Malignant Pleural Effusion and Its Current Management: A Review
Abstract
:1. Introduction
2. Pleural effusion
2.1. Anatomy and Physiology of Pleural Effusion
2.2. Pathophysiology of Pleural Effusion
2.3. Pathophysiology of MPE
3. Cancer and Malignant Pleural Effusion
3.1. Lung Cancer
3.2. Breast Cancer
3.3. Ovarian Cancer
3.4. Lymphoma
3.5. Malignant Mesothelioma of the Pleura
4. Diagnostic Procedure
4.1. Chest X-ray
4.2. Ultrasound of the Chest
4.3. Computed Tomography (CT)
4.4. PET Imaging
4.5. Thoracentesis
4.6. Biopsy
4.6.1. Blind Closed Pleural Biopsy
4.6.2. Image-Guided Biopsy
4.7. Cytology
4.8. Biomarkers
4.9. MT and Video-Assisted Thoracoscopic Surgery (VATS)
4.10. MPE Diagnostic Algorithm
5. Management of MPE
5.1. Therapeutic Thoracentesis
5.2. Pleurodesis
5.2.1. Pleurodesis with Talc
5.2.2. Mechanical Pleurodesis
5.3. Tunneled Pleural Catheter (TPC)
5.4. Recommendations for the Treatment of MPE in Specific Cases
5.4.1. Patients with Suspected or Known MPE
5.4.2. Patients with Suspected or Known MPE Who Are Asymptomatic
5.4.3. Use of Large-Volume Thoracentesis and Pleural Manometry in Patients with MPE
5.4.4. Use of TPC or Chemical Pleurodesis as the First Collection in Patients with Symptomatic MPE with Expandable Lungs without Prior Therapy
5.4.5. Use of Pleurodesis with Talc Via Thoracoscopy (Poudrage) or Chest Tube (Talc Slurry) in Patients with Symptomatic MPE
5.4.6. Use of TPC or Chemical Pleurodesis in Patients with Symptomatic MPE with Non-Expandable Lungs with Failed Pleurodesis or Localized Elimination
5.4.7. Treatment of Patients with TCP Infection
5.5. Other Approaches
5.5.1. Pleurectomy
5.5.2. Shunt
5.5.3. Intrapleural Application of Fibrinolytic
5.5.4. Antitumor Therapy
6. Prognosis
7. Discussion
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Psallidas, I.; Kalomenidis, I.; Porcel, J.M.; Robinson, B.W.; Stathopoulos, G.T. Malignant pleural effusion: From bench to bedside. Eur. Respir. Rev. 2016, 25, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Bibby, A.C.; Dorn, P.; Psallidas, I.; Porcel, J.M.; Janssen, J.; Froudarakis, M.; Subotic, D.; Astoul, P.; Licht, P.; Schmid, R.; et al. ERS/EACTS statement on the management of malignant pleural effusions. Eur. J. Cardiothorac. Surg. 2019, 55, 116–132. [Google Scholar] [CrossRef] [PubMed]
- Sterman, D.H.; DeCamp, M.M.; Feller-Kopman, D.J.; Maskell, N.A.; Wahidi, M.M.; Lee, Y.C.G.; Gould, M.K.; Rahman, N.M.; Lewis, S.Z.; Henry, T.; et al. Management of Malignant Pleural Effusions. An Official ATS/STS/STR Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2018, 198, 839–849. [Google Scholar]
- Penz, E.; Watt, K.N.; Hergott, C.A.; Rahman, N.M.; Psallidas, I. Management of malignant pleural effusion: Challenges and solutions. Cancer Manag. Res. 2017, 9, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Beaudoin, S.; Gonzalez, A.V. Evaluation of the patient with pleural effusion. Can. Med Assoc. J. 2018, 190, E291–E295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charalampidis, C.; Youroukou, A.; Lazaridis, G.; Baka, S.; Karavasilis, V.; Kioumis, I.; Pitsiou, G.; Papaiwannou, A.; Tsakiridis, K.; Katsikogiannis, N.; et al. Physiology of the pleural space. J. Thorac. Dis. 2015, 7, 33–37. [Google Scholar]
