Polymorphisms of Proinflammatory Cytokines in Relation to APOE Epsilon 4 and Risk of Alzheimer’s Disease in the Lithuanian Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Genotyping
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cagnin, A.; Brooks, D.J.; Kennedy, A.M.; Gunn, R.N.; Myers, R.; Turkheimer, F.E.; Jones, T.; Banati, R.B. In-vivo measurement of activated microglia in dementia. Lancet 2001, 358, 461–467. [Google Scholar] [CrossRef]
- Brosseron, F.; Krauthausen, M.; Kummer, M.; Heneka, M.T. Body fluid cytokine levels in mild cognitive impairment and Alzheimer’s disease: A comparative overview. Mol. Neurobiol. 2014, 50, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Tarkowski, E.; Liljeroth, A.M.; Minthon, L.; Tarkowski, A.; Wallin, A.; Blennow, K. Cerebral pattern of pro- and anti-inflammatory cytokines in dementias. Brain Res. Bull. 2003, 61, 255–260. [Google Scholar] [CrossRef]
- Ott, B.R.; Jones, R.N.; Daiello, L.A.; de la Monte, S.M.; Stopa, E.G.; Johanson, C.E.; Denby, C.; Grammas, P. Blood-Cerebrospinal Fluid Barrier Gradients in Mild Cognitive Impairment and Alzheimer’s Disease: Relationship to Inflammatory Cytokines and Chemokines. Front. Aging Neurosci. 2018, 10, 245. [Google Scholar] [CrossRef] [PubMed]
- Su, F.; Bai, F.; Zhang, Z. Inflammatory Cytokines and Alzheimer’s Disease: A Review from the Perspective of Genetic Polymorphisms. Neurosci. Bull. 2016, 32, 469–480. [Google Scholar] [CrossRef]
- Park, K.M.; Bowers, W.J. Tumor necrosis factor-alpha mediated signaling in neuronal homeostasis and dysfunction. Cell Signal. 2010, 22, 977–983. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.J.; Kim, H.D.; Maxwell, J.A.; Li, L.; Fukuchi, K. Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer’s disease. J. Neuroinflamm. 2008, 5, 23. [Google Scholar] [CrossRef]
- McCusker, S.M.; Curran, M.D.; Dynan, K.B.; McCullagh, C.D.; Urquhart, D.D.; Middleton, D.; Patterson, C.C.; McIlroy, S.P.; Passmore, A.P. Association between polymorphism in regulatory region of gene encoding tumour necrosis factor alpha and risk of Alzheimer’s disease and vascular dementia: A case-control study. Lancet 2001, 357, 436–439. [Google Scholar] [CrossRef]
- Laws, S.M.; Perneczky, R.; Wagenpfeil, S.; Müller, U.; Förstl, H.; Martins, R.N.; Kurz, A.; Riemenschneider, M. TNF polymorphisms in Alzheimer disease and functional implications on CSF beta-amyloid levels. Hum. Mutat. 2005, 26, 29–35. [Google Scholar] [CrossRef]
- Di Bona, D.; Candore, G.; Franceschi, C.; Licastro, F.; Colonna-Romano, G.; Cammà, C.; Lio, D.; Caruso, C. Systematic review by meta-analyses on the possible role of TNF-alpha polymorphisms in association with Alzheimer’s disease. Brain Res. Rev. 2009, 61, 60–68. [Google Scholar] [CrossRef]
- Infante, J.; Llorca, J.; Berciano, J.; Combarros, O. No synergistic effect between –850 tumor necrosis factor-alpha promoter polymorphism and apolipoprotein E epsilon 4 allele in Alzheimer’s disease. Neurosci. Lett. 2002, 328, 71–73. [Google Scholar] [CrossRef]
