Effect of Muntingia calabura L. Stem Bark Extracts on Uric Acid Concentration and Renal Histopathology in Diabetic Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Ethanol Extract of M. calabura L.
2.2. Qualitative Phytochemical Screening
2.3. In Vivo Experiment
2.4. Histopathological Determination
2.5. Statistical Data Analysis
3. Results
3.1. Phytochemical Screening
3.2. Effect of Crude Ethanol Extract From M. calabura L. Stem Bark on Body Weight and Body Mass Index
3.3. Effect of Crude Ethanol Extract From M. calabura L. Stem Bark on Serum Uric Acid Levels in Rats
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Franco, S. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Executive summary: Heart disease and stroke statistics--2013 update: A report from the American Heart Association. Circulation 2013, 127, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Abe, M.; Mifune, M.; Oshikiri, K.; Antoku, S.; Takeuchi, Y.; Togane, M. Hyperuricemia Is Independently Associated with Coronary Heart Disease and Renal Dysfunction in Patients with Type 2 Diabetes Mellitus. PLoS ONE 2011, 6, e27817. [Google Scholar] [CrossRef] [PubMed]
- Becker, M.A.; Jolly, M. Hyperuricemia and associated diseases. Rheum. Dis. Clin. 2006, 32, 275–293. [Google Scholar] [CrossRef] [PubMed]
- Wortmann, R.L. Gout and hyperuricemia. Curr. Opin. Rheumatol. 2002, 14, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Makiko, N.; Nobuo, S.; Ichiro, H.; Kimiyoshi, I. Effects of irbesartan on serum uric acid levels in patients with hypertension and diabetes. Clin. Pharmcol. 2014, 6, 79–86. [Google Scholar] [Green Version]
- Balakumar, P.; Sharma, R.; Kalia, A.; Singh, M. Hyperuricemia: Is it a Risk Factor for Vascular Endothelial Dysfunction and Associated Cardiovascular Disorders? Curr. Hypertens. Rev. 2009, 5, 1–6. [Google Scholar] [CrossRef]
- Tanaka, T.; Milaneschi, Y.; Zhang, Y.; Becker, K.G.; Zukley, L.; Ferrucci, L. A double blind placebo controlled randomized trial of the effect of acute uric acid changes on inflammatory markers in humans: A pilot study. PLoS ONE 2017, 12, e0181100. [Google Scholar] [CrossRef]
- Sathisha, K.R.; Gopal, S.; Rangappa, K.S. Antihyperuricemic effects of thiadiazolopyrimidin-5-one analogues in oxonate treated rats. Eur. J. Pharmcol. 2016, 776, 99–105. [Google Scholar] [CrossRef]
- Christian, L.; Vincent, G.D.; Abuzar, M.; Madhavi, P.G.; Lakshmi, P. Differential regulation of cardiac function and intracardiac cytokines by rapamycin in healthy and diabetic rats. Oxid. Med. Cell Longev. 2017, 2017, 5724046. [Google Scholar]
- Mohamed, A.K.; Subhas, C.M.; Dinesha, R. Antioxidant activity: Root, leaves, fruits aqueous extract of Muntingia Calabura. J. Innov. Pharmcol. Biol. Sci. 2015, 2, 363–368. [Google Scholar]
- Balan, T.; Sani, M.H.M.; Ahmad, S.H.M.; Suppaiah, V.; Mohtarrudin, N.; Zakaria, Z.A.; Jamaludin, F. Antioxidant and anti-inflammatory activities contribute to the prophylactic effect of semi-purified fractions obtained from the crude methanol extract of Muntingia calabura leaves against gastric ulceration in rats. J. Ethnopharmacol. 2015, 164, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, S.; Khan, A. Antioxidants and diabetes. Indian J. Endocrinol. Metab. 2012, 16 (Suppl. 2), S267–S271. [Google Scholar] [PubMed]
- Saeideh, K.; Homa, M.K.; Mohammad, N. Evaluation of the protective effect of hydro-alcoholic extract of raspberry fruit on aquaporin1 expression in rats kidney treated by methotrexate. Cell J. 2017, 19, 306–313. [Google Scholar]