- Mutsaers, S.E. The mesothelial cell. Int. J. Biochem. Cell Biol. 2004, 36, 9–16. [Google Scholar] [CrossRef]
- Ingelfinger, J.R.; Feller-Kopman, D.; Light, R. Pleural disease. N. Engl. J. Med. 2018, 378, 740–751. [Google Scholar]
- Light, R.W. The Light Criteria: The Beginning and Why they are Useful 40 Years Later. Clin. Chest Med. 2013, 34, 21–26. [Google Scholar] [CrossRef]
- Sahn, S.A.; Huggins, J.T.; San Jose, E.; Alvarez-Dobano, J.M.; Valdes, L. The Art of Pleural Fluid Analysis. Clin. Pulm. Med. 2013, 20, 77–96. [Google Scholar] [CrossRef]
- Nemanič, T.; Rozman, A.; Adamič, K.; Marc Malovrh, M. Biomarkers in routine diagnosis of pleural effusions. Zdr. Vestn. 2018, 87, 15–21. [Google Scholar] [CrossRef]
- Rufino, R.; Marques, B.L.; Azambuja, R.L.; Mafort, T.; Pugliese, J.G.; Costa, C.H. Da Pleural Cholesterol to the Diagnosis of Exudative Effusion. Open Respir. Med. J. 2014, 8, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Samanta, S.; Sharma, A.; Das, B.; Mallick, A.K.; Kumar, A. Significance of Total Protein, Albumin, Globulin, Serum Effusion Albumin Gradient and LDH in the Differential Diagnosis of Pleural Effusion Secondary to Tuberculosis and Cancer. J. Clin. Diagn. Res. 2016, 10, BC14–BC18. [Google Scholar] [CrossRef] [PubMed]
- Porcel, J.M. Identifying transudates misclassified by Light’s criteria. Curr. Opin. Pulm. Med. 2013, 19, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Herrera Lara, S.; Fernández-Fabrellas, E.; Juan Samper, G.; Marco Buades, J.; Andreu Lapiedra, R.; Pinilla Moreno, A.; Morales Suárez-Varela, M. Predicting Malignant and Paramalignant Pleural Effusions by Combining Clinical, Radiological and Pleural Fluid Analytical Parameters. Lung 2017, 195, 653–660. [Google Scholar] [CrossRef]
- Yalcin, N.G.; Choong, C.K.C.; Eizenberg, N. Anatomy and Pathophysiology of the Pleura and Pleural Space. Thorac. Surg. Clin. 2013, 23, 1–10. [Google Scholar] [CrossRef]
- Stathopoulos, G.T.; Kalomenidis, I. Malignant pleural effusion: Tumor-host interactions unleashed. Am. J. Respir. Crit. Care Med. 2012, 186, 487–492. [Google Scholar] [CrossRef]
- Agalioti, T.; Giannou, A.D.; Krontira, A.C.; Kanellakis, N.I.; Kati, D.; Vreka, M.; Pepe, M.; Spella, M.; Lilis, I.; Zazara, D.E.; et al. Mutant KRAS promotes malignant pleural effusion formation. Nat. Commun. 2017, 8, 15205. [Google Scholar] [CrossRef]
- Chen, Y.; Mathy, N.W.; Lu, H. The role of VEGF in the diagnosis and treatment of Malignant pleural effusion in patients with non-small cell lung cancer (review). Mol. Med. Rep. 2018, 17, 8019–8030. [Google Scholar] [CrossRef]
- Giannou, A.D.; Marazioti, A.; Spella, M.; Kanellakis, N.I.; Apostolopoulou, H.; Psallidas, I.; Prijovich, Z.M.; Vreka, M.; Zazara, D.E.; Lilis, I.; et al. Mast cells mediate malignant pleural effusion formation. J. Clin. Investig. 2015, 125, 2317–2334. [Google Scholar] [CrossRef]
- Lepus, C.M.; Vivero, M. Updates in Effusion Cytology. Surg. Pathol. Clin. 2018, 11, 523–544. [Google Scholar] [CrossRef] [PubMed]
- Spella, M.; Giannou, A.D.; Stathopoulos, G.T. Switching off malignant pleural effusion formation-fantasy or future? J. Thorac. Dis. 2015, 7, 1009–1020. [Google Scholar] [PubMed]