- Li, Y.; Liu, L.; Kang, J.; Sheng, J.G.; Barger, S.W.; Mrak, R.E.; Griffin, W.S. Neuronal-glial interactions mediated by interleukin-1 enhance neuronal acetylcholinesterase activity and mRNA expression. J. Neurosci. 2000, 20, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Griffin, W.S.; Mrak, R.E. Interleukin-1 in the genesis and progression of and risk for development of neuronal degeneration in Alzheimer’s disease. J. Leukoc. Biol. 2002, 72, 233–238. [Google Scholar] [PubMed]
- Li, X.Q.; Zhang, J.W.; Zhang, Z.X.; Chen, D.; Qu, Q.M. Interleukin-1 gene cluster polymorphisms and risk of Alzheimer’s disease in Chinese Han population. J. Neural. Transm. 2004, 111, 1183–1190. [Google Scholar] [CrossRef]
- Qin, X.; Peng, Q.; Zeng, Z.; Chen, Z.; Lin, L.; Deng, Y.; Huang, X.; Xu, J.; Wu, H.; Huang, S.; et al. Interleukin-1A -889C/T polymorphism and risk of Alzheimer’s disease: A meta-analysis based on 32 case-control studies. J. Neurol. 2012, 259, 1519–1529. [Google Scholar] [CrossRef]
- Serretti, A.; Olgiati, P.; Politis, A.; Malitas, P.; Albani, D.; Dusi, S.; Polito, L.; De Mauro, S.; Zisaki, A.; Piperi, C.; et al. Lack of association between interleukin-1 alpha rs1800587 polymorphism and Alzheimer’s disease in two Independent European samples. J. Alzheimers Dis. 2009, 16, 181–187. [Google Scholar] [CrossRef]
- Yildiz, S.H.; Erdogan, M.O.; Artan, S.; Solak, M.; Yaman, M.; Ozbabalik, B.D.; Terzi, E.S. Association of Alzheimer’s Disease with APOE and IL-1α Gene Polymorphisms. Am. J. Alzheimers Dis. Other Demen. 2015, 30, 756–761. [Google Scholar] [CrossRef]
- Erta, M.; Quintana, A.; Hidalgo, J. Interleukin-6, a major cytokine in the central nervous system. Int. J. Biol. Sci. 2012, 8, 1254–1266. [Google Scholar] [CrossRef]
- Hampel, H.; Haslinger, A.; Scheloske, M.; Padberg, F.; Fischer, P.; Unger, J.; Teipel, S.J.; Neumann, M.; Rosenberg, C.; Oshida, R.; et al. Pattern of interleukin-6 receptor complex immunoreactivity between cortical regions of rapid autopsy normal and Alzheimer’s disease brain. Eur. Arch. Psychiatry Clin. Neurosci. 2005, 255, 269–278. [Google Scholar] [CrossRef]
- Strauss, S.; Bauer, J.; Ganter, U.; Jonas, U.; Berger, M.; Volk, B. Detection of interleukin-6 and alpha 2-macroglobulin immunoreactivity in cortex and hippocampus of Alzheimer’s disease patients. Lab. Investig. 1992, 66, 223–230. [Google Scholar]
- Sun, Y.X.; Minthon, L.; Wallmark, A.; Warkentin, S.; Blennow, K.; Janciauskiene, S. Inflammatory markers in matched plasma and cerebrospinal fluid from patients with Alzheimer’s disease. Dement. Geriatr. Cogn Disord. 2003, 16, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.S.P.; Liu, C.S.; Rau, A.; Lanctôt, K.L.; Köhler, C.A.; Pakosh, M.; Carvalho, A.F.; Herrmann, N. Peripheral inflammatory markers in Alzheimer’s disease: A systematic review and meta-analysis of 175 studies. J. Neurol. Neurosurg. Psychiatry 2017, 88, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Fontalba, A.; Gutierrez, O.; Llorca, J.; Mateo, I.; Vazquez-Higuera, J.L.; Berciano, J.; Fernández-Luna, J.L.; Combarros, O. Gene-gene interaction between CARD8 and interleukin-6 reduces Alzheimer’s disease risk. J. Neurol. 2009, 256, 1184–1186. [Google Scholar] [CrossRef] [PubMed]
