The Effects of Hyperbaric Oxygen at Different Pressures on Oxidative Stress and Antioxidant Status in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. HBO2 and NBO2 Administration
Group-I | Control group, no oxygen was given. |
Group-II | Three sessions of NBO2 were administered at six-hour intervals within 24 h. |
Group-III | Three sessions of HBO2 at 2 ATA were administered at six-hour intervals within 24 h. |
Group-IV | Three sessions of HBO2 at 2.4 ATA were administered at six-hour intervals within 24 h. |
Group-V | Total of 15 sessions of NBO2 were administered in 10 days as; 3 times a day on the first day (6-h intervals), two times a day on the second, third and fourth day (10-h intervals), and once a day for the last six days (22-h intervals). |
Group-VI | Total of 15 sessions of HBO2 at 2 ATA were administered in 10 days as scheduled for Group V. |
Group-VII | Total of 15 sessions HBO2 were administered as scheduled for Group V, but at 2.4 ATA. |
2.3. Preparation of Plasma and Erythrocyte Lysates
2.4. Biochemical Assays
2.4.1. Measurement of Malondialdehyde (MDA) Levels
2.4.2. Measurement of Cu–Zn-Superoxide Dismutase (Cu–Zn-SOD)
2.4.3. Measurement of Erythrocyte Glutathione (GSH) Levels
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sjöberg, F.; Singer, M. The medical use of oxygen: A time for critical reappraisal. J. Intern. Med. 2013, 274, 505–528. [Google Scholar] [CrossRef]
- Mathieu, D.; Marroni, A.; Kot, J. Tenth European Consensus Conference on Hyperbaric Medicine: Recommendations for accepted and non-accepted clinical indications and practice of hyperbaric oxygen treatment. Diving Hyperb. Med. 2017, 47, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Undersea and Hyperbaric Medical Society (UHMS). Hyperbaric Oxygen Therapy Indications, 13th ed.; Part I. Indications; Weaver, L.K., Ed.; Best Publishing Company: North Palm Beach, FL, USA, 2014; pp. 1–241. ISBN 978-1930536-73-9. [Google Scholar]
- Maltepe, E.; Saugstad, O.D. Oxygen in health and disease: Regulation of oxygen homeostasis-clinical implications. Pediatr. Res. 2009, 65, 261–268. [Google Scholar] [CrossRef]
- Gerschman, R.; Gilbert, D.; Nye, S.W.; Dwyer, P.; Fenn, W.O. Oxygen poisoning and X-irradiation: A mechanism in common. Science 1954, 119, 623. [Google Scholar] [CrossRef]
- Donald, K.W. Oxygen poisoning in man; signs and symptoms of oxygen poisoning. Br. Med. J. 1947, 1, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Gröger, M.; Oter, S.; Simkova, V.; Bolten, M.; Koch, A.; Warninghoff, V.; Georgieff, M.; Muth, C.M.; Speit, G.; Radermacher, P. DNA damage after long-term repetitive hyperbaric oxygen exposure. J. Appl. Physiol. 2009, 106, 311–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothfuss, A.; Dennog, C.; Speit, G. Adaptive protection against the induction of oxidative DNA damage after hyperbaric oxygen treatment. Carcinogenesis 1998, 19, 1913–1917. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, D.; Chance, B.; Cadenas, E.; Boveris, A. The relation of free radical production to hyperoxia. Annu. Rev. Physiol. 1986, 48, 703–719. [Google Scholar] [CrossRef]
- Benedetti, S.; Lamorgese, A.; Piersantelli, M.; Pagliarani, S.; Benvenuti, F.; Canestrari, F. Oxidative stress and antioxidant status in patients undergoing prolonged exposure to hyperbaric oxygen. Clin. Biochem. 2004, 37, 312–317. [Google Scholar] [CrossRef]
- Oter, S.; Korkmaz, A.; Topal, T.; Ozcan, O.; Sadir, S.; Ozler, M.; Ogur, R.; Bilgic, H. Correlation between hyperbaric oxygen exposure pressures and oxidative parameters in rat lung, brain, and erythrocytes. Clin. Biochem. 2005, 38, 706–711. [Google Scholar] [CrossRef] [PubMed]
- Piantadosi, C.A.; Tatro, L.G. Regional H2O2 concentration in rat brain after hyperoxic convulsions. J. Appl. Physiol. 1990, 69, 1761–1766. [Google Scholar] [CrossRef] [PubMed]
