s Draft IRIS Assessment of Formaldehyde. Review of the Environmental Protection Agency’s Draft IRIS Assessment of Formaldehyde; National Academies Press (US): Washington, DC, USA, 2011. [Google Scholar]
- Beane Freeman, L.E.; Blair, A.; Lubin, J.H.; Stewart, P.A.; Hayes, R.B.; Hoover, R.N.; Hauptman, N. Mortality from lymphohematopoietic malignancies among workers in formaldehyde industries: The National Cancer Institute Cohort. J. Nat. Cancer Inst. 2009, 101, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Checkoway, H.; Dell, L.D.; Boffetta, P.; Gallagher, A.E.; Crawford, L.; Lees, P.J.S.; Mundt, K.A. Formaldehyde exposure and mortality risks from acute myeloid leukemia and other lymphohematopoietic malignancies in the US National Cancer Institute Cohort study of workers in formaldehyde industries. JOEM 2015, 57, 785–794. [Google Scholar] [PubMed]
- Zhang, L.; Tang, X.; Rothman, N.; Vermeulen, R.; Ji, Z.; Shen, M.; Qiu, C.; Guo, W.; Liu, S.; Reiss, B.; et al. Occupational exposure to formaldehyde, hematotoxicity, and leukemia-specific chromosome changes in cultured myeloid progenitor cells. Cancer Epidemiol. Biomark. Prev. 2010, 19, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Rothman, N.; Zhang, L.; Smith, M.T.; Vermeulen, R.; Lan, Q. Formaldehyde, Hematotoxicity, and Chromosomal Changes-Response. Cancer Epidemiol. Biomark. Prev. 2018, 27, 120–121. [Google Scholar] [CrossRef]
- Gentry, P.R.; Rodricks, J.V.; Turnbull, D.; Bachand, A.; Van Landingham, C.; Shipp, A.M.; Albertini, R.J.; Irons, R. Formaldehyde exposure and leukemia: Critical review and reevaluation of the results from a study that is the focus for evidence of biological plausibility. Crit. Rev. Toxicol. 2013, 43, 661–670. [Google Scholar] [CrossRef]
- Mundt, K.A.; Gallagher, A.E.; Dell, L.D.; Natelson, E.A.; Boffetta, P.; Gentry, P.R. Does occupational exposure to formaldehyde cause hematotoxicity and leukemia-specific chromosome changes in cultured myeloid progenitor cells? Crit. Rev. Toxicol. 2017, 7, 592–602. [Google Scholar] [CrossRef]
- Ye, X.; Yan, W.; Xie, H.; Zhao, M.; Ying, C. Cytogenetic analysis of nasal mucosa cells and lymphocytes from high-level long-term formaldehyde exposed workers and low-level short-term exposed waiters. Mutat. Res. 2005, 588, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.M.; Dell, L.; Torres, C.; Simmons, C.E.; Poole, J.; Boelter, F.W.; Harper, P. Exposure Reconstruction and Risk Analysis for Six Semiconductor Workers with Lymphohematopoietic Cancers. J. Occup. Environ. Med. 2015, 57, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Charbotel, B.; Fervers, B.; Droz, J.P. Occupational exposures in rare cancers: A critical review of the literature. Crit. Rev. Oncol. Hematol. 2014, 90, 99–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eastmond, D.A.; Keshava, N.; Sonawane, B. Lymphohematopoietic cancers induced by chemicals and other agents and their implications for risk evaluation: An overview. Mutat. Res. 2014, 761, 40–64. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Collins, L.B.; Ru, H.; Bermudez, E.; Swenberg, J.A. Distribution of DNA adducts caused by inhaled formaldehyde is consistent with induction of nasal carcinoma but not leukemia. Toxicol. Sci. Off. J. Soc. Toxicol. 2010, 116, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Merk, O.; Speit, G. Significance of formaldehyde-induced DNA-protein crosslinks for mutagenesis. Environ. Mol. Mutagen. 1998, 32, 260–268. [Google Scholar] [CrossRef]
- Moeller, B.C.; Lu, K.; Doyle-Eisele, M.; McDonald, J.; Gigliotti, A.; Swenberg, J.A. Determination of N2-hydroxymethyl-dG adducts in the nasal epithelium and bone marrow of nonhuman primates following 13CD2-formaldehyde inhalation exposure. Chem. Res. Toxicol. 2011, 24, 162–164. [Google Scholar] [CrossRef]
- Lu, K.; Moeller, B.; Doyle-Eisele, M.; McDonald, J.; Swenberg, J.A. Molecular dosimetry of N2-hydroxymethyl-dG DNA adducts in rats exposed to formaldehyde. Chem. Res. Toxicol. 2011, 24, 159–161. [Google Scholar] [CrossRef]
- Rhomberg, L.R.; Bailey, L.A.; Goodman, J.E.; Hamade, A.K.; Mayfield, D. Is exposure to formaldehyde in air causally associated with leukemia?–A hypothesis-based weight-of-evidence analysis. Crit. Rev. Toxicol. 2011, 41, 555–621. [Google Scholar] [CrossRef]
- Pyatt, D.; Natelson, E.; Golden, R. Is inhalation exposure to formaldehyde a biologically plausible cause of lymphohematopoietic malignancies? Regul. Toxicol. Pharmacol. 2008, 51, 119–133. [Google Scholar] [CrossRef]
- Katsnelson, B.A.; Degtyareva, T.D.; Privalova, L.I.; Minigaliyeva, I.A.; Slyshkina, T.V.; Ryzhov, V.V.; Beresneva, O.Y. Attenuation of subchronic formaldehyde inhalation toxicity with oral administration of glutamate, glycine and methionine. Toxicol. Lett. 2013, 220, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.; Li, X.; Fromowitz, M.; Mutter-Rottmayer, E.; Tung, J.; Smith, M.T.; Zhang, L. Formaldehyde induces micronuclei in mouse erythropoietic cells and suppresses the expansion of human erythroid progenitor cells. Toxicol. Lett. 2014, 224, 233–239. [Google Scholar] [CrossRef] [PubMed]
- IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. World Health Organization International Agency for Research on Cancer Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol IARC, Formaldehyde; International Agency for Research on Cancer: Lyon, France, 2006; Volume 88.