- Flex, A.; Giovannini, S.; Biscetti, F.; Liperoti, R.; Spalletta, G.; Straface, G.; Landi, F.; Angelini, F.; Caltagirone, C.; Ghirlanda, G.; et al. Effect of proinflammatory gene polymorphisms on the risk of Alzheimer’s disease. Neurodegener. Dis. 2014, 13, 230–236. [Google Scholar] [CrossRef]
- Hua, Y.; Guo, X.; Huang, Q.; Kong, Y.; Lu, X. Association between interleukin-6 -174G/C polymorphism and the risk of Alzheimer’s disease: A meta-analysis. Int. J. Neurosci. 2013, 123, 626–635. [Google Scholar] [CrossRef]
- Capurso, C.; Solfrizzi, V.; Colacicco, A.M.; D’Introno, A.; Frisardi, V.; Imbimbo, B.P.; Lorusso, M.; Vendemiale, G.; Denitto, M.; Santamato, A.; et al. Interleukin 6-174 G/C promoter and variable number of tandem repeats (VNTR) gene polymorphisms in sporadic Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 34, 177–182. [Google Scholar] [CrossRef]
- Shao, W.; Peng, D.; Wang, X. Genetics of Alzheimer’s disease: From pathogenesis to clinical usage. J. Clin. Neurosci. 2017, 45, 1–8. [Google Scholar] [CrossRef]
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34, 939–944. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Blessed, G.; Tomlinson, B.E.; Roth, M. The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Br. J. Psychiatry 1968, 114, 797–811. [Google Scholar] [CrossRef]
- Kato, T.; Honda, M.; Kuwata, S.; Juji, T.; Kunugi, H.; Nanko, S.; Fukuda, M.; Honda, Y. Novel polymorphism in the promoter region of the tumor necrosis factor alpha gene: No association with narcolepsy. Am. J. Med. Genet. 1999, 88, 301–304. [Google Scholar] [CrossRef]
- Gnjec, A.; D’Costa, K.J.; Laws, S.M.; Hedley, R.; Balakrishnan, K.; Taddei, K.; Martins, G.; Paton, A.; Verdile, G.; Gandy, S.E.; et al. Association of alleles carried at TNFA -850 and BAT1 -22 with Alzheimer’s disease. J. Neuroinflamm. 2008, 5, 36. [Google Scholar] [CrossRef] [PubMed]
- Ensembl Genome Browser 98. Available online: http://www.ensembl.org/Homo_sapiens/Variation/Population?db=core;r=7:22726526-22727526;v=rs1800795;vdb=variation;vf=415970384 (accessed on 20 May 2019).
- Roses, A.D. Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu. Rev. Med. 1996, 47, 387–400. [Google Scholar] [CrossRef] [PubMed]
- Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.; George-Hyslop, P.H.; Pericak-Vance, M.A.; Joo, S.H.; Rosi, B.L.; Gusella, J.F.; Crapper-MacLachlan, D.R.; Alberts, M.J.; et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 1993, 43, 1467–1472. [Google Scholar] [CrossRef]
- Corder, E.H.; Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C.; Small, G.W.; Roses, A.D.; Haines, J.L.; Pericak-Vance, M.A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993, 261, 921–923. [Google Scholar] [CrossRef]
- Neu, S.C.; Pa, J.; Kukull, W.; Beekly, D.; Kuzma, A.; Gangadharan, P.; Wang, L.S.; Romero, K.; Arneric, S.P.; Redolfi, A.; et al. Apolipoprotein E Genotype and Sex Risk Factors for Alzheimer Disease: A Meta-analysis. JAMA Neurol. 2017, 74, 1178–1189. [Google Scholar] [CrossRef]
- Panza, F.; Solfrizzi, V.; Torres, F.; Mastroianni, F.; Colacicco, A.M.; Basile, A.M.; Capurso, C.; D’Introno, A.; Del Parigi, A.; Capurso, A. Apolipoprotein E in Southern Italy: Protective effect of epsilon 2 allele in early- and late-onset sporadic Alzheimer’s disease. Neurosci. Lett. 2000, 292, 79–82. [Google Scholar] [CrossRef]
