Component-Resolved Diagnosis in Food Allergies
Abstract
:1. Introduction
Aims and Methods
2. Cow’s Milk
3. Hen Eggs
- (a)
- patients are sensitized to hen eggs, but are clinically tolerant, with a positive serum IgE test to hen egg whites, usually in a low to midrange value and negative or low serum IgE test to ovomucoid;
- (b)
- patients who tolerate cooked eggs or processed foods containing cooked eggs. These patients have IgE tests similar to the previous cases. Serum sIgE to ovalbumin might be elevated in a similar range than the test to egg white;
- (c)
- patients presenting allergy to all forms of egg (raw and baked). Serum sIgE to egg white are often in the middle to upper range in these patients. Moreover, serum sIgE to ovomucoid and ovalbumin can be elevated.
4. Soy
5. Peanuts, Tree Nuts, and Seeds
6. Wheat
7. Plant Foods (Fruits and Vegetables)
8. Fish and Shellfish
8.1. Fish
8.2. Shellfish (Crustaceans and Molluscs)
9. Mammalian Meat
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Canonica, G.W.; Ansotegui, I.J.; Pawankar, R.; Schmid-Grendelmeier, P.; van Hage, M.; Baena-Cagnani, C.E.; Melioli, G.; Nunes, C.; Passalacqua, G.; Rosenwasser, L.; et al. WAO-ARIA-GA2LEN consensus document on molecular-based allergy diagnostics. World Allergy Organ. J. 2013, 6, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Matricardi, P.M.; Kleine-Tebbe, J.; Hoffmann, H.J.; Valenta, R.; Hilger, C.; Hofmaier, S.; Aalberse, R.C.; Agache, I.; Asero, R.; Ballmer-Weber, B.; et al. EAACI molecular allergology user’s guide. Pediatr. Allergy Immunol. 2016, 27, 1–250. [Google Scholar] [CrossRef] [PubMed]
- Borres, M.P.; Maruyama, N.; Sato, S.; Ebisawa, M. Recent advances in component resolved diagnosis in food allergy. Allergol. Int. 2016, 65, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Treudler, R.; Simon, J.C. Overview of component resolved diagnostics. Curr. Allergy Asthma Rep. 2013, 13, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Muraro, A.; Werfel, T.; Hoffmann-Sommergruber, K.; Roberts, G.; Beyer, K.; Bindslev-Jensen, C.; Cardona, V.; Dubois, A.; duToit, G.; Eigenmann, P.; et al. EAACI food allergy and anaphylaxis guidelines: Diagnosis and management of food allergy. Allergy 2014, 69, 1008–1025. [Google Scholar] [CrossRef] [PubMed]
- Marsh, D.G.; Goodfriend, L.; King, T.P.; Lowenstein, H.; Platts-Mills, T.A. Allergen nomenclature. Bull. World Health Organ. 1986, 64, 767–774. [Google Scholar] [PubMed]
- Allergen Nomenclature. Available online: http://allergen.org/index.php (accessed on 31 July 2019).
- Fiocchi, A.; Dahdah, L.; Albarini, M.; Martelli, A. Cow’s Milk Allergy in Children and Adults. Chem. Immunol. Allergy 2015, 101, 114–123. [Google Scholar] [PubMed]
- Martorell-Aragonés, A.; Echeverría-Zudaire, L.; Alonso-Lebrero, E.; Boné-Calvo, J.; Martín-Muñoz, M.F.; Nevot-Falcó, S.; Piquer-Gibert, M.; Valdesoiro-Navarrete, L. Food allergy committee of SEICAP. Position document: IgE- mediated cow’s milk allergy. Allergol. Immunopathol. 2015, 43, 507–526. [Google Scholar] [CrossRef]
- Restani, P.; Ballabio, C.; Tripodi, S.; Fiocchi, A. Meat allergy. Curr. Opin. Allergy Clin. Immunol. 2009, 9, 265–269. [Google Scholar] [CrossRef]
- Ahrens, B.; Lopes de Oliveira, L.C.; Grabenhenrich, L.; Schulz, G.; Niggemann, B.; Wahn, U.; Beyer, K. Individual cow’s milk allergens as prognostic markers for tolerance development? Clin. Exp. Allergy 2012, 42, 1630–1637. [Google Scholar] [CrossRef]
- Savilahti, E.M.; Rantanen, V.; Lin, J.S.; Karinen, S.; Saarinen, K.M.; Goldis, M.; Mäkelä, M.J.; Hautaniemi, S.; Savilahti, E.; Sampson, H.A. Early recovery from cow’s milk allergy is associated with decreasing IgE and increasing IgG4 binding to cow’s milk epitopes. J. Allergy Clin. Immunol. 2010, 125, 1315–1321. [Google Scholar] [CrossRef] [PubMed]
- James, J.M.; Sampson, H.A. Immunologic changes associated with the development of tolerance in children with cow milk allergy. J. Pediatr. 1992, 121, 371–377. [Google Scholar] [CrossRef]
- Agyemang, A.; Saf, S.; Sifers, T.; Mishoe, M.; Borres, M.P.; Sampson, H.A.; Nowak-Wegrzyn, A. Utilizing boiled milk sIgE as a predictor of baked milk tolerance in cow’s milk allergic children. J. Allergy Clin. Immunol. Pract. 2019, 7, 2049–2051. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, A.R.; Scheurer, S.; Vieths, S. Food allergens: Molecular and immunological aspects, allergen databases and cross-reactivity. Chem. Immunol. Allergy 2015, 101, 18–29. [Google Scholar] [PubMed]
