Hepatoprotective Actions of Ascorbic Acid, Alpha Lipoic Acid and Silymarin or Their Combination Against Acetaminophen-Induced Hepatotoxicity in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Materials and Chemicals
2.3. Preparation of Emulsions
2.4. In Vivo Experimental Protocol
2.5. Blood Sampling and Testing
2.6. Preparation of Perfusion Buffers and Culture Medium
2.7. Surgical Protocol and Liver Perfusion
2.8. Hepatocytes Isolation and Culturing
2.9. Cells Treatment and MTT Assay
2.10. Data Analysis
3. Results
3.1. Alteration in Serum Liver Enzyme Levels
3.2. Superoxide Dismutase and Malondialdehyde Determinations
3.3. Glutathione Serum Levels
3.4. In Vitro Cell Proliferation
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Papich, M.G. An Update on Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) in Small Animals. Veterinary Clinics of North America. Small Anim. Pract. 2008, 38, 1243–1266. [Google Scholar] [CrossRef]
- James, L.P. Acetaminophen-induced hepatotoxicity. Drug Metab. Dispos. 2003, 31, 1499–1506. [Google Scholar] [CrossRef] [PubMed]
- Elshazly, S.M.; El-Moselhy, M.A.; Barakat, W. Insights in the mechanism underlying the protective effect of α-lipoic acid against acetaminophen-hepatotoxicity. Eur. J. Pharm. 2014, 726, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, Z.; Hajizadeh, M.; Hekmatdoost, A. Dietary supplementation in patients with alcoholic liver disease: A review on current evidence. Hepatobiliary Pancreat. Dis. Int. 2016, 15, 348–360. [Google Scholar] [CrossRef]
- Majchrzak, D.; Mitter, S.; Elmadfa, I. The effect of ascorbic acid on total antioxidant activity of black and green teas. Food Chem. 2004, 88, 447–451. [Google Scholar] [CrossRef]
- Shireen, K.; Pace, R.; Mahboob, M.; Khan, A. Effects of dietary vitamin E, C and soybean oil supplementation on antioxidant enzyme activities in liver and muscles of rats. Food Chem. Toxicol. 2008, 46, 3290–3294. [Google Scholar] [CrossRef]
- Montecinos, V.; Guzmán, P.; Barra, V.; Villagrán, M.; Muñoz-Montesino, C.; Sotomayor, K.; Escobar, E.; Godoy, A.; Mardones, L.; Sotomayor, P.; et al. Vitamin C is an essential antioxidant that enhances survival of oxidatively stressed human vascular endothelial cells in the presence of a vast molar excess of glutathione. J. Biol. Chem. 2007, 282, 15506–15515. [Google Scholar] [CrossRef]
- Tolunay, O.; Celik, T.; Komur, M.; Gezgin, A.E.; Kaya, M.S.; Celik, U. A rare cause of status epilepticus; alpha lipoic acid intoxication, case report and review of the literature. Eur. J. Paediatr. Neurol. 2015, 19, 730–732. [Google Scholar] [CrossRef]
- Armağan, I.; Bayram, D.; Candan, I.A.; Yigit, A.; Çelik, E.; Armagan, H.H.; Uguz, A.C. Effects of pentoxifylline and alpha lipoic acid on methotrexate-induced damage in liver and kidney of rats. Environ. Toxicol. Pharm. 2015, 39, 1122–1131. [Google Scholar] [CrossRef]
- Chen, K.; Yan, B.; Wang, F.; Wen, F.; Xing, X.; Tang, X.; Shi, Y.; Le, G. Type 1 5′-deiodinase activity is inhibited by oxidative stress and restored by alpha-lipoic acid in HepG2 cells. Biochem. Biophys. Commun. 2016, 472, 496–501. [Google Scholar] [CrossRef]
- Sabiu, S.; Sunmonu, T.O.; Ajani, E.O.; Ajiboye, T.O. Combined administration of silymarin and vitamin C stalls acetaminophen-mediated hepatic oxidative insults in Wistar rats. Rev. Bras. Farm. 2015, 25, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Chityala, P.K.; Khouryieh, H.; Williams, K.; Conte, E. Effect of xanthan/enzyme-modified guar gum mixtures on the stability of whey protein isolate stabilized fish oil-in-water emulsions. Food Chem. 2016, 212, 332–340. [Google Scholar] [CrossRef]