- Zhang, L.; Steinmaus, C.; Eastmond, D.; Xin, X.K.; Smith, M.T. Formaldehyde exposure and leukemia: A new meta-analysis and potential mechanisms. Mutat. Res. 2009, 681, 150–168. [Google Scholar] [CrossRef]
- Kwon, S.C.; Kim, I.; Song, J.; Park, J. Does formaldehyde have a causal association with nasopharyngeal cancer and leukaemia? Ann. Occup. Environ. Med. 2018, 30, 5. [Google Scholar] [CrossRef] [Green Version]
- Pira, E.; Romano, C.; La Vecchia, C.; Boffetta, P. Hematologic and cytogenetic biomarkers of leukemia risk from formaldehyde exposure. Carcinogenesis 2017, 38, 1251–1252. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Hong, S.; Choi, Y. Sensitive Detection of Formaldehyde Gas Using Modified Dandelion-Like SiO₂/Au Film and Surface Plasmon Resonance System. J. Nanosci. Nanotechnol. 2019, 19, 4807–4811. [Google Scholar] [CrossRef] [PubMed]
Authors | Years | Type of Study | Limitations | Conclusions |
---|---|---|---|---|
Checkoway et al. | 2015 | Cohort study | Job assignments were not documented beyond the initial study end date. There is a relatively small number of AML deaths observed among individuals employed for more than 1 year and most highly exposed to formaldehyde. Few of the employees who died of AML had any peak exposures, and nearly none had peak exposures within a reasonable time window of latency | No association |
Zhang et al. | 2010 | Molecular epidemiology study | Methodological limitations | Leukemia induction by formaldehyde is biologically plausible |
Gentry et al. | 2013 | Reanalysis of the data | No association | |
Jones et al. | 2015 | Quantitative risk assessment | Formaldehyde had not been used as a process chemical and was not an expected process by-product in these lines. Exposure measure was highly uncertain because of the absence of actual monitoring data of short-term peak exposures | No association |
Charbotel et al. | 2014 | Review of the literature | Only data supported is those of Zhang’s work | Association |
Authors | Year | Animal Model | Conclusions |
---|---|---|---|
Moeller et al. | 2011 | Cynomolgus macaques | Endogenous N(2)-hydroxymethyl-dG adducts in DNA were found in the bone marrow of animals exposed to 1.9 and 6.1 ppm of [(13)CD(2)]- formaldehyde for 6 h a day for 2 consecutive days |
Lu et al. | 2011 | Rats | Exogenous adducts were not detectable in the bone marrow of rats exposed to 15.2 ppm [(13)CD(2)] of formaldehyde. |
Katnelson et al. | 2013 | Rats | Inhalation exposure to formaldehyde vapors (12.8 ± 0.69 mg/m3) 4 h per day, 5 days per week during 10 weeks, induced changes in differential WBC count and bone marrow micronuclei count. |
Ji et al. | 2014 | Cultured mouse hematopoietic stem/progenitor cells | FA significantly induced micronuclei in mice in erythroid progenitor cells |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allegra, A.; Spatari, G.; Mattioli, S.; Curti, S.; Innao, V.; Ettari, R.; Allegra, A.G.; Giorgianni, C.; Gangemi, S.; Musolino, C. Formaldehyde Exposure and Acute Myeloid Leukemia: A Review of the Literature. Medicina 2019, 55, 638. https://doi.org/10.3390/medicina55100638
Allegra A, Spatari G, Mattioli S, Curti S, Innao V, Ettari R, Allegra AG, Giorgianni C, Gangemi S, Musolino C. Formaldehyde Exposure and Acute Myeloid Leukemia: A Review of the Literature. Medicina. 2019; 55(10):638. https://doi.org/10.3390/medicina55100638
Chicago/Turabian StyleAllegra, Alessandro, Giovanna Spatari, Stefano Mattioli, Stefania Curti, Vanessa Innao, Roberta Ettari, Andrea Gaetano Allegra, Concetto Giorgianni, Sebastiano Gangemi, and Caterina Musolino. 2019. "Formaldehyde Exposure and Acute Myeloid Leukemia: A Review of the Literature" Medicina 55, no. 10: 638. https://doi.org/10.3390/medicina55100638
APA StyleAllegra, A., Spatari, G., Mattioli, S., Curti, S., Innao, V., Ettari, R., Allegra, A. G., Giorgianni, C., Gangemi, S., & Musolino, C. (2019). Formaldehyde Exposure and Acute Myeloid Leukemia: A Review of the Literature. Medicina, 55(10), 638. https://doi.org/10.3390/medicina55100638