- Čufer, T.; Ovčariček, T.K.I. Pomen mutacije gena receptorja za epidermalni rastni dejavnik za zdravljenje nedrobnoceličnega raka pljuč. Onkologija 2011, 15, 83–87. [Google Scholar]
- Porcel, J.M.; Solé, C.; Salud, A.; Bielsa, S. Prognosis of Cancer with Synchronous or Metachronous Malignant Pleural Effusion. Lung 2017, 195, 775–779. [Google Scholar] [CrossRef] [PubMed]
- Clive, A.O.; Kahan, B.C.; Hooper, C.E.; Bhatnagar, R.; Morley, A.J.; Zahan-Evans, N.; Bintcliffe, O.J.; Boshuizen, R.C.; Fysh, E.T.H.; Tobin, C.L.; et al. Predicting survival in malignant pleural effusion: Development and validation of the LENT prognostic score. Thorax 2014, 69, 1098–1104. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zappa, C.; Mousa, S.A. Non-small cell lung cancer: Current treatment and future advances. Transl. Lung Cancer Res. 2016, 5, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Inamura, K. Lung Cancer: Understanding Its Molecular Pathology and the 2015 WHO Classification. Front. Oncol. 2017, 7, 193. [Google Scholar] [CrossRef] [Green Version]
- Network, C.G.A.R. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014, 511, 543–550. [Google Scholar]
- Porcel, J.M.; Bielsa, S.; Civit, C.; Gasol, A.; Salud, A.; Light, R.W. Clinical features and survival of lung cancer patients with pleural effusions. Respirology 2015, 20, 654–659. [Google Scholar] [CrossRef]
- Porcel, J.M. Malignant pleural effusions because of lung cancer. Curr. Opin. Pulm. Med. 2016, 22, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Cattapan, K.; Tanomkiat, W.; Geater, S.L.; Kiranantawat, N. Procedure-related tumour seeding in lung cancer with malignant pleural effusion: Radiological features and outcomes. J. Med. Imaging Radiat. Oncol. 2018, 62, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.; Miller, J.A.; Feller-Kopman, D.; Ettinger, D.; Sidransky, D.; Maleki, Z. Molecular profiling of malignant pleural effusion in metastatic non-small-cell lung carcinoma the effect of preanalytical factors. Ann. Am. Thorac. Soc. 2017, 14, 1169–1176. [Google Scholar] [PubMed]
- Ryu, J.S.; Lim, J.H.; Lee, J.M.; Kim, W.C.; Lee, K.H.; Memon, A.; Lee, S.K.; Yi, B.R.; Kim, H.J.; Hwang, S.S. Minimal Pleural Effusion in Small Cell Lung Cancer: Proportion, Mechanisms, and Prognostic Effect. Radiology 2015, 278, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Bleyer, A.; Welch, H.G. Effect of Three Decades of Screening Mammography on Breast-Cancer Incidence. N. Engl. J. Med. 2012, 367, 1998–2005. [Google Scholar] [CrossRef] [PubMed]
- Zadnik, V.; Primic Zakelj, M.; Lokar, K.; Jarm, K.; Ivanus, U.; Zagar, T. Cancer burden in Slovenia with the time trends analysis. Radiol. Oncol. 2017, 51, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Tong, C.W.S.; Wu, M.; Cho, W.C.S.; To, K.K.W. Recent Advances in the Treatment of Breast Cancer. Front. Oncol. 2018, 8, 227. [Google Scholar] [CrossRef] [Green Version]
- Francis, I.M.; Preeta, A.; George, S.S.; Jaragh, M.; Jassar, A.; Kapila, K. Metastatic Breast Carcinoma in Pleural Fluid: Correlation of Receptor and HER2 status with the primary carcinoma—A Pilot study. Diagn. Cytopathol. 2016, 44, 980–986. [Google Scholar] [CrossRef]
