Cognition, Mood and Sleep in Menopausal Transition: The Role of Menopause Hormone Therapy
Abstract
:1. Sexual Steroids and Central Nervous System: Biologic Aspects
2. The Influence of Menopausal Transition and Menopause Hormone Therapy on Cognition
2.1. Menopausal Transition and Cognition
2.2. Menopause Hormone Therapy and Cognition
2.2.1. In Women without Dementia
2.2.2. In Women with Dementia
3. The Influence of Menopausal Transition and Menopause Hormone Therapy on Mood
3.1. Mood Disorders during Menopausal Transition
3.2. Menopause Hormone Therapy and Mood
3.2.1. In Non-Depressed Women
3.2.2. In Depressed Women
4. The Influence of Menopausal Transition and Menopause Hormone Therapy on Sleep
4.1. Sleep Changes Associated with Menopausal Transition
4.2. Menopause Hormone Therapy and Sleep
5. Conclusions
- Cognitive function and cognitive disorders: despite the deep connection between estrogen and cognition, data regarding the relationship between hormone replacement therapy and the neuroprotective outcomes still remain conflicting. Several studies have excluded any cognitive benefits of estrogen or combined estrogen-progestin therapy in women over the age of 65 without underlying dementia. Young menopausal women without contraindication to MHT and with impaired quality of life because of night sweats, vasomotor symptoms or disrupted sleep can benefit from MHT, and in several studies, MHT does not adversely affect cognition in these women.
- Sleep disturbances: the etiology of menopausal sleep disorder is not fully understood, but MHT can play a role enhancing sleep quality. MHT can improve sleep, reducing night sweats, but it can also act through other mechanisms, as disturbed sleep during perimenopause can occur independently of hot flashes. Further research is needed to determine if self-reported sleep quality in menopause is affected by different molecules, formulations and routes of administration of MHT. For example, the GABAergic sedating effects of progesterone should be considered in women with sleep issues.
- Mood and depressive symptoms: even though some data support a potential beneficial effect of MHT on mood, it should not be proposed to non-depressed peri-menopausal women to prevent mood symptoms. Estrogens can be considered in menopausal women with other concurrent conditions such as vasomotor symptoms as they may increase the response to anti-depressants.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brown, J.B. Types of ovarian activity in women and their significance: The continuum (a reinterpretation of early findings). Hum. Reprod. Update 2011, 17, 141–158. [Google Scholar] [CrossRef] [PubMed]
- Denley, M.C.S.; Gatford, N.J.F.; Sellers, K.J.; Srivastava, D.P. Estradiol and the Development of the Cerebral Cortex: An Unexpected Role? Front. Mol. Neurosci. 2018, 12, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, K.L.; Pradhan, D.S.; Shah, A.H.; Charlier, T.D.; Chin, E.H.; Soma, K.K. Neurosteroids, immunosteroids, and the Balkanization of endocrinology. Gen. Comp. Endocrinol. 2008, 157, 266–274. [Google Scholar] [CrossRef]
- Zárate, S.; Stevnsner, T.; Gredilla, R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front Aging Neurosci (Internet) 22 December 2017. Available online: http://journal.frontiersin.org/article/10.3389/fnagi.2017.00430/full (accessed on 28 June 2019).
- Shughrue, P.; Scrimo, P.; Merchenthaler, I. Estrogen binding and estrogen receptor characterization (ERα and ERβ) in the cholinergic neurons of the rat basal forebrain. Neuroscience 2000, 96, 41–49. [Google Scholar] [CrossRef]
- Maki, P.M. Estrogen effects on the hippocampus and frontal lobes. Int. J. Fertil. Women’s Med. 2005, 50, 67–71. [Google Scholar]
- Tang, Y.; Janssen, W.G.; Hao, J.; Roberts, J.A.; McKay, H.; Lasley, B.; Allen, P.B.; Greengard, P.; Rapp, P.R.; Kordower, J.H.; et al. Estrogen replacement increases spinophilin-immunoreactive spine number in the prefrontal cortex of female rhesus monkeys. Cereb. Cortex 2004, 14, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Shanmugan, S.; Epperson, C.N. Estrogen and the Prefrontal Cortex: Towards A New Understanding of Estrogen’s Effects on Executive Functions in the Menopause Transition. Hum. Brain Mapp. 2014, 35, 847–865. [Google Scholar] [CrossRef]