- Abdulkhaleq, F.M.; Alhussainy, T.M.; Badr, M.M.; Abu Khalil, A.A.; Gammoh, O.; Ghanim, B.Y.; Qinna, N.A. Anti-oxidative stress effects of vitamin C, E and B 12, and their combination can protect the liver against acetaminophen-induced hepatotoxicity in rats. Drug Des. Dev. Ther. 2018, 12, 3525–3533. [Google Scholar] [CrossRef]
- Baky, N.A.A.; Al-rasheed, N.M.; Al-rasheed, N.M. Alpha-Lipoic Acid and Amlodipine Ameliorate Myocardial Infarction Induced by Isoproterenol in Rats. Int. J. Acad. Res. 2009, 1, 68–77. [Google Scholar]
- Zhang, W.; Hong, R.; Tian, T. Silymarin’s Protective Effects and Possible Mechanisms on Alcoholic Fatty Liver for Rats. Biomol. Ther. 2013, 21, 264–269. [Google Scholar] [CrossRef]
- Qinna, N.A.; Shubbar, M.H.; Matalka, K.Z.; Al-Jbour, N.; Ghattas, M.A.; Badwan, A.A.; Al-Jbour, N. Glucosamine Enhances Paracetamol Bioavailability by Reducing Its Metabolism. J. Pharm. Sci. 2015, 104, 257–265. [Google Scholar] [CrossRef]
- E Owumi, S.; Andrus, J.P.; A Herzenberg, L.; A Herzenberg, L. Co-administration of N-Acetylcysteine and Acetaminophen Efficiently Blocks Acetaminophen Toxicity. Drug Dev. 2015, 76, 251–258. [Google Scholar] [CrossRef]
- McGill, M.R.; Williams, C.D.; Xie, Y.; Ramachandran, A.; Jaeschke, H. Acetaminophen-induced liver injury in rats and mice: Comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity. Toxicol. Appl. Pharmacol. 2013, 264, 387–394. [Google Scholar] [CrossRef]
- Yin, H.; Cheng, L.; Holt, M.; Hail, N.; MacLaren, R.; Ju, C. Lactoferrin Protects Against Acetaminophen-Induced Liver Injury in Mice. Hepatology 2010, 51, 1007–1016. [Google Scholar] [CrossRef]
- Al Shaker, H.A.; Qinna, N.A.; Badr, M.; Al Omari, M.M.H.; Idkaidek, N.; Matalka, K.Z.; Badwan, A.A. Glucosamine modulates propranolol pharmacokinetics via intestinal permeability in rats. Eur. J. Pharm. Sci. 2017, 105, 137–143. [Google Scholar] [CrossRef]
- Shen, L.; Hillebrand, A.; Wang, D.Q.-H.; Liu, M. Isolation and Primary Culture of Rat Hepatic Cells. J. Vis. Exp. 2012, 64, e3917. [Google Scholar] [CrossRef]
- Bu, S.Y.; Mashek, D.G. Hepatic long-chain acyl-CoA synthetase 5 mediates fatty acid channeling between anabolic and catabolic pathways. J. Lipid Res. 2010, 51, 3270–3280. [Google Scholar] [CrossRef] [Green Version]
- Park, S. The Effects of High Concentrations of Vitamin C on Cancer Cells. Nutrients 2013, 5, 3496–3505. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Briedé, J.J.; Jennen, D.G.; Van Summeren, A.; Saritas-Brauers, K.; Schaart, G.; Kleinjans, J.C.; De Kok, T.M. Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain. Toxicol. Lett. 2015, 234, 139–150. [Google Scholar] [CrossRef]
- Gomez Perez, M.; Fourcade, L.; Mateescu, M.A.; Paquin, J. Neutral Red versus MTT assay of cell viability in the presence of copper compounds. Anal. Biochem. 2017, 535, 43–46. [Google Scholar] [CrossRef]
- Ni, H.-M.; McGill, M.R.; Chao, X.; Du, K.; Williams, J.A.; Xie, Y.; Jaeschke, H.; Ding, W.-X. Removal of Acetaminophen-Protein Adducts by Autophagy Protects Against Acetaminophen-Induced Liver Injury in Mice. J. Hepatol. 2016, 65, 354–362. [Google Scholar] [CrossRef]
- Ghanem, C.I.; Pérez, M.J.; Manautou, J.E.; Mottino, A.D.; María, J.P. Acetaminophen from liver to brain: New insights into drug pharmacological action and toxicity. Pharm. Res. 2016, 109, 119–131. [Google Scholar] [CrossRef] [Green Version]
- Korkmaz, A.; Ahbab, M.A.; Kolankaya, D.; Barlas, N. Influence of vitamin C on bisphenol A, nonylphenol and octylphenol induced oxidative damages in liver of male rats. Food Chem. Toxicol. 2010, 48, 2865–2871. [Google Scholar] [CrossRef]
- Arguello, G.; Balboa, E.; Arrese, M.; Zanlungo, S. Recent insights on the role of cholesterol in non-alcoholic fatty liver disease. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2015, 1852, 1765–1778. [Google Scholar] [CrossRef] [Green Version]