- Chikarmane, S.A.; Tirumani, S.H.; Howard, S.A.; Jagannathan, J.P.; Dipiro, P.J. Metastatic patterns of breast cancer subtypes: What radiologists should know in the era of personalized cancer medicine. Clin. Radiol. 2015, 70, 1–10. [Google Scholar] [CrossRef]
- Shinohara, T.; Yamada, H.; Fujimori, Y.; Yamagishi, K. Malignant pleural effusion in breast cancer 12 years after mastectomy that was successfully treated with endocrine therapy. Am. J. Case Rep. 2013, 14, 184–187. [Google Scholar] [Green Version]
- Soni, A.; Ren, Z.; Hameed, O.; Chanda, D.; Morgan, C.J.; Siegal, G.P.; Wei, S. From Breast Cancer Subtypes Predispose the Site of Distant Metastases. Am. J. Clin. Pathol. 2015, 143, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Schrijver, W.A.M.E.; Peeters, T.; Ter Hoeve, N.; van Diest, P.J.; Moelans, C.B.; Schuurman, K.; van Rossum, A.; Zwart, W.; Consortium, D.D.B. Loss of steroid hormone receptors is common in malignant pleural and peritoneal effusions of breast cancer patients treated with endocrine therapy. Oncotarget 2017, 8, 55550–55561. [Google Scholar] [CrossRef] [PubMed]
- Tavares, G.; Camillo, N.D.; Berto, M.D.; Prolla, J.C.; Beatrice, I.; Roehe, A.V.; Brackmann, R.L.; Reiter, K.C.; Bica, C.G. Impact of Her-2 Overexpression on Survival of Patients with Metastatic Breast Cancer. Asian Pac. J. Cancer Prev. 2017, 18, 2673–2678. [Google Scholar]
- Torre, L.A.; Trabert, B.; DeSantis, C.E.; Miller, K.D.; Samimi, G.; Runowicz, C.D.; Gaudet, M.M.; Jemal, A.; Siegel, R.L. Ovarian cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Zobec Logar, B.H.; Smrkolj, Š. Smernice za Obravnavo Bolnic z Rakom Jajčnikov, Jajcevodov in s Primarnim Peritonealnim Seroznim Rakom; Logar, H.B.Z., Smrkolj, Š., Merlo, S., Eds.; Onkološki inštitut Ljubljana: Ljubljana, Slovenia, 2016. [Google Scholar]
- Ataseven, B.; Chiva, L.M.; Harter, P.; Gonzalez-Martin, A.; du Bois, A. FIGO stage IV epithelial ovarian, fallopian tube and peritoneal cancer revisited. Gynecol. Oncol. 2016, 142, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Porcel, J.M.; Diaz, J.P.; Chi, D.S. Clinical implications of pleural effusions in ovarian cancer. Respirology 2012, 17, 1060–1067. [Google Scholar] [CrossRef] [PubMed]
- Zamboni, M.M.; da Silva, C.T.; Baretta, R.; Cunha, E.T.; Cardoso, G.P. Important prognostic factors for survival in patients with malignant pleural effusion. BMC Pulm. Med. 2015, 15, 1–7. [Google Scholar] [CrossRef] [Green Version]
- O’Leary, B.D.; Treacy, T.; Geoghegan, T.; Walsh, T.A.; Boyd, W.D.; Brennan, D.J. Incidental Thoracic Findings on Routine Computed Tomography in Epithelial Ovarian Cancer. Int. J. Gynecol. Cancer 2018, 28, 1073–1076. [Google Scholar] [CrossRef]
- Novakovi#x107;, B.J.; Jagodic, M.; Štrbac, D.; Zaletel, L.Z. Smernice za Obravnavo Bolnikov z Malignimi Limfomi; Novaković, B.J., Ed.; Onkološki inštitut Ljubljana: Ljubljana, Slovenia, 2019. [Google Scholar]
- Wang, Z.; Wu, Y.B.; Xu, L.L.; Jin, M.L.; Diao, X.L.; Wang, X.J.; Tong, Z.H.; Shi, H.Z. Diagnostic value of medical thoracoscopy in malignant pleural effusion induced by non-Hodgkin’s lymphoma. Oncol. Lett. 2017, 14, 8092–8099. [Google Scholar] [CrossRef]
- Sun, M.L.; Shang, B.; Gao, J.H.; Jiang, S.J. Rare case of primary pleural lymphoma presenting with pleural effusion. Thorac. Cancer 2016, 7, 145–150. [Google Scholar] [CrossRef]