- Barha, C.K.; Galea, L.A. Influence of different estrogens on neuroplasticity and cognition in the hippocampus. Biochim. Biophys. Acta (BBA) Gen. Subj. 2010, 1800, 1056–1067. [Google Scholar] [CrossRef]
- Schliebs, R.; Arendt, T. The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J. Neural Transm. (Vienna) 2006, 113, 1625–1644. [Google Scholar] [CrossRef]
- Morgan, K.N.; Derby, C.A.; Gleason, C.E. Cognitive Changes with Reproductive Aging, Perimenopause, and Menopause. Obstet. Gynecol. Clin. N. Am. 2018, 45, 751–763. [Google Scholar] [CrossRef]
- Zárate, S.; Astiz, M.; Magnani, N.; Imsen, M.; Merino, F.; Álvarez, S.; Reinés, A.; Seilicovich, A. Hormone deprivation alters mitochondrial function and lipid profile in the hippocampus. J. Endocrinol. 2017, 233, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McEwen, B.S. Estrogen Actions in the Central Nervous System. Endocr. Rev. 1999, 20, 279–307. [Google Scholar] [CrossRef] [PubMed]
- Bethea, C.L.; Kohama, S.G.; Reddy, A.P.; Urbanski, H.F. Ovarian steroids regulate gene expression in the dorsal raphe of old female macaques. Neurobiol. Aging 2016, 37, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Irwin, R.W.; Yao, J.; Hamilton, R.T.; Cadenas, E.; Brinton, R.D.; Nilsen, J. Progesterone and estrogen regulate oxidative metabolism in brain mitochondria. Endocrinology 2008, 149, 3167–3175. [Google Scholar] [CrossRef] [PubMed]
- Brinton, R.D.; Thompson, R.F.; Foy, M.R.; Baudry, M.; Wang, J.; Finch, C.E.; Morgan, T.E.; Pike, C.J.; Mack, W.J.; Stanczyk, F.Z.; et al. Progesterone receptors: Form and function in brain. Front. Neuroendocr. 2008, 29, 313–339. [Google Scholar] [CrossRef] [Green Version]
- Morriss, M.C.; Zimmerman, R.A.; Bilaniuk, L.T.; Hunter, J.V.; Haselgrove, J.C. Changes in brain water diffusion during childhood. Neuroradiology 1999, 41, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Taveggia, C.; Feltri, M.L.; Wrabetz, L. Signals to promote myelin formation and repair. Nat. Rev. Neurol. 2010, 6, 276–287. [Google Scholar] [CrossRef] [Green Version]
- Rupprecht, R.; Berning, B.; Hauser, C.A.; Holsboer, F.; Reul, J.M. Steroid receptor-mediated effects of neuroactive steroids: Characterization of structure-activity relationship. Eur. J. Pharmacol. 1996, 303, 227–234. [Google Scholar] [CrossRef]
- Bitran, D.; Shiekh, M.; McLeod, M. Anxiolytic Effect of Progesterone is Mediated by the Neurosteroid Allopregnanolone at Brain GABA A Receptors. J. Neuroendocrinol. 1995, 7, 171–177. [Google Scholar] [CrossRef]
- Smith, S.S. Withdrawal properties of a neuroactive steroid: Implications for GABAA receptor gene regulation in the brain and anxiety behavior. Steroids 2002, 67, 519–528. [Google Scholar] [CrossRef]
- Ströhle, A.; Romeo, E.; Hermann, B.; Pasini, A.; Spalletta, G.; Di Michele, F.; Holsboer, F.; Rupprecht, R. Concentrations of 3α-reduced neuroactive steroids and their precursors in plasma of patients with major depression and after clinical recovery. Biol. Psychiatry 1999, 45, 274–277. [Google Scholar] [CrossRef]
- Yen, J.-Y.; Chang, S.-J.; Long, C.-Y.; Tang, T.-C.; Chen, C.-C.; Yen, C.-F. Working memory deficit in premenstrual dysphoric disorder and its associations with difficulty in concentrating and irritability. Compr. Psychiatry 2012, 53, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P. Neuroactive steroid regulation of neurotransmitter release in the CNS: Action, mechanism and possible significance. Prog. Neurobiol. 2009, 89, 134–152. [Google Scholar] [CrossRef]
- Stárka, L.; Dušková, M.; Hill, M. Dehydroepiandrosterone: A neuroactive steroid. J. Steroid. Biochem. Mol. Biol. 2015, 145, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Quinn, T.; Greaves, R.; Badoer, E.; Walker, D. DHEA in Prenatal and Postnatal Life: Implications for Brain and Behavior. Vitam. Horm. 2018, 108, 145–174. [Google Scholar] [PubMed]