- Chen, J.; Shu, H.; Wang, Z.; Liu, D.; Shi, Y.; Xu, L.; Zhang, Z. Protective effect of APOE epsilon 2 on intrinsic functional connectivity of the entorhinal cortex is associated with better episodic memory in elderly individuals with risk factors for Alzheimer’s disease. Oncotarget 2016, 7, 58789–58801. [Google Scholar] [CrossRef]
- Terreni, L.; Fogliarino, S.; Quadri, P.; Ruggieri, R.M.; Piccoli, F.; Tettamanti, M.; Lucca, U.; Forloni, G. Tumor necrosis factor alpha polymorphism C-850T is not associated with Alzheimer’s disease and vascular dementia in an Italian population. Neurosci. Lett. 2003, 344, 135–137. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, L.; Meng, Q.; Gao, Q. Association Between Interleukin-1A, Interleukin-1B, and Bridging integrator 1 Polymorphisms and Alzheimer’s Disease: A standard and Cumulative Meta-analysis. Mol. Neurobiol. 2017, 54, 736–747. [Google Scholar] [CrossRef]
- Kuo, Y.M.; Liao, P.C.; Lin, C.; Wu, C.W.; Huang, H.M.; Lin, C.C.; Chuo, L.J. Lack of association between interleukin-1alpha polymorphism and Alzheimer disease or vascular dementia. Alzheimer Dis. Assoc. Disord. 2003, 17, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Fidani, L.; Goulas, A.; Mirtsou, V.; Petersen, R.C.; Tangalos, E.; Crook, R.; Hardy, J. Interleukin-1A polymorphism is not associated with late onset Alzheimer’s disease. Neurosci. Lett. 2002, 323, 81–83. [Google Scholar] [CrossRef]
- Green, E.K.; Harris, J.M.; Lemmon, H.; Lambert, J.C.; Chartier-Harlin, M.C.; St Clair, D.; Mann, D.M.; Iwatsubo, T.; Lendon, C.L. Are interleukin-1 gene polymorphisms risk factors or disease modifiers in AD? Neurology 2002, 58, 1566–1568. [Google Scholar] [CrossRef] [PubMed]
- Rebeck, G.W. Confirmation of the genetic association of interleukin-1A with early onset sporadic Alzheimer’s disease. Neurosci. Lett. 2000, 293, 75–77. [Google Scholar] [CrossRef]
- Shawkatová, I.; Javor, J.; Párnická, Z.; Vrazda, L.; Novák, M.; Buc, M. No association between cytokine gene polymorphism and risk of Alzheimer’s disease in Slovaks. Acta Neurobiol. Exp. 2010, 70, 303–307. [Google Scholar]
- Licastro, F.; Grimaldi, L.M.; Bonafè, M.; Martina, C.; Olivieri, F.; Cavallone, L.; Giovanietti, S.; Masliah, E.; Franceschi, C. Interleukin-6 gene alleles affect the risk of Alzheimer’s disease and levels of the cytokine in blood and brain. Neurobiol. Aging 2003, 24, 921–926. [Google Scholar] [CrossRef]
- Nishimura, M.; Sakamoto, T.; Kaji, R.; Kawakami, H. Influence of polymorphisms in the genes for cytokines and glutathione S-transferase omega on sporadic Alzheimer’s disease. Neurosci. Lett. 2004, 368, 140–143. [Google Scholar] [CrossRef]
- Licastro, F.; Porcellini, E.; Caruso, C.; Lio, D.; Corder, E.H. Genetic risk profiles for Alzheimer’s disease: Integration of APOE genotype and variants that up-regulate inflammation. Neurobiol. Aging 2007, 28, 1637–1643. [Google Scholar] [CrossRef]
- Gilsanz, P.; Quesenberry, C.P., Jr.; Mayeda, E.R.; Glymour, M.M.; Farias, S.T.; Whitmer, R.A. Stressors in Midlife and Risk of Dementia: The Role of Race and Education. Alzheimer Dis. Assoc. Disord. 2019, 33, 200–205. [Google Scholar] [CrossRef]