- Choy, C.F.; Lee, S. Pleural lymphoma. J. Bronchol. Interv. Pulmonol. 2016, 23, 146–148. [Google Scholar] [CrossRef] [PubMed]
- Narkhede, M.; Arora, S.; Ujjani, C. Primary effusion lymphoma: Current perspectives. Onco Targets Ther. 2018, 11, 3747–3754. [Google Scholar] [CrossRef] [PubMed]
- Alexandrakis, M.G.; Passam, F.H.; Kyriakou, D.S.; Bouros, D. Pleural effusions in hematologic malignancies. Chest 2004, 125, 1546–1555. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Huang, H.Y.; Lin, K.P.; Medeiros, L.J.; Chen, T.Y.; Chang, K.C. Malignant effusions correlate with poorer prognosis in patients with diffuse large B-cell Lymphoma. Am. J. Clin. Pathol. 2015, 143, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Skok, K.; Skornšek, N.; Hočevar, M.; Skok, P. Hipertermična intraperitonealna kemoterapija. Slov. Med. J. 2019, 88, 21–38. [Google Scholar] [CrossRef]
- Van Zandwijk, N.; Clarke, C.; Henderson, D.; Musk, A.W.; Fong, K.; Nowak, A.; Loneragan, R.; McCaughan, B.; Boyer, M.; Feigen, M.; et al. Guidelines for the diagnosis and treatment of malignant pleural mesothelioma. J. Thorac. Dis. 2013, 5, E254. [Google Scholar] [PubMed]
- Mazurek, J.M.; Syamlal, G.; Wood, J.M.; Hendricks, S.A.; Weston, A. Malignant Mesothelioma Mortality — United States, 1999–2015. Morb. Mortal. Wkly. Rep. 2017, 66, 214–218. [Google Scholar] [CrossRef]
- Alì, G.; Bruno, R.; Fontanini, G. The pathological and molecular diagnosis of malignant pleural mesothelioma: A literature review. J. Thorac. Dis. 2018, 10, 276–284. [Google Scholar] [CrossRef]
- Arnold, D.T.; Maskell, N.A. Biomarkers in mesothelioma. Ann. Clin. Biochem. 2018, 55, 49–58. [Google Scholar] [CrossRef]
- Cheah, H.M.; Lansley, S.M.; Varano della Vergiliana, J.F.; Tan, A.L.; Thomas, R.; Leong, S.L.; Creaney, J.; Lee, Y.C.G. Malignant pleural fluid from mesothelioma has potent biological activities. Respirology 2016, 22, 192–199. [Google Scholar] [CrossRef] [Green Version]
- Bibby, A.C.; Tsim, S.; Kanellakis, N.; Ball, H.; Talbot, D.C.; Blyth, K.G.; Maskell, N.A.; Psallidas, I. Malignant pleural mesothelioma: An update on investigation, diagnosis and treatment. Eur. Respir. Rev. 2016, 25, 472–486. [Google Scholar] [CrossRef] [PubMed]
- Kindler, H.L.; Ismaila, N.; Armato, S.G.; Bueno, R.; Hesdorffer, M.; Jahan, T.; Jones, C.M.; Miettinen, M.; Pass, H.; Rimner, A.; et al. Treatment of Malignant Pleural Mesothelioma: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2018, 36, 1343–1373. [Google Scholar] [CrossRef] [PubMed]
- Geltner, C.; Errhalt, P. Malignant pleural effusion: Pathogenesis, diagnosis, and management. Memo Mag. Eur. Med. Oncol. 2015, 8, 235–241. [Google Scholar] [CrossRef]
- Desai, N.R.; Lee, H.J. Diagnosis and management of malignant pleural effusions: State of the art in 2017. J. Thorac. Dis. 2017, 9, S1111–S1122. [Google Scholar] [CrossRef] [PubMed]