- Sullivan Mitchell, E.; Fugate Woods, N. Midlife women’s attributions about perceived memory changes: Observations from the Seattle Midlife Women’s Health Study. J. Womens Health Gend Based Med. 2001, 10, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Rocca, W.A.; Mielke, M.M.; Vemuri, P.; Miller, V.M. Sex and gender differences in the causes of dementia: A narrative review. Maturitas 2014, 79, 196–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rentz, D.M.; Weiss, B.K.; Jacobs, E.G.; Cherkerzian, S.; Klibanski, A.; Remington, A.; Aizley, H.; Goldstein, J.M. Sex differences in episodic memory in early midlife: Impact of reproductive aging. Menopause 2017, 24, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Lui, L.-Y.; Stone, K.; Cauley, J.A.; Hillier, T.; Yaffe, K. Bone loss predicts subsequent cognitive decline in older women: The study of osteoporotic fractures. J. Am. Geriatr. Soc. 2003, 51, 38–43. [Google Scholar] [CrossRef]
- Barrett-Connor, E.; Goodman-Gruen, D. Cognitive Function and Endogenous Sex Hormones in Older Women. J. Am. Geriatr. Soc. 1999, 47, 1289–1293. [Google Scholar] [CrossRef]
- Fuh, J.-L.; Wang, S.-J.; Lee, S.-J.; Lu, S.-R.; Juang, K.-D. A longitudinal study of cognition change during early menopausal transition in a rural community. Maturitas 2006, 53, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Greendale, G.A.; Huang, M.-H.; Wight, R.G.; Seeman, T.; Luetters, C.; Avis, N.E.; Johnston, J.; Karlamangla, A.S. Effects of the menopause transition and hormone use on cognitive performance in midlife women. Neurology 2009, 72, 1850–1857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuh, D.; Cooper, R.; Moore, A.; Richards, M.; Hardy, R. Age at menopause and lifetime cognition: Findings from a British birth cohort study. Neurology 2018, 90, e1673–e1681. [Google Scholar] [CrossRef] [PubMed]
- Geerlings, M.I.; Ruitenberg, A.; Witteman, J.C.M.; Van Swieten, J.C.; Hofman, A.; Van Duijn, C.M.; Breteler, M.M.B.; Launer, L.J. Reproductive Period and Risk of Dementia in Postmenopausal Women. JAMA 2001, 285, 1475. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.-X.; Jacobs, D.; Stern, Y.; Marder, K.; Schofield, P.; Gurland, B.; Andrews, H.; Mayeux, R. Effect of oestrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet 1996, 348, 429–432. [Google Scholar] [CrossRef]
- Waring, S.C.; Rocca, W.A.; Petersen, R.C.; O’Brien, P.C.; Tangalos, E.G.; Kokmen, E. Postmenopausal estrogen replacement therapy and risk of AD: A population-based study. Neurology 1999, 52, 965. [Google Scholar] [CrossRef] [PubMed]
- Zandi, P.P.; Carlson, M.C.; Plassman, B.L.; Welsh-Bohmer, K.A.; Mayer, L.S.; Steffens, D.C.; Breitner, J.C.S. For the Cache County Memory Study Investigators Hormone Replacement Therapy and Incidence of Alzheimer Disease in Older Women the Cache County Study. JAMA 2002, 288, 2123. [Google Scholar] [CrossRef]
- Shao, H.; Breitner, J.C.; Whitmer, R.A.; Wang, J.; Hayden, K.; Wengreen, H.; Corcoran, C.; Tschanz, J.; Norton, M.; Munger, R.; et al. Hormone therapy and Alzheimer disease dementia: New findings from the Cache County Study. Neurology 2012, 79, 1846–1852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imtiaz, B.; Taipale, H.; Tanskanen, A.; Tiihonen, M.; Kivipelto, M.; Heikkinen, A.-M.; Tiihonen, J.; Soininen, H.; Hartikainen, S.; Tolppanen, A.-M. Risk of Alzheimer’s disease among users of postmenopausal hormone therapy: A nationwide case-control study. Maturitas 2017, 98, 7–13. [Google Scholar] [CrossRef]
- Yaffe, K.; Sawaya, G.; Lieberburg, I.; Grady, D. Estrogen therapy in postmenopausal women: Effects on cognitive function and dementia. JAMA 1998, 279, 688–695. [Google Scholar] [CrossRef]
- Rapp, S.R.; Espeland, M.A.; Shumaker, S.A.; Henderson, V.W.; Brunner, R.L.; Manson, J.E.; Gass, M.L.; Stefanick, M.L.; Lane, D.S.; Hays, J.; et al. Effect of estrogen plus progestin on global cognitive function in postmenopausal women: The Women’s Health Initiative Memory Study: A randomized controlled trial. JAMA 2003, 289, 2663–2672. [Google Scholar] [CrossRef] [PubMed]
- Espeland, M.A.; Rapp, S.R.; Shumaker, S.A.; Brunner, R.; Manson, J.E.; Sherwin, B.B.; Hsia, J.; Margolis, K.L.; Hogan, P.E.; Wallace, R.; et al. Conjugated Equine Estrogens and Global Cognitive Function in Postmenopausal Women: Women??? Health Initiative Memory Study. Obstet. Gynecol. Surv. 2004, 59, 712–714. [Google Scholar] [CrossRef]
- Kang, J.H.; Weuve, J.; Grodstein, F. Postmenopausal hormone therapy and risk of cognitive decline in community-dwelling aging women. Neurology 2004, 63, 101–107. [Google Scholar] [CrossRef]