- Duan, L.; Davis, J.S.; Woolbright, B.L.; Du, K.; Cahkraborty, M.; Weemhoff, J.; Jaeschke, H.; Bourdi, M.; Chakraborty, M. Differential Susceptibility to Acetaminophen-Induced Liver Injury in Sub-Strains of C57BL/6 Mice: 6N versus 6J. Food Chem. Toxicol. 2016, 98, 107–118. [Google Scholar] [CrossRef]
- Qinna, N.A.; Ghanim, B.Y. Chemical induction of hepatic apoptosis in rodents. J. Appl. Toxicol. 2018, 39, 178–190. [Google Scholar] [CrossRef]
- Zoheir, K.M.; Amara, A.A.; Ahmad, S.; Mohammad, M.A.; Ashour, A.E.; Harisa, G.I.; Abd-Allah, A.R. Study of the therapeutic effects of Lactobacillus and α-lipoic acid against dimethylnitrosamine-induced liver fibrosis in rats. J. Genet. Eng. Biotechnol. 2014, 12, 135–142. [Google Scholar] [CrossRef]
- Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhang, S.; Cheng, H.; Lv, H.; Cheng, G.; Ci, X. Nrf2-mediated liver protection by esculentoside A against acetaminophen toxicity through the AMPK/Akt/GSK3β pathway. Radic. Boil. Med. 2016, 101, 401–412. [Google Scholar] [CrossRef]
- De Oliveira, D.R.; Schaffer, L.F.; Busanello, A.; Barbosa, C.P.; Peroza, L.R.; de Freitas, C.M.; Krum, B.N.; Bressan, G.N.; Boligon, A.; Athayde, M.L.; et al. Silymarin has antioxidant potential and changes the activity of Na+/K+-ATPase and monoamine oxidase in vitro. Ind. Crop. Prod. 2015, 70, 347–355. [Google Scholar] [CrossRef]
- Singh, B.K.; Tripathi, M.; Chaudhari, B.P.; Pandey, P.K.; Kakkar, P. Natural Terpenes Prevent Mitochondrial Dysfunction, Oxidative Stress and Release of Apoptotic Proteins during Nimesulide-Hepatotoxicity in Rats. PLoS ONE 2012, 7, e34200. [Google Scholar] [CrossRef]
- Fraschini, F.; DeMartini, G.; Esposti, D. Pharmacology of Silymarin. Clin. Drug Investig. 2002, 22, 51–65. [Google Scholar] [CrossRef]
- Abenavoli, L.; Izzo, A.A.; Milić, N.; Cicala, C.; Santini, A.; Capasso, R. Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother. Res. 2018, 32, 2202–2213. [Google Scholar] [CrossRef]
Treatment (n = 8) | ALT a | AST a | ALP a | Albumin b | Cholesterol c |
---|---|---|---|---|---|
Control | 55 ± 6.5 ** | 190 ± 29 ** | 150 ± 58 | 4.6 ± 0.4 # | 90 ± 4.2 # |
APAP | 3100 ± 703 ** | 2570 ± 241 ** | 449 ± 82 $ | 3.2 ± 0.2 | 110 ± 8.3 |
Ascorbic acid + APAP | 1278 ± 259 | 1008 ± 221 | 263 ± 32 | 2.5 ± 0.2 | 82 ± 8.5 |
ALA + APAP | 807 ± 204 | 787 ± 191 | 195 ± 19 | 2.9 ± 0.1 | 102 ± 8.6 |
SIL + APAP | 890 ± 126 | 916 ± 165 | 304 ± 57 | 3.1 ± 0.1 | 112 ± 9.3 |
Combination + APAP | 609 ± 230 | 617 ± 173 | 148 ± 24 | 2.6 ± 0.1 | 88 ± 4.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulrazzaq, A.M.; Badr, M.; Gammoh, O.; Abu Khalil, A.A.; Ghanim, B.Y.; Alhussainy, T.M.; Qinna, N.A. Hepatoprotective Actions of Ascorbic Acid, Alpha Lipoic Acid and Silymarin or Their Combination Against Acetaminophen-Induced Hepatotoxicity in Rats. Medicina 2019, 55, 181. https://doi.org/10.3390/medicina55050181
Abdulrazzaq AM, Badr M, Gammoh O, Abu Khalil AA, Ghanim BY, Alhussainy TM, Qinna NA. Hepatoprotective Actions of Ascorbic Acid, Alpha Lipoic Acid and Silymarin or Their Combination Against Acetaminophen-Induced Hepatotoxicity in Rats. Medicina. 2019; 55(5):181. https://doi.org/10.3390/medicina55050181
Chicago/Turabian StyleAbdulrazzaq, Anmar M., Mujtaba Badr, Omar Gammoh, Asad A. Abu Khalil, Bayan Y. Ghanim, Tawfiq M. Alhussainy, and Nidal A. Qinna. 2019. "Hepatoprotective Actions of Ascorbic Acid, Alpha Lipoic Acid and Silymarin or Their Combination Against Acetaminophen-Induced Hepatotoxicity in Rats" Medicina 55, no. 5: 181. https://doi.org/10.3390/medicina55050181
APA StyleAbdulrazzaq, A. M., Badr, M., Gammoh, O., Abu Khalil, A. A., Ghanim, B. Y., Alhussainy, T. M., & Qinna, N. A. (2019). Hepatoprotective Actions of Ascorbic Acid, Alpha Lipoic Acid and Silymarin or Their Combination Against Acetaminophen-Induced Hepatotoxicity in Rats. Medicina, 55(5), 181. https://doi.org/10.3390/medicina55050181