- Porcel, J.M.; Pardina, M.; Bielsa, S.; González, A.; Light, R.W. Derivation and Validation of a CT Scan Scoring System for Discriminating Malignant From Benign Pleural Effusions. Chest 2015, 147, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Swiderek, J.; Morcos, S.; Donthireddy, V.; Surapaneni, R.; Jackson-Thompson, V.; Schultz, L.; Kini, S.; Kvale, P. Prospective Study To Determine the Volume of Pleural Fluid Required To Diagnose Malignancy. Chest 2010, 137, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Porcel, J.M. Biomarkers in the diagnosis of pleural diseases: A 2018 update. Ther. Adv. Respir. Dis. 2018, 12, 1753466618808660. [Google Scholar] [CrossRef]
- Agrawal, D.K. Diagnostic value of tumor antigens in malignant pleural effusion: A meta-analysis. Transl. Res. 2015, 166, 432–439. [Google Scholar]
- Koegelenberg, C.F.N.; Shaw, J.A.; Irusen, E.M.; Lee, Y.C.G. Contemporary best practice in the management of malignant pleural effusion. Ther. Adv. Respir. Dis. 2018, 12, 1–13. [Google Scholar] [CrossRef]
- Hojski, A.; Leitgeb, M.; Crnjac, A. Release of growth factors after mechanical and chemical pleurodesis for treatment of malignant pleural effusion: A randomized control study. Radiol. Oncol. 2015, 49, 386–394. [Google Scholar] [CrossRef]
- Crnjac, A. Kirurške možnosti zdravljenja malignih plevralnih izlivov karcinoma dojke. Zdr. Vestn. 2010, 79, 272–279. [Google Scholar]
- Li, P.; Graver, A.; Hosseini, S.; Mulpuru, S.; Cake, L.; Kachuik, L.; Zhang, T.; Amjadi, K. Clinical predictors of successful and earlier pleurodesis with a tunnelled pleural catheter in malignant pleural effusion: A cohort study. CMAJ Open 2018, 6, E235–E240. [Google Scholar] [CrossRef] [PubMed]
- Donnenberg, A.D.; Luketich, J.D.; Dhupar, R.; Donnenberg, V.S. Treatment of malignant pleural effusions: The case for localized immunotherapy. J. Immunother. Cancer 2019, 7, 110. [Google Scholar] [CrossRef] [PubMed]
- Amin, Z.; Iskandar, S.D. Sibli Prognostic Factors of 30-day Survival of Patients with Malignant Pleural Effusion. Indian J. Palliat Care 2017, 23, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Brims, F.J.H.; Meniawy, T.M.; Duffus, I.; de Fonseka, D.; Segal, A.; Creaney, J.; Maskell, N.; Lake, R.A.; de Klerk, N.; Nowak, A.K. A Novel Clinical Prediction Model for Prognosis in Malignant Pleural Mesothelioma Using Decision Tree Analysis. J. Thorac. Oncol. 2016, 11, 573–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crnjac, A.; Sok, M.; Kamenik, M. Impact of pleural effusion pH on the efficacy of thoracoscopic mechanical pleurodesis in patients with breast carcinoma. Eur. J. Cardio Thorac. Surg. 2004, 26, 432–436. [Google Scholar] [CrossRef] [Green Version]
- Goossens, N.; Nakagawa, S.; Sun, X.; Hoshida, Y. Cancer biomarker discovery and validation. Transl. Cancer Res. 2015, 4, 256–269. [Google Scholar]
- Sun, H.H.; Vaynblat, A.; Pass, H.I. Diagnosis and prognosis-review of biomarkers for mesothelioma. Ann. Transl. Med. 2017, 5, 244. [Google Scholar] [CrossRef]
- Ahmadzada, T.; Reid, G.; Kao, S. Biomarkers in malignant pleural mesothelioma: Current status and future directions. J. Thorac. Dis. 2018, 10, S1003–S1007. [Google Scholar] [CrossRef]
- Alley, E.W.; Lopez, J.; Santoro, A.; Morosky, A.; Saraf, S.; Piperdi, B.; van Brummelen, E. Clinical safety and activity of pembrolizumab in patients with malignant pleural mesothelioma (KEYNOTE-028): Preliminary results from a non-randomised, open-label, phase 1b trial. Lancet Oncol. 2017, 18, 623–630. [Google Scholar] [CrossRef]