- Kang, J.H.; Grodstein, F. Postmenopausal hormone therapy, timing of initiation, APOE and cognitive decline. Neurobiol. Aging 2012, 33, 1129–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lethaby, A.; Hogervorst, E.; Richards, M.; Yesufu, A.; Yaffe, K. Hormone replacement therapy for cognitive function in postmenopausal women. Cochrane Database Syst. Rev. 2008, 2008, CD003122. [Google Scholar] [CrossRef]
- Coker, L.H.; Espeland, M.A.; Rapp, S.R.; Legault, C.; Resnick, S.M.; Hogan, P.; Gaussoin, S.; Dailey, M.; Shumaker, S.A. Postmenopausal hormone therapy and cognitive outcomes: The Women’s Health Initiative Memory Study (WHIMS). J. Steroid Biochem. Mol. Biol. 2010, 118, 304–310. [Google Scholar] [CrossRef]
- Marder, K.; Sano, M. Estrogen to treat Alzheimer’s disease: Too little, too late? So what’s a woman to do? Neurology 2000, 54, 2035–2037. [Google Scholar] [CrossRef]
- Whitmer, R.A.; Quesenberry, C.P.; Zhou, J.; Yaffe, K. Timing of hormone therapy and dementia: The critical window theory revisited. Ann. Neurol. 2011, 69, 163–169. [Google Scholar] [CrossRef]
- Henderson, V.W.; Benke, K.S.; Green, R.C.; Cupples, L.A.; Farrer, L.A.; MIRAGE Study Group. Postmenopausal hormone therapy and Alzheimer’s disease risk: Interaction with age. J. Neurol Neurosurg Psychiatry 2005, 76, 103–105. [Google Scholar] [CrossRef]
- Petitti, D.B.; Crooks, V.C.; Chiu, V.; Buckwalter, J.G.; Chui, H.C. Incidence of dementia in long-term hormone users. Am. J. Epidemiol. 2008, 167, 692–700. [Google Scholar] [CrossRef]
- Ryan, J.; Carrière, I.; Scali, J.; Dartigues, J.-F.; Tzourio, C.; Poncet, M.; Ritchie, K.; Ancelin, M.-L. Characteristics of hormone therapy, cognitive function, and dementia: The prospective 3C Study. Neurology 2009, 73, 1729–1737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espeland, M.A.; Shumaker, S.A.; Leng, I.; Manson, J.E.; Brown, C.M.; Leblanc, E.S.; Vaughan, L.; Robinson, J.; Rapp, S.R.; Goveas, J.S.; et al. Long-term effects on cognitive function of postmenopausal hormone therapy prescribed to women aged 50 to 55 years. JAMA Intern. Med. 2013, 173, 1429–1436. [Google Scholar] [CrossRef] [PubMed]
- Savolainen-Peltonen, H.; Rahkola-Soisalo, P.; Hoti, F.; Vattulainen, P.; Gissler, M.; Ylikorkala, O.; Mikkola, T.S. Use of postmenopausal hormone therapy and risk of Alzheimer’s disease in Finland: Nationwide case-control study. BMJ 2019, 364, l665. [Google Scholar] [CrossRef]
- Alvarez-De-La-Rosa, M.; Silva, I.; Nilsen, J.; Pérez, M.M.; García-Segura, L.M.; Ávila, J.; Naftolin, F. Estradiol Prevents Neural Tau Hyperphosphorylation Characteristic of Alzheimer’s Disease. Ann. N. Y. Acad. Sci. 2005, 1052, 210–224. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Lu, M.; Lancaster, T.; Cao, P.; Honda, S.-I.; Staufenbiel, M.; Harada, N.; Zhong, Z.; Shen, Y.; Li, R. Brain estrogen deficiency accelerates A plaque formation in an Alzheimer’s disease animal model. Proc. Natl. Acad. Sci. USA 2005, 102, 19198–19203. [Google Scholar] [CrossRef]
- Thomas, T.; Bryant, M.; Clark, L.; Garces, A.; Rhodin, J. Estrogen and Raloxifene Activities on Amyloid-β-Induced Inflammatory Reaction. Microvasc. Res. 2001, 61, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Leblanc, E.S.; Janowsky, J.; Chan, B.K.S.; Nelson, H.D. Hormone Replacement Therapy and Cognition: Systematic Review and Meta-Analysis. Obstet. Gynecol. Surv. 2001, 56, 560–561. [Google Scholar] [CrossRef]
- O’Brien, J.; Jackson, J.W.; Grodstein, F.; Blacker, D.; Weuve, J. Postmenopausal hormone therapy is not associated with risk of all-cause dementia and Alzheimer’s disease. Epidemiol. Rev. 2014, 36, 83–103. [Google Scholar] [CrossRef]
- Kantarci, K.; Lowe, V.J.; Lesnick, T.G.; Tosakulwong, N.; Bailey, K.R.; Fields, J.A.; Shuster, L.T.; Zuk, S.M.; Senjem, M.L.; Mielke, M.M.; et al. Early Postmenopausal Transdermal 17β-Estradiol Therapy and Amyloid-β Deposition. J. Alzheimer’s Dis. 2016, 53, 547–556. [Google Scholar] [CrossRef]
- Mulnard, R.A.; Cotman, C.W.; Kawas, C.; Van Dyck, C.H.; Sano, M.; Doody, R.; Koss, E.; Pfeiffer, E.; Jin, S.; Gamst, A.; et al. Estrogen Replacement Therapy for Treatment of Mild to Moderate Alzheimer Disease: A Randomized Controlled Trial. Obstet. Gynecol. Surv. 2000, 283, 439–440. [Google Scholar] [CrossRef]