- Kivipelto, M.; Mangialasche, F.; Ngandu, T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat. Rev. Neurol. 2018, 14, 653–666. [Google Scholar] [CrossRef]
- Gonzales, M.M.; Tarumi, T.; Eagan, D.E.; Tanaka, H.; Vaghasia, M.; Haley, A.P. Indirect effects of elevated body mass index on memory performance through altered cerebral metabolite concentrations. Psychosom. Med. 2012, 74, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Kharabian Masouleh, S.; Arélin, K.; Horstmann, A.; Lampe, L.; Kipping, J.A.; Luck, T.; Riedel-Heller, S.G.; Schroeter, M.L.; Stumvoll, M.; Villringer, A.; et al. Higher body mass index in older adults is associated with lower gray matter volume: Implications for memory performance. Neurobiol. Aging 2016, 40, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kivimäki, M.; Luukkonen, R.; Batty, G.D.; Ferrie, J.E.; Pentti, J.; Nyberg, S.T.; Shipley, M.J.; Alfredsson, L.; Fransson, E.I.; Goldberg, M.; et al. Body mass index and risk of dementia: Analysis of individual-level data from 1.3 million individuals. Alzheimers Dement. 2018, 14, 601–609. [Google Scholar] [CrossRef] [PubMed]
Characteristic | AD (n = 107) | HC (n = 110) | p |
---|---|---|---|
Age, mean (SD), years | 73.77 (7.3) | 73.03 (7.5) | 0.462 |
Gender, n (%) | |||
Male | 35 (32.7) | 37 (33.6) | 0.885 |
Female | 72 (67.3) | 73 (66.4) | |
APOEε4+, n (%) | 51 (48.6) | 29 (26.6) | 0.001 |
MMSE, median (IQR), score | 19 (15–27) | 28 (28–29.25) | <0.001 |
Education, median (IQR), years | 12 (8–15) | 14 (11–16) | 0.004 |
BMI, median (IQR), kg/m2 | 25.45 (23.18–28.93) | 27.36 (24.29–30.9) | 0.009 |
Family history of dementia, n (%) | 36 (33.6) | 16 (14.5) | 0.001 |
APOE | AD (n = 105) | HC (n = 109) | p |
---|---|---|---|
Genotype, n (%) | |||
2/2 | 1 (1.0) | 2 (1.8) | 0.005 |
2/3 | 7 (6.7) | 15 (13.8) | |
3/3 | 46 (43.8) | 63 (57.8) | |
3/4 | 44 (41.9) | 25 (22.9) | |
4/4 | 4 (3.8) | 0 (0) | |
2/4 | 3 (2.9) | 4 (3.7) | |
Alleles, n (%) | |||
2 | 12 (5.7) | 23 (10.6) | |
3 | 143 (68.1) | 166 (76.1) | 0.001 |
4 | 55 (26.2) | 29 (13.3) |
SNP | Genotype/Alleles | AD | HC | p |
---|---|---|---|---|
TNFα –850 | n = 98 | n = 106 | ||
Genotype, n (%) | ||||
CC | 81 (82.7) | 91 (85.8) | 0.522 | |
CT | 16 (16.3) | 15 (14.2) | ||
TT | 1 (1.0) | 0 (0.0) | ||
CT + TT | 17 (17.3) | 15 (14.2) | 0.531 | |
Alleles, n (%) | ||||
C | 178 (90.8) | 197 (92.9) | 0.471 * | |
T | 18 (9.2) | 15 (7.1) | ||
ILA –889 | n = 107 | n = 109 | ||
Genotype, n (%) | ||||
CC | 59 (55.1) | 56 (51.4) | 0.761 | |
CT | 41 (38.3) | 47 (43.1) | ||
TT | 7 (6.5) | 6 (5.5) | ||
CT + TT | 48 (44.9) | 53 (48.6) | 0.579 | |
Alleles, n (%) | ||||
C | 159 (74.3) | 159 (72.9) | 0.748 | |
T | 55 (25.7) | 59 (27.1) | ||
IL6 –174 | n = 107 | n = 109 | ||
Genotype, n (%) | ||||
CC | 26 (24.3) | 27 (24.8) | 0.798 | |
CG | 66 (61.7) | 70 (64.2) | ||
GG | 15 (14.0) | 12 (11.0) | ||
Alleles, n (%) | ||||
C | 118 (55.1) | 124 (56.9) | 0.716 | |
G | 96 (44.9) | 94 (43.1) |
SNP | Genotype/Alleles | EOAD | LOAD | HC | p |
---|---|---|---|---|---|
TNFα –850 | n = 17 | n = 81 | n = 106 | ||