- Hansen, A.R.; Massard, C.; Ott, P.A.; Haas, N.B.; Lopez, J.S.; Ejadi, S.; Wallmark, J.M.; Keam, B.; Delord, J.P.; Aggarwal, R.; et al. Pembrolizumab for advanced prostate adenocarcinoma: Findings of the KEYNOTE-028 study. Ann. Oncol. 2018, 29, 1807–1813. [Google Scholar] [CrossRef] [PubMed]
- Havelock, T.; Teoh, R.; Laws, D.; Gleeson, F. Pleural procedures and thoracic ultrasound: British Thoracic Society pleural disease guideline 2010. Thorax 2010, 65, i61–i76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ault, M.J.; Rosen, B.T.; Scher, J.; Feinglass, J.; Barsuk, J.H. Thoracentesis outcomes: A 12-year experience. Thorax 2015, 70, 127–132. [Google Scholar] [CrossRef] [PubMed]
Criteria | Exudate | Transudate |
---|---|---|
Standard Light criteria | ||
PE prot./plasma prot. | >0.5 | <0.5 |
PE LDH/plasma LDH | >0.6 or >2/3 | <0.6 or <2/3 |
Additional criteria | ||
Gross appearance | Cloudy | Clear |
Specific weight | >1.020 | <1.020 |
Protein | >2.9 g/dL | <2.5 g/dL |
CHL in pleural fluid | >50 mg/dL | <50 mg/dL |
CT radiodensity | 4–33 HU | 2–15 HU |
SAAG | ≤1.2 gm/dL | >1.2 gm/dL |
Simple overview of specific states | ||
Empyema | Pus, putrid odor, positive culture. | |
Malignancy | Positive cytology. | |
Tuberculous pleurisy | Positive AFB stain, culture. | |
Esophageal rupture | High salivary isoenzyme form of amylase, low pH (e.g., 6), ingested food fragments. | |
Fungal-related effusions | Positive fungal stain, culture. | |
Chylothorax | Triglycerides > 110 mg/dL, chylomicrons by lipoprotein electrophoresis. | |
Cholesterol effusion | Cholesterol > 200 mg/dL with a cholesterol to triglyceride ratio > 1, cholesterol crystals under polarizing light. | |
Hemothorax | Ratio of pleural fluid to blood hematocrit > 0.5. | |
Urinothorax | Pleural fluid creatinine to serum ratio always >1, but diagnostic if >1.7. | |
Peritoneal dialysis | Protein < 0.5 mg/dL and pleural fluid to serum glucose ratio > 1 in peritoneal dialysis patient. | |
Extravascular migration or misplacement of a central venous catheter | Pleural fluid to serum glucose ratio > 1, pleural fluid gross appearance mirrors infusate (e.g., milky white if lipids infused). | |
Rheumatoid pleurisy | Cytologic evidence of elongated macrophages and distinctive multinucleated giant cells (tadpole cells) in a background of amorphous debris. | |
Glycinothorax | Measurable glycine after bladder irrigation with glycine-containing solutions. | |
Cerebrospinal fluid leakage into pleural space | Detection of beta-2 transferrin. | |
Parasite-related effusions | Detection of parasites. |
Malignancy | General Median Survival in Days (95% CI) | Histologic Subtype | Prevalence (%) |
---|---|---|---|
Lung cancer | 74 (60 to 92) | - | - |
Lung adenocarcinoma | 29–37 | ||
Small cell carcinoma of the lung | 6–9 | ||
Breast cancer | 192 (133 to 271) | - | - |
Breast adenocarcinoma | 8–40 | ||
Gynecological malignancy | 230 (97 to 279) | - | - |
Ovarian adenocarcinoma | 18–20 | ||
Gastrointestinal cancer | 61 (44 to 73) | - | - |
Gastric adenocarcinoma | 2 | ||
Colorectal | 1 | ||
Renal cell carcinoma | 1 | ||
Pancreatic adenocarcinoma | 3 | ||
Hematological malignancy | 218 (160 to 484) | - | - |
Lymphoma | 3–16 | ||
Skin cancer | 43 (23 to 72) | - | - |