- Hogervorst, E. Estrogen and the brain: Does estrogen treatment improve cognitive function? Menopause Int. 2013, 19, 6–19. [Google Scholar] [CrossRef] [PubMed]
- Guérin, E.; Prud’Homme, D.; Goldfield, G. Trajectories of mood and stress and relationships with protective factors during the transition to menopause: Results using latent class growth modeling in a Canadian cohort. Arch. Women’s Ment. Health 2017, 20, 733–745. [Google Scholar] [CrossRef] [PubMed]
- Soares, C.N. Depression and Menopause: An Update on Current Knowledge and Clinical Management for this Critical Window. Med. Clin. N. Am. 2019, 103, 651–667. [Google Scholar] [CrossRef] [PubMed]
- Bruyneel, M. Sleep disturbances in menopausal women: Aetiology and practical aspects. Maturitas 2015, 81, 406–409. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, M.; Rouget, P.; Archinard, M.; Morabia, A. Body weight preoccupation in middle-age and ageing women: A general population survey. Int. J. Eat. Disord. 1998, 23, 287–294. [Google Scholar]
- Mouton, C.; Reame, N.; Salamone, L.; Stellato, R.; Gold, E.B.; Sternfeld, B.; Kelsey, J.L.; Brown, C. Relation of Demographic and Lifestyle Factors to Symptoms in a Multi-Racial/Ethnic Population of Women 40–55 Years of Age. Am. J. Epidemiol. 2000, 152, 463–473. [Google Scholar]
- Sowislo, J.F.; Orth, U. Does low self-esteem predict depression and anxiety? A meta-analysis of longitudinal studies. Psychol. Bull. 2013, 139, 213–240. [Google Scholar] [CrossRef]
- Hunter, M.; Rendall, M. Bio-psycho-socio-cultural perspectives on menopause. Best Pract. Res. Clin. Obstet. Gynaecol. 2007, 21, 261–274. [Google Scholar] [CrossRef]
- Darwish, M.; Atlantis, E.; Mohamed-Taysir, T. Psychological outcomes after hysterectomy for benign conditions: A systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 174, 5–19. [Google Scholar] [CrossRef]
- Gibson, C.J.; Joffe, H.; Bromberger, J.T.; Thurston, R.C.; Lewis, T.T.; Khalil, N.; Matthews, K.A. Mood Symptoms After Natural Menopause and Hysterectomy with and Without Bilateral Oophorectomy Among Women in Midlife. Obstet. Gynecol. 2012, 119, 935–941. [Google Scholar] [CrossRef]
- Rocca, W.A.; Grossardt, B.R.; Geda, Y.E.; Gostout, B.S.; Bower, J.H.; Maraganore, D.M.; de Andrade, M.; Melton, L.J., 3rd. Long-term risk of depressive and anxiety symptoms after early bilateral oophorectomy. Menopause 2008, 15, 1050–1059. [Google Scholar] [CrossRef] [PubMed]
- Chou, P.-H.; Lin, C.-H.; Cheng, C.; Chang, C.-L.; Tsai, C.-J.; Tsai, C.-P.; Lan, T.-H.; Chan, C.-H. Risk of depressive disorders in women undergoing hysterectomy: A population-based follow-up study. J. Psychiatr. Res. 2015, 68, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Wilson, L.; Pandeya, N.; Byles, J.; Mishra, G. Hysterectomy and incidence of depressive symptoms in midlife women: The Australian Longitudinal Study on Women’s Health. Epidemiol. Psychiatr. Sci. 2018, 27, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, P.J.; Ben Dor, R.; Martinez, P.E.; Guerrieri, G.M.; Harsh, V.L.; Thompson, K.; Koziol, D.E.; Nieman, L.K.; Rubinow, D.R. Effects of Estradiol Withdrawal on Mood in Women with Past Perimenopausal Depression: A Randomized Clinical Trial. JAMA Psychiatry 2015, 72, 714–726. [Google Scholar] [CrossRef] [PubMed]
- Rubinow, D.R.; Johnson, S.L.; Schmidt, P.J.; Girdler, S.; Gaynes, B. Efficacy of Estradiol in Perimenopausal Depression: So Much Promise and So Few Answers: Research Article: Efficacy of Estradiol in Perimenopausal Depression. Depress. Anxiety 2015, 32, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Bethea, C.L.; Mirkes, S.J.; Su, A.; Michelson, D. Effects of oral estrogen, raloxifene and arzoxifene on gene expression in serotonin neurons of macaques. Psychoneuroendocrinology 2002, 27, 431–445. [Google Scholar] [CrossRef]
- Pau, K.Y.; Hess, D.L.; Kohama, S.; Bao, J.; Pau, C.Y.; Spies, H.G. Oestrogen upregulates noradrenaline release in the mediobasal hypothalamus and tyrosine hydroxylase gene expression in the brainstem of ovariectomized rhesus macaques. J. Neuroendocr. 2000, 12, 899–909. [Google Scholar] [CrossRef]