Genotype, n (%) | |||||
CC | 16 (94.1) | 65 (80.2) | 91 (85.8) | 0.413 1 | |
CT | 1 (5.9) | 15 (18.5) | 15 (14.2) | 0.696 2 | |
TT | 0 (0.0) | 1 (1.2) | 0 (0.0) | 0.363 3 | |
Alleles, n (%) | |||||
C | 33 (97.1) | 145 (89.5) | 197 (92.9) | 0.322 | |
T | 1(2.9) | 17(10.5) | 15 (7.1) | ||
ILA –889 | n = 17 | n = 90 | n = 109 | ||
Genotype, n (%) | |||||
CC | 9 (52.9) | 50 (55.6) | 56 (51.4) | 0.418 1 | |
CT | 8 (47.1) | 33 (36.6) | 47 (43.1) | 0.608 2 | |
TT | 0 (0.0) | 7 (7.8) | 6 (5.5) | 0.588 3 | |
Alleles, n (%) | |||||
C | 26 (76.5) | 133 (73.9) | 159 (72.9) | 0.833 | |
T | 8 (23.5) | 47 (26.1) | 59 (27.1) |
SNPs | Model | β | SE | Wald Statistics | OR (95% CI) | p | |
---|---|---|---|---|---|---|---|
TNFα –850C > T | CC | Ref. | |||||
CT+TT | dominant1 | 0.23 | 0.39 | 0.37 | 1.26 (0.59–2.70) | 0.545 | |
dominant2 | 0.33 | 0.41 | 0.66 | 1.39 (0.62–3.09) | 0.417 | ||
IL1A –889C > T | CC | Ref. | |||||
CT+TT | dominant1 | −0.15 | 0.27 | 0.3 | 0.86 (0.50–1.47) | 0.585 | |
dominant2 | −0.14 | 0.28 | 0.26 | 0.87 (0.50–1.51) | 0.61 | ||
CC+CT | Ref. | ||||||
TT | recessive1 | 0.19 | 0.58 | 0.11 | 1.21 (0.39–3.73) | 0.744 | |
recessive2 | 0.21 | 0.59 | 0.13 | 1.23 (0.39–3.93) | 0.724 |
Genotypes | Frequencies | Logistic Regression | ||||
---|---|---|---|---|---|---|
HC | AD | β; SE; Wald | Odds Ratio (95% CI) | p Value | ||
n (%) | n (%) | |||||
APOEε4 | TNFα –850T | n = 105 | n = 96 | |||
0.005 | ||||||
– | – | 66 (62.9) | 39 (40.6) | Ref. | ||
– | + | 13 (12.4) | 10 (10.4) | 0.26; 0.47; 0.32 | 1.30 (0.52–3.25) | 0.572 |
+ | – | 24 (22.9) | 41 (42.7) | 1.06; 0.33; 10.55 | 2.89 (1.52–5.49) | 0.001 |
+ | + | 2 (1.9) | 6 (6.3) | 1.63; 0.84; 3.73 | 5.08 (0.98–26.40) | 0.053 |
APOEε4 | IL1A –889T | n = 109 | n = 105 | |||
0.012 | ||||||
– | – | 42 (38.53) | 30 (28.57) | Ref. | ||
– | + | 38 (34.86) | 24 (22.86) | −0.12; 0.35; 0.12 | 0.88 (0.44–1.77) | 0.728 |
+ | – | 14 (12.85) | 27 (25.71) | 0.99; 0.41; 5.96 | 2.7 (1.22–5.99) | 0.015 |
+ | + | 15 (13.76) | 24 (22.86) | 0.81; 0.41; 3.93 | 2.24 (1.01–4.97) | 0.047 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pšemeneckienė, G.; Petrikonis, K.; Rastenytė, D. Polymorphisms of Proinflammatory Cytokines in Relation to APOE Epsilon 4 and Risk of Alzheimer’s Disease in the Lithuanian Population. Medicina 2019, 55, 689. https://doi.org/10.3390/medicina55100689
Pšemeneckienė G, Petrikonis K, Rastenytė D. Polymorphisms of Proinflammatory Cytokines in Relation to APOE Epsilon 4 and Risk of Alzheimer’s Disease in the Lithuanian Population. Medicina. 2019; 55(10):689. https://doi.org/10.3390/medicina55100689
Chicago/Turabian StylePšemeneckienė, Greta, Kęstutis Petrikonis, and Daiva Rastenytė. 2019. "Polymorphisms of Proinflammatory Cytokines in Relation to APOE Epsilon 4 and Risk of Alzheimer’s Disease in the Lithuanian Population" Medicina 55, no. 10: 689. https://doi.org/10.3390/medicina55100689
APA StylePšemeneckienė, G., Petrikonis, K., & Rastenytė, D. (2019). Polymorphisms of Proinflammatory Cytokines in Relation to APOE Epsilon 4 and Risk of Alzheimer’s Disease in the Lithuanian Population. Medicina, 55(10), 689. https://doi.org/10.3390/medicina55100689