- Nguyen, T.D.; Thuong, P.T.; Hwang, I.H.; Hoang, T.K.H.; Nguyen, M.K.; Nguyen, H.A.; Na, M. Anti-Hyperuricemic, Anti-Inflammatory and Analgesic Effects of Siegesbeckia orientalis L. Resulting from the Fraction with High Phenolic Content. BMC Complement. Altern. Med. 2017, 17, 191. [Google Scholar] [CrossRef]
- Shah, A.J.; Salma, U.; Khan, T. Antihypertensive efficacy of extract of Hedera helix in high salt-induced hypertensive Sprague-Dawley rats. Asian Pac. J. Trop. Med. 2018, 11, 473. [Google Scholar] [CrossRef]
- Angone, S.A.; Mewono, L.; Mounanga, M.B.; Medzegue, S.; Mendene, H.F.E.; Ndong, J.M.; Siawaya, J.F.D.; Souza, A. Phytochemical screening and cytotoxicity studies of Chrysophyllum pruniforme Pierre ex Engl. barks. Pharmcol. Res. 2013, 5, 195–199. [Google Scholar] [CrossRef]
- De Araújo Gomes, L.M.; de Andrade, T.M.; Silva, J.C.; de Lima, J.T.; Quintans-Junior, L.J.; da Silva Almeida, J.R. Phytochemical screening and anti-inflammatory activity of Cnidoscolus quercifolius (Euphorbiaceae) in mice. Pharmacogn. Res. 2014, 6, 345–349. [Google Scholar]
- Kaouther, M.; Assia, H.; Malek, B.H. Phytochemical analysis and biological activities of Hertia cheirifolia L. roots extracts. Asian Pac. J. Trop. Med. 2017, 10, 1134–1139. [Google Scholar]
- Rabiu, A.; Wale, H.; Garba, K.; Sabo, A.; Hassan, Z.; Shugaba, A.; Egesie, U.; Odeh, S. Body mass index of male and female Wistar rats following administration of leptin hormone after a dietary regime. Ann. Bioanthropol. 2017, 5, 22. [Google Scholar] [CrossRef]
- Spitalnik, P.F. Histology Laboratory Manual 2016–2017; College of Physicians and Surgeons, Columbia University: New York, NY, USA, 2016; p. 110. [Google Scholar]
- Musman, M.; Audina, E.; Ratu, F.I.R.; Erlidawati, E.; Safrida, S. Assessment of Type 2 Anti-Diabetes on Bound Flavonoids of Barringtonia racemosa (L.) Spreng. Kernel in Glucose-Induced Diabetic Rats. Am. J. Pharmcol. Toxicol. 2017, 12, 48–61. [Google Scholar] [CrossRef]
- Musri, M.; Safrida, S.; Viqqi, K.; Erlidawati, E. Evaluation of antihyperglycemia property from Syzygium oleana (Magnoliopsida: Myrtaceae) pericarp. Res. J. Med. Plants 2017, 11, 100–106. [Google Scholar]
- Sharma, L.; Aditi, S.; Gupta, G.L.; Gopal, S.B. Protective effect of Ocimum sanctum Linn. leaf extract on ethanol withdrawl syndrome in Wistar rats. Asian Pac. J. Trop. Med. 2018, 11, 467–472. [Google Scholar]
- Zhang, J.; Brown, R.P.; Shaw, M.; Vaidya, V.S.; Zhou, Y.; Espandiari, P.; Sadrieh, N.; Stratmeyer, M.; Keenan, J.; Kilty, C.G.; et al. Immunolocalization of Kim-1, RPA-1, and RPA-2 in kidney of gentamicin-, mercury-, or chromium-treated rats: Relationship to renal distributions of iNOS and nitrotyrosine. Toxicol. Pathol. 2008, 36, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Mohos, V.; Pánovics, A.; Fliszár-Nyúl, E.; Schilli, G.; Hetényi, C.; Mladěnka, P.; Needs, P.W.; Kroon, P.A.; Pethő, G.; Poór, M. Inhibitory Effects of Quercetin and Its Human and Microbial Metabolites on Xanthine Oxidase Enzyme. Int. J. Mol. Sci. 2019, 20, E2681. [Google Scholar] [CrossRef]
- Nijveldt, R.J.; Nood, E.; Hoorn, D.E.C.; Boelens, P.G.; Norren, K.; Leeuwen, P.A.M. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 2001, 74, 418–425. [Google Scholar] [CrossRef]
- Li, J.; Xu, P.S.; Tan, L.H.; Zou, Z.X.; Wang, Y.K.; Long, H.P.; Zhou, G.; Li, G.; Xu, K.P.; Tan, G.S. Neolignans and serratane triterpenoids with inhibitory effects on xanthine oxidase from Palhinhaea cernua. Fitoterapia 2017, 119, 45–50. [Google Scholar] [CrossRef]
- Xu, F.; Zhao, X.; Yang, L.; Wang, X.; Zhao, J. A New Cycloartane-Type Triterpenoid Saponin Xanthine Oxidase Inhibitor from Homonoia riparia Lour. Molecules 2014, 19, 13422–13431. [Google Scholar] [CrossRef]