- Maki, P.M.; Kornstein, S.G.; Joffe, H.; Bromberger, J.T.; Freeman, E.W.; Athappilly, G.; Bobo, W.V.; Rubin, L.H.; Koleva, H.K.; Cohen, L.S.; et al. Guidelines for the evaluation and treatment of perimenopausal depression: Summary and recommendations. Menopause 2018, 25, 1069–1085. [Google Scholar] [CrossRef]
- Bromberger, J.T.; Kravitz, H.M.; Youk, A.; Schott, L.L.; Joffe, H. Patterns of depressive disorders across 13 years and their determinants among midlife women: SWAN mental health study. J. Affect. Disord. 2016, 206, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Cohen, L.S.; Soares, C.N.; Vitonis, A.F.; Otto, M.W.; Harlow, B.L. Risk for New Onset of Depression During the Menopausal Transition: The Harvard Study of Moods and Cycles. Arch Gen. Psychiatry 2006, 63, 385. [Google Scholar] [CrossRef]
- Hickey, M.; Schoenaker, D.A.J.M.; Joffe, H.; Mishra, G.D. Depressive symptoms across the menopause transition: Findings from a large population-based cohort study. Menopause 2016, 23, 1287–1293. [Google Scholar] [CrossRef] [PubMed]
- Woods, N.F.; Smith-DiJulio, K.; Percival, D.B.; Tao, E.Y.; Mariella, A.; Mitchell, E.S. Depressed mood during the menopausal transition and early postmenopause: Observations from the Seattle Midlife Women’s Health Study. Menopause 2008, 15, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Freeman, E.W.; Sammel, M.D.; Boorman, D.W.; Zhang, R. Longitudinal pattern of depressive symptoms around natural menopause. JAMA Psychiatry 2014, 71, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Gordon, J.L.; Rubinow, D.R.; Eisenlohr-Moul, T.A.; Leserman, J.; Girdler, S.S. Estradiol variability, stressful life events, and the emergence of depressive symptomatology during the menopausal transition. Menopause 2016, 23, 257–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoo, S.K.; Coglan, M.; Battistutta, D.; Tippett, V.; Raphael, B. Hormonal treatment and psychological function during the menopausal transition: An evaluation of the effects of conjugated estrogens/cyclic medroxyprogesterone acetate. Climacteric 1998, 1, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Santoro, N.; Teal, S.; Gavito, C.; Cano, S.; Chosich, J.; Sheeder, J. Use of a levonorgestrel-containing intrauterine system with supplemental estrogen improves symptoms in perimenopausal women: A pilot study. Menopause 2015, 22, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Haines, C.J.; Yim, S.F.; Chung, T.K.; Lam, C.W.; Lau, E.W.; Ng, M.H.; Chin, R.; Lee, D.T. A prospective, randomized, placebo-controlled study of the dose effect of oral oestradiol on menopausal symptoms, psychological well being, and quality of life in postmenopausal Chinese women. Maturitas 2003, 44, 207–214. [Google Scholar] [CrossRef]
- Girdler, S.S.; O’Briant, C.; Steege, J.; Grewen, K.; Light, K.C. A Comparison of the Effect of Estrogen with or without Progesterone on Mood and Physical Symptoms in Postmenopausal Women. J. Women’s Health Gender Based Med. 1999, 8, 637–646. [Google Scholar] [CrossRef]
- Almeida, O.P.; Lautenschlager, N.T.; Vasikaran, S.; Leedman, P.; Gelavis, A.; Flicker, L. A 20-week randomized controlled trial of estradiol replacement therapy for women aged 70 years and older: Effect on mood, cognition and quality of life. Neurobiol. Aging 2006, 27, 141–149. [Google Scholar] [CrossRef]
- Yalamanchili, V.; Gallagher, J.C. Treatment with hormone therapy and calcitriol did not affect depression in older postmenopausal women: No interaction with estrogen and vitamin D receptor genotype polymorphisms. Menopause 2012, 19, 697–703. [Google Scholar] [CrossRef]