- Mihaljević, Z.; Matić, A.; Stupin, A.; Rašić, L.; Jukić, I.; Drenjančević, I. Acute hyperbaric oxygenation, contrary to intermittent hyperbaric oxygenation, adversely affects vasorelaxation in healthy sprague-dawley rats due to increased oxidative stress. Oxid. Med. Cell. Longev. 2018, 2018, 7406027. [Google Scholar] [CrossRef]
- Dennog, C.; Hartmann, A.; Frey, G.; Speit, G. Detection of DNA damage after hyperbaric oxygen (HBO) therapy. Mutagenesis 1996, 11, 605–609. [Google Scholar] [CrossRef] [PubMed]
- Dennog, C.; Radermacher, P.; Barnett, Y.A.; Speit, G. Antioxidant status in humans after exposure to hyperbaric oxygen. Mutat. Res. 1999, 428, 83–89. [Google Scholar] [CrossRef]
- Gröger, M.; Radermacher, P.; Speit, G.; Muth, C.M. Genotoxicity of hyperbaric oxygen and its prevention: What hyperbaric physicians should know. Diving Hyperb. Med. 2008, 38, 200–205. [Google Scholar] [PubMed]
- Thom, S.R. Oxidative stress is fundamental to hyperbaric oxygen therapy. J. Appl. Physiol. 2009, 106, 988–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bert, P. La Pression Barométrique, Recherches de Physiologie Expérimentale; Masson: Paris, France, 1878; p. 1168. [Google Scholar]
- Smith, J.L. The influence of pathological conditions on active absorption of oxygen by the lungs. J. Physiol. 1898, 22, 307–318. [Google Scholar] [CrossRef]
- Terry, T.L. Retrolental fibroplasias. Adv. Pediatr. 1948, 3, 55–67. [Google Scholar] [CrossRef]
- Godman, C.A.; Joshi, R.; Giardina, C.; Perdrizet, G.; Hightower, L.E. Hyperbaric oxygen treatment induces antioxidant gene expression. Ann. N. Y. Acad. Sci. 2010, 1197, 178–183. [Google Scholar] [CrossRef]
- Cimino, F.; Balestra, C.; Germonpré, P.; De Bels, D.; Tillmans, F.; Saija, A.; Speciale, A.; Virgili, F. Pulsed high oxygen induces a hypoxic-like response in human umbilical endothelial cells and in humans. J. Appl. Physiol. 2012, 113, 1684–1689. [Google Scholar] [CrossRef] [Green Version]
- Balestra, C.; Germonpré, P.; Poortmans, J.R.; Marroni, A. Serum erythropoietin levels in healthy humans after a short period of normobaric and hyperbaric oxygen breathing: The “normobaric oxygen paradox”. J. Appl. Physiol. 2006, 100, 512–518. [Google Scholar] [CrossRef]
- Eken, A.; Aydin, A.; Sayal, A.; Ustündağ, A.; Duydu, Y.; Dündar, K. The effects of hyperbaric oxygen treatment on oxidative stress and SCE frequencies in humans. Clin. Biochem. 2005, 38, 1133–1137. [Google Scholar] [CrossRef]
- Simsek, K.; Ay, H.; Topal, T.; Ozler, M.; Uysal, B.; Ucar, E.; Acikel, C.H.; Yesilyurt, O.; Korkmaz, A.; Oter, S.; et al. Long-term exposure to repetitive hyperbaric oxygen results in cumulative oxidative stress in rat lung tissue. Inhal. Toxicol. 2011, 23, 166–172. [Google Scholar] [CrossRef]
- Hadanny, A.; Maliar, A.; Fishlev, G.; Bechor, Y.; Bergan, J.; Friedman, M.; Avni, I.; Efrati, S. Reversibility of retinal ischemia due to central retinal artery occlusion by hyperbaric oxygen. Clin. Ophthalmol. 2016, 11, 115–125. [Google Scholar] [CrossRef]
- Weaver, L.K.; Hopkins, R.O.; Chan, K.J.; Churchill, S.; Elliott, C.G.; Clemmer, T.P.; Orme, J.F., Jr.; Thomas, F.O.; Morris, A.H. Hyperbaric oxygen for acute carbon monoxide poisoning. N. Engl. J. Med. 2002, 347, 1057–1067. [Google Scholar] [CrossRef]
- Brown, D.R.; Davis, N.L.; Lepawsky, M.; Cunningham, J.; Kortbeek, J. A multicenter review of the treatment of major truncal necrotizing infections with and without hyperbaric oxygen therapy. Am. J. Surg. 1994, 167, 485–489. [Google Scholar] [CrossRef]
- Strauss, M.B. The effect of hyperbaric oxygen in crush injuries and skeletal muscle-compartment syndromes. Undersea Hyperb. Med. 2012, 39, 847–855. [Google Scholar]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Methods Enzymol. 1978, 52, 302–310. [Google Scholar]