- Chen-Yu, C.; Chi-Chang, H.; Keng-Chang, T.; Wei-Jan, H.; Wen-Ching, H.; Yu-Chen, H.; Feng-Lin, H. Evaluation of the antihyperuricemic activity of phytochemicals from Davallia formosana by enzyme assay and hyperuricemic mice model. Evid. Based Complement. Altern. Med. 2014, 2014, 873607. [Google Scholar]
- Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat. Prod. Rep. 2009, 26, 1001. [Google Scholar] [CrossRef]
- Wu, N.; Zu, Y.; Fu, Y.; Kong, Y.; Zhao, J.; Li, X.; Li, J.; Wink, M.; Efferth, T. Antioxidant Activities and Xanthine Oxidase Inhibitory Effects of Extracts and Main Polyphenolic Compounds Obtained from Geranium sibiricumL. J. Agric. Food Chem. 2010, 58, 4737–4743. [Google Scholar] [CrossRef]
- Spanou, C.A.S.; Veskoukis, T.; Kerasioti, T. Flavonoid glycosides isolated from unique legume plant extracts as novel inhibitors of xanthine oxidase. PLoS ONE 2012, 7, e32214. [Google Scholar] [CrossRef] [PubMed]
- Strazzullo, P.; Puig, J.G. Uric acid and oxidative stress: Relative impact on cardiovascular risk. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Wieczór, R.; Wieczór, A.M.; Kulwas, A.; Rość, D. Type 2 Diabetes and Cardiovascular Factors Contrasted with Fibrinolysis Disorders in the Blood of Patients with Peripheral Arterial Disease. Medicina 2019, 55, 395. [Google Scholar] [CrossRef] [PubMed]
Treatment | Body Weight (g) | Body Mass Index (g/cm2) |
---|---|---|
NR (Normal rat) | 213 ± 6.05a | 0.44 ± 0.18a |
KN (Diabetic rat) | 169 ± 8.20d | 0.42 ± 0.02a |
KP (Allopurinol) | 188 ± 9.55c | 0.47 ± 0.02a |
EM150 | 200.5 ± 6.65b | 0.50 ± 0.01a |
EM300 | 208.25 ± 5.5ab | 0.52 ± 0.01a |
EM450 | 201.75 ± 7.13b | 0.50 ± 0.01a |
Treatment | Serum Uric Acid Levels (mg/dL) | Inhibition (%) |
---|---|---|
NR (Normal rat) | 4.675 ± 2.01b | |
KN (Diabetic rat) | 10.225 ± 1.88a | |
KP (Allopurinol) | 5.000 ± 1.29b | 51.10 |
EM150 | 7.025 ± 3.33ab | 31.29 |
EM300 | 5.125 ± 1.77b | 50.02 |
EM450 | 6.600 ± 2.54b | 35.45 |
Treatment | Dv n (%) | Ra n (%) | Rv n (%) | Ri n (%) | Rm n (%) | N n (%) |
---|---|---|---|---|---|---|
NR (Normal rat) | 1(17%) | 0(0%) | 1(17%) | 3(50%) | 2(33%) | 0(0%) |
KN (Diabetic rat) | 1(17%) | 0(0%) | 4(67%) | 3(50%) | 3(50%) | 3(50%) |
KP (Allopurinol) | 0(0%) | 0(0%) | 4(67%) | 3(50%) | 1(17%) | 2(33%) |
EM150 | 1(17%) | 0(0%) | 1(17%) | 2(33% | 1(17%) | 1(17%) |
EM300 | 0(0%) | 0(0%) | 1(17%) | 2(33%) | 1(17%) | 0(0%) |
EM450 | 0(0%) | 0(0%) | 2(33%) | 2(33%) | 2(33%) | 0(0%) |
Treatment | Number of Samples | ||
---|---|---|---|
Normal | Lesions Without Necrosis | Necrosis | |
NR (Normal rat) | 0 | 4 | 0 |
KN (Diabetic rat) | 1 | 4 | 2 |
KP (Allopurinol) | 1 | 4 | 2 |
EM150 | 1 | 3 | 0 |
EM300 | 0 | 2 | 0 |
EM450 | 0 | 2 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safrida, S.; Sabri, M. Effect of Muntingia calabura L. Stem Bark Extracts on Uric Acid Concentration and Renal Histopathology in Diabetic Rats. Medicina 2019, 55, 695. https://doi.org/10.3390/medicina55100695
Safrida S, Sabri M. Effect of Muntingia calabura L. Stem Bark Extracts on Uric Acid Concentration and Renal Histopathology in Diabetic Rats. Medicina. 2019; 55(10):695. https://doi.org/10.3390/medicina55100695
Chicago/Turabian StyleSafrida, Safrida, and Mustafa Sabri. 2019. "Effect of Muntingia calabura L. Stem Bark Extracts on Uric Acid Concentration and Renal Histopathology in Diabetic Rats" Medicina 55, no. 10: 695. https://doi.org/10.3390/medicina55100695
APA StyleSafrida, S., & Sabri, M. (2019). Effect of Muntingia calabura L. Stem Bark Extracts on Uric Acid Concentration and Renal Histopathology in Diabetic Rats. Medicina, 55(10), 695. https://doi.org/10.3390/medicina55100695