- Gleason, C.E.; Dowling, N.M.; Wharton, W.; Manson, J.E.; Miller, V.M.; Atwood, C.S.; Brinton, E.A.; Cedars, M.I.; Lobo, R.A.; Merriam, G.R.; et al. Effects of Hormone Therapy on Cognition and Mood in Recently Postmenopausal Women: Findings from the Randomized, Controlled KEEPS–Cognitive and Affective Study. PLoS Med. 2015, 12, e1001833. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, P.J.; Nieman, L.; Danaceau, M.A.; Tobin, M.B.; Roca, C.A.; Murphy, J.H.; Rubinow, D.R. Estrogen replacement in perimenopause-related depression: A preliminary report. Am. J. Obstet. Gynecol. 2000, 183, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Soares, C.N.; Almeida, O.P.; Joffe, H.; Cohen, L.S. Efficacy of estradiol for the treatment of depressive disorders in perimenopausal women: A double-blind, randomized, placebo-controlled trial. Arch. Gen. Psychiatry 2001, 58, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, I.; Palombo-Kinne, E.; Kirsch, B.; Mellinger, U.; Breitbarth, H.; Gräser, T. Influence of a continuous combined HRT (2 mg estradiol valerate and 2 mg dienogest) on postmenopausal depression. Climacteric 2004, 7, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Morrison, M.F.; Kallan, M.J.; Have, T.T.; Katz, I.; Tweedy, K.; Battistini, M. Lack of efficacy of estradiol for depression in postmenopausal women: A randomized, controlled trial. Biol. Psychiatry 2004, 55, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Joffe, H.; Petrillo, L.F.; Koukopoulos, A.; Viguera, A.C.; Hirschberg, A.; Nonacs, R.; Somley, B.; Pasciullo, E.; White, D.P.; Hall, J.E.; et al. Increased estradiol and improved sleep, but not hot flashes, predict enhanced mood during the menopausal transition. J. Clin. Endocrinol. Metab. 2011, 96, E1044–E1054. [Google Scholar] [CrossRef]
- Green, S.M.; Key, B.L.; McCabe, R.E. Cognitive-behavioral, behavioral, and mindfulness-based therapies for menopausal depression: A review. Maturitas 2015, 80, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Kravitz, H.M.; Ganz, P.A.; Bromberger, J.; Powell, L.H.; Sutton-Tyrrell, K.; Meyer, P.M. Sleep difficulty in women at midlife: A community survey of sleep and the menopausal transition. Menopause 2003, 10, 19–28. [Google Scholar]
- Luyster, F.S.; Strollo, P.J.; Zee, P.C.; Walsh, J.K. Sleep: A Health Imperative. Sleep 2012, 35, 727–734. [Google Scholar] [CrossRef]
- Baker, F.C.; De Zambotti, M.; Colrain, I.M.; Bei, B. Sleep problems during the menopausal transition: Prevalence, impact, and management challenges. Nat. Sci. Sleep 2018, 10, 73–95. [Google Scholar] [CrossRef]
- Kravitz, H.M.; Joffe, H. Sleep during the perimenopause: A SWAN story. Obstet. Gynecol. Clin. N. Am. 2011, 38, 567–586. [Google Scholar] [CrossRef] [PubMed]
- Sowers, M.F.; Zheng, H.; Kravitz, H.M.; Matthews, K.; Bromberger, J.T.; Gold, E.B.; Owens, J.; Consens, F.; Hall, M. Sex Steroid Hormone Profiles are Related to Sleep Measures from Polysomnography and the Pittsburgh Sleep Quality Index. Sleep 2008, 31, 1339–1349. [Google Scholar] [PubMed]
- Gallicchio, L.; Whiteman, M.K.; Tomic, D.; Miller, K.P.; Langenberg, P.; Flaws, J.A. Type of menopause, patterns of hormone therapy use, and hot flashes. Fertil. Steril. 2006, 85, 1432–1440. [Google Scholar] [CrossRef] [PubMed]
- Archer, D.F.; Sturdee, D.W.; Baber, R.; De Villiers, T.J.; Pines, A.; Freedman, R.R.; Gompel, A.; Hickey, M.; Hunter, M.S.; Lobo, R.A.; et al. Menopausal hot flushes and night sweats: Where are we now? Climacteric 2011, 14, 515–528. [Google Scholar] [CrossRef]
- Rance, N.E.; Dacks, P.A.; Mittelman-Smith, M.A.; Romanovsky, A.A.; Krajewski-Hall, S.J. Modulation of body temperature and LH secretion by hypothalamic KNDy (kisspeptin, neurokinin B and dynorphin) neurons: A novel hypothesis on the mechanism of hot flushes. Front. Neuroendocr. 2013, 34, 211–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jehan, S.; Masters-Isarilov, A.; Salifu, I.; Zizi, F.; Jean-Louis, G.; Pandi-Perumal, S.R.; Gupta, R.; Brzezinski, A.; McFarlane, S.I. Sleep Disorders in Postmenopausal Women. J. Sleep Disord. Ther. 2015, 4. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4621258/ (accessed on 29 June 2019).
- Kimura, M. Minireview: Gender-specific sleep regulation. Sleep Biol. Rhythm. 2005, 3, 75–79. [Google Scholar] [CrossRef]
- Feinberg, I. Changes in sleep cycle patterns with age. J. Psychiatr. Res. 1974, 10, 283–306. [Google Scholar] [CrossRef]
- Viola-Saltzman, M.; Watson, N.F.; Bogart, A.; Goldberg, J.; Buchwald, D. High Prevalence of Restless Legs Syndrome among Patients with Fibromyalgia: A Controlled Cross-Sectional Study. J. Clin. Sleep Med. 2010, 6, 423–427. [Google Scholar]
- Sleep Disorders in Women; Attarian, H.P.; Viola-Saltzman, M. (Eds.) Humana Press: Totowa, NJ, USA, 2013; Available online: http://link.springer.com/10.1007/978-1-62703-324-4 (accessed on 29 June 2019).