Melanoma | 5–6 | ||
Mesothelioma | 339 (267 to 422) | - | - |
Malignant mesothelioma | 1–6 | ||
Sarcoma | 44 (19 to 76) | Sarcoma | 1–3 |
No. | PICO | Recommendations |
---|---|---|
1 | In patients with known or suspected MPE, should thoracic US be used to guide pleural interventions? | Yes. |
2 | In patients with known or suspected MPE who are asymptomatic, should pleural drainage be performed? | Pleural drainage is not recommended to be performed in this type of patients. |
3 | Should the management of patients with symptomatic known or suspected MPE be guided by large-volume thoracentesis and pleural manometry? | Yes, large-volume thoracentesis is recommended, as the contribution of thoracentesis prevails over potential complications. |
4 | In patients with symptomatic MPE with known or suspected expandable lung and no prior definitive therapy, should IPCs or chemical pleurodesis be used as a first-line definitive pleural intervention for management of dyspnea? | Yes, IPC or chemical pleurodesis are used as a first-line definitive pleural intervention for the management of dyspnea. |
5 | In patients with symptomatic MPE undergoing talc pleurodesis, should talc poudrage or talc slurry be used? | Yes, there was no evidence of differences in efficacy between them. |
6 | In patients with symptomatic MPE with non-expandable lung, failed pleurodesis, or loculated effusion, should an IPC or chemical pleurodesis be used? | The method of choice is the use of IPC as it is associated with a shorter hospitalization period. |
7 | In patients with IPC-associated infection (cellulitis, tunnel infection, or pleural infection), should medical therapy alone or medical therapy and catheter removal be used? | Firstly, causative treatment without removing IPC. In case there is no improvement (e.g., persistent infection), the removal of IPC is recommended. |
Variable | Score | ||
---|---|---|---|
L | LDH level in pleural fluid (IU/L) | ||
<1500 | 0 | ||
>1500 | 1 | ||
E | ECOG PS | ||
0 | 0 | ||
1 | 1 | ||
2 | 2 | ||
3 to 4 | 3 | ||
N | NLR | ||
<9 | 0 | ||
>9 | 1 | ||
T | Tumor type | ||
Lowest risk tumor types | Mesothelioma Hematological malignancy | 0 | |
Moderate risk tumor types | Breast cancer Gynecological cancer Renal cell carcinoma | 1 | |
Highest risk tumor types | Lung cancer Other tumors types | 2 | |
Risk categories | Total score | ||
Low risk | 0 to 1 | ||
Moderate risk | 2 to 4 | ||
High risk | 5 to 7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skok, K.; Hladnik, G.; Grm, A.; Crnjac, A. Malignant Pleural Effusion and Its Current Management: A Review. Medicina 2019, 55, 490. https://doi.org/10.3390/medicina55080490
Skok K, Hladnik G, Grm A, Crnjac A. Malignant Pleural Effusion and Its Current Management: A Review. Medicina. 2019; 55(8):490. https://doi.org/10.3390/medicina55080490
Chicago/Turabian StyleSkok, Kristijan, Gaja Hladnik, Anja Grm, and Anton Crnjac. 2019. "Malignant Pleural Effusion and Its Current Management: A Review" Medicina 55, no. 8: 490. https://doi.org/10.3390/medicina55080490
APA StyleSkok, K., Hladnik, G., Grm, A., & Crnjac, A. (2019). Malignant Pleural Effusion and Its Current Management: A Review. Medicina, 55(8), 490. https://doi.org/10.3390/medicina55080490