- Sun, Y.; Oberley, L.W.; Li, Y. A simple method for clinical assay of superoxide dismutase. Clin. Chem. 1988, 34, 497–500. [Google Scholar]
- Beutler, E.; Duran, O.; Kelly, M.B. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 1963, 61, 882–888. [Google Scholar]
- Fairbanks, V.; Klee, G.G. Biochemical aspects of hemotology. In Textbook of Clinical Chemistry; Tietz Nobert, W., Ed.; WB Saunders: Philadelphia, PA, USA, 1986; pp. 1532–1534. [Google Scholar]
- Gesell, L.B. Hyperbaric Oxygen Therapy Indications, 12th ed.; The Hyperbaric Oxygen Therapy Committee Report; Undersea and Hyperbaric Medical Society: Durham, NC, USA, 2008. [Google Scholar]
- Clark, J.M.; Lambertsen, C.J. Rate of development of pulmonary oxygen toxicity in man during oxygen breathing at 2.0 ATA. J. Appl. Physiol. 1971, 30, 739–752. [Google Scholar] [CrossRef] [PubMed]
- Bardin, H.; Lambertsen, C.J. A Quantitative Method for Calculating Pulmonary Toxicity; Use of the ‘unit pulmonary toxicity dose’ (UPTD), Institute for Environmental Medicine Report; University of Pennsylvania: Philadelphia, PA, USA, 1970. [Google Scholar]
- Clark, J.M.; Thom, S.R. Oxygen under pressure. In Physiology and Medicine of Diving; Brubakk, A.O., Neuman, T.S., Eds.; Sounders: Edinburgh, UK; London, UK; New York, NY, USA, 2003; pp. 358–418. [Google Scholar]
- Clark, J.M.; Lambertsen, C.J.; Gelfand, R.; Troxel, A.B. Optimization of oxygen tolerance extension in rats by intermittent exposure. J. Appl. Physiol. 2006, 100, 869–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, R.S.; Roberts, T.K.; McGregor, N.R.; Dunstan, R.H.; Butt, H.L. The role of erythrocytes in the inactivation of free radicals. Med. Hypotheses 1998, 50, 363–367. [Google Scholar] [CrossRef]
- Morris, G.; Anderson, G.; Dean, O.; Berk, M.; Galecki, P.; Martin-Subero, M.; Maes, M. The glutathione system: A new drug target in neuroimmune disorders. Mol. Neurobiol. 2014, 50, 1059–1084. [Google Scholar] [CrossRef]
- De Bels, D.; Theunissen, S.; Devriendt, J.; Germonpré, P.; Lafere, P.; Valsamis, J.; Snoeck, T.; Meeus, P.; Balestra, C. The normobaric oxygen paradox: Does it increase haemoglobin? Diving Hyperb. Med. 2012, 42, 67–71. [Google Scholar]
Groups (n = 8) | Plasma MDA (nmol/mL) | Plasma SOD (U/mL) | Erythrocyte GSH (mg/g Hb) |
---|---|---|---|
I | 3.54 ± 0.39 | 36.31 ± 2.60 | 3.74 ± 0.19 |
II | 4.15 ± 0.27 | 37.53 ± 2.26 | 3.69 ± 0.22 |
III | 4.69 ± 0.38 * | 28.55 ± 2.35 * | 3.43 ± 0.32 |
IV | 4.95 ± 0.44 * | 27.18 ± 2.22 * | 3.23 ± 0.24 * |
V | 3.71 ± 0.38 | 34.71 ± 2.35 | 3.71 ± 0.18 |
VI | 3.65 ± 0.34 | 33.93 ± 3.33 | 3.71 ± 0.29 |
VII | 3.31 ± 0.35 | 38.40 ± 4.26 | 4.09 ± 0.42 |
Groups Compared * | MDA | SOD | GSH |
---|---|---|---|
II–V | 0.036 ** | 0.040 ** | 0.674 |
III–VI | 0.0009 ** | 0.006 ** | 0.115 |
IV–VII | 0.0008 ** | 0.0008 ** | 0.002 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Körpınar, Ş.; Uzun, H. The Effects of Hyperbaric Oxygen at Different Pressures on Oxidative Stress and Antioxidant Status in Rats. Medicina 2019, 55, 205. https://doi.org/10.3390/medicina55050205
Körpınar Ş, Uzun H. The Effects of Hyperbaric Oxygen at Different Pressures on Oxidative Stress and Antioxidant Status in Rats. Medicina. 2019; 55(5):205. https://doi.org/10.3390/medicina55050205
Chicago/Turabian StyleKörpınar, Şefika, and Hafize Uzun. 2019. "The Effects of Hyperbaric Oxygen at Different Pressures on Oxidative Stress and Antioxidant Status in Rats" Medicina 55, no. 5: 205. https://doi.org/10.3390/medicina55050205
APA StyleKörpınar, Ş., & Uzun, H. (2019). The Effects of Hyperbaric Oxygen at Different Pressures on Oxidative Stress and Antioxidant Status in Rats. Medicina, 55(5), 205. https://doi.org/10.3390/medicina55050205