- Gupta, R.; Goel, D.; Ahmed, S.; Dhar, M.; Lahan, V. What patients do to counteract the symptoms of Willis-Ekbom disease (RLS/WED): Effect of gender and severity of illness. Ann. Indian Acad. Neurol. 2014, 17, 405–408. [Google Scholar] [CrossRef]
- Manconi, M.; Ulfberg, J.; Berger, K.; Ghorayeb, I.; Wesström, J.; Fulda, S.; Allen, R.P.; Pollmächer, T. When gender matters: Restless legs syndrome. Report of the “RLS and woman” workshop endorsed by the European RLS Study Group. Sleep Med. Rev. 2012, 16, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Dancey, D.R.; Hanly, P.J.; Soong, C.; Lee, B.; Hoffstein, V. Impact of Menopause on the Prevalence and Severity of Sleep Apnea. Chest 2001, 120, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Resta, O.; Bonfitto, P.; Sabato, R.; De Pergola, G.; Barbaro, M.P.F. Prevalence of obstructive sleep apnoea in a sample of obese women: Effect of menopause. Diabetes Nutr. Metab. 2004, 17, 296–303. [Google Scholar] [PubMed]
- MacLennan, A.H.; Broadbent, J.L.; Lester, S.; Moore, V. Oral oestrogen and combined oestrogen/progestogen therapy versus placebo for hot flushes. Cochrane Database Syst. Rev. 2004, 4, CD002978. [Google Scholar] [CrossRef] [PubMed]
- Cintron, D.; Lipford, M.; Larrea-Mantilla, L.; Spencer-Bonilla, G.; Lloyd, R.; Gionfriddo, M.R.; Gunjal, S.; Farrell, A.M.; Miller, V.M.; Murad, M.H. Efficacy of menopausal hormone therapy on sleep quality: Systematic review and meta-analysis. Endocrine 2017, 55, 702–711. [Google Scholar] [CrossRef] [PubMed]
- Polo-Kantola, P.; Erkkola, R.; Helenius, H.; Irjala, K.; Polo, O. When does estrogen replacement therapy improve sleep quality? Am. J. Obstet. Gynecol. 1998, 178, 1002–1009. [Google Scholar] [CrossRef]
- Savolainen-Peltonen, H.; Hautamäki, H.; Tuomikoski, P.; Ylikorkala, O.; Mikkola, T.S. Health-related quality of life in women with or without hot flashes: A randomized placebo-controlled trial with hormone therapy. Menopause 2014, 21, 732–739. [Google Scholar] [CrossRef]
- Welton, A.J.; Vickers, M.R.; Kim, J.; Ford, D.A.; Lawton, B.; MacLennan, A.H.; Meredith, S.K.; Martin, J.; Meade, T.W. Health related quality of life after combined hormone replacement therapy: Randomised controlled trial. BMJ 2008, 337, a1190. [Google Scholar] [CrossRef]
- Attarian, H.; Hachul, H.; Guttuso, T.; Phillips, B. Treatment of chronic insomnia disorder in menopause: Evaluation of literature. Menopause 2015, 22, 674–684. [Google Scholar] [CrossRef]
- Schüssler, P.; Kluge, M.; Yassouridis, A.; Dresler, M.; Held, K.; Zihl, J.; Steiger, A. Progesterone reduces wakefulness in sleep EEG and has no effect on cognition in healthy postmenopausal women. Psychoneuroendocrinology 2008, 33, 1124–1131. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gava, G.; Orsili, I.; Alvisi, S.; Mancini, I.; Seracchioli, R.; Meriggiola, M.C. Cognition, Mood and Sleep in Menopausal Transition: The Role of Menopause Hormone Therapy. Medicina 2019, 55, 668. https://doi.org/10.3390/medicina55100668
Gava G, Orsili I, Alvisi S, Mancini I, Seracchioli R, Meriggiola MC. Cognition, Mood and Sleep in Menopausal Transition: The Role of Menopause Hormone Therapy. Medicina. 2019; 55(10):668. https://doi.org/10.3390/medicina55100668
Chicago/Turabian StyleGava, Giulia, Isabella Orsili, Stefania Alvisi, Ilaria Mancini, Renato Seracchioli, and Maria Cristina Meriggiola. 2019. "Cognition, Mood and Sleep in Menopausal Transition: The Role of Menopause Hormone Therapy" Medicina 55, no. 10: 668. https://doi.org/10.3390/medicina55100668
APA StyleGava, G., Orsili, I., Alvisi, S., Mancini, I., Seracchioli, R., & Meriggiola, M. C. (2019). Cognition, Mood and Sleep in Menopausal Transition: The Role of Menopause Hormone Therapy. Medicina, 55(10), 668. https://doi.org/10.3390/medicina55100668