- Bloom, K.A.; Huang, F.R.; Bencharitiwong, R.; Bardina, L.; Ross, A.; Sampson, H.A.; Nowak-Węgrzyn, A. Effect of heat treatment on milk and egg proteins allergenicity. Pediatr. Allergy Immunol. 2014, 25, 740. [Google Scholar] [CrossRef] [PubMed]
- Caubet, J.C.; Nowak-Wegrzyn, A.; Moshier, E.; Godbold, J.; Wang, J.; Sampson, H.A. Utility of casein-specific IgE levels in predicting reactivity to baked milk. J. Allergy Clin. Immunol. 2013, 131, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Ford, L.S.; Bloom, K.A.; Nowak-Wegrzyn, A.H.; Shreffler, W.G.; Masilamani, M.; Sampson, H.A. Basophil reactivity, wheal size, and immunoglobulin levels distinguish degrees of cow’s milk tolerance. J. Allergy Clin. Immunol. 2013, 131, 180–186. [Google Scholar] [CrossRef]
- Sampson, H.A.; Aceves, S.; Bock, S.A.; James, J.; Jones, S.; Lang, D.; Nadeau, K.; Nowak-Wegrzyn, A.; Oppenheimer, J.; Perry, T.T.; et al. Food allergy: A practice parameter update—2014. J. Allergy Clin. Immunol. 2014, 134, 1016–1025. [Google Scholar] [CrossRef]
- Lambert, R.; Grimshaw, K.E.C.; Ellis, B.; Jaitly, J.; Roberts, G. Evidence that eating baked egg or milk influences egg or milk allergy resolution: A systematic review. Clin. Exp. Allergy 2017, 47, 829–837. [Google Scholar] [CrossRef]
- Savilahti, E.M.; Kuitunen, M.; Valori, M.; Rantanen, V.; Bardina, L.; Gimenez, G.; Mäkelä, M.J.; Hautaniemi, S.; Savilahti, E.; Sampson, H.A. Use of IgE and IgG4 epitope binding to predict the outcome of oral immunotherapy in cow’s milk allergy. Pediatr. Allergy Immunol. 2014, 25, 227–235. [Google Scholar] [CrossRef]
- Martinez-Botas, J.; Rodriguez-Alvarez, M.; Cerecedo, I.; Vlaicu, C.; Dieguez, M.C.; Gomez-Coronado, D.; Fernández-Rivas, M.; de la Hoz, B. Identification of novel peptide biomarkers to predict safety and efficacy of cow’s milk oral immunotherapy by peptide microarray. Clin. Exp. Allergy 2015, 45, 1071–1084. [Google Scholar] [CrossRef]
- Savage, J.; Sicherer, S.; Wood, R. The natural history of food allergy. J. Allergy Clin. Immunol. Pract. 2016, 4, 196–203. [Google Scholar] [CrossRef]
- Wood, R.A.; Sicherer, S.H.; Vickery, B.P.; Jones, S.M.; Liu, A.H.; Fleischer, D.M.; Henning, A.K.; Mayer, L.; Burks, A.W.; Grishin, A.; et al. The natural history of milk allergy in an observational cohort. J. Allergy Clin. Immunol. 2013, 131, 805–812. [Google Scholar] [CrossRef]
- Bartuzi, Z.; Rodrigues Cocco, R.; Muraro, A.; Nowak-Węgrzyn, A. Contribution of Molecular Allergen Analysis in Diagnosis of Milk Allergy. Curr. Allergy Asthma Rep. 2017, 17, 46. [Google Scholar] [CrossRef]
- Hasan, S.A.; Wells, R.D.; Davis, C.M. Egg hypersensitivity in review. Allergy Asthma Proc. 2013, 34, 26–32. [Google Scholar] [CrossRef]
- Mine, Y.; Yang, M. Recent Advances in the Understanding of Egg Allergens: Basic, Industrial, and Clinical Perspectives. J. Agric. Food Chem. 2008, 56, 4874–4900. [Google Scholar] [CrossRef]
- Benhamou, A.H.; Caubet, J.C.; Eigenmann, P.A.; Nowak-Wegrzyn, A.; Marcos, C.P.; Reche, M.; Urisu, A. State of the art and new horizons in the diagnosis and management of egg allergy. Allergy 2010, 65, 283–289. [Google Scholar] [CrossRef]
- Calvani, M.; Arasi, S.; Bianchi, A.; Caimmi, D.; Cuomo, B. Is it possible to make a diagnosis of raw, heated, and baked egg allergy in children using cutoffs? A systematic review. Pediatr. Allergy Immunol. 2015, 26, 509–521. [Google Scholar] [CrossRef] [Green Version]
- Benhamou, A.H.; Zamora, S.A.; Eigenmann, P.A. Correlation between specific immunoglobulin E levels and the severity of reactions in egg allergic patients. Pediatr. Allergy Immunol. 2008, 19, 173–179. [Google Scholar] [CrossRef]
- Ando, H.; Moverare, R.; Kondo, Y.; Tsuge, I.; Tanaka, A.; Borres, M.P.; Urisu, A. Utility of ovomucoid-specific IgE concentrations in predicting symptomatic egg allergy. J. Allergy Clin. Immunol. 2008, 122, 583–588. [Google Scholar] [CrossRef]
- Saifi, M.; Swamy, N.; Crain, M.; Brown, L.S.; Bird, J.A. Tolerance of a high-protein baked-egg product in egg-allergic children. Ann. Allergy Asthma Immunol. 2016, 116, 415–419. [Google Scholar] [CrossRef]
- Miceli Sopo, S.; Greco, M.; Cuomo, B.; Bianchi, A.; Liotti, L.; Monaco, S.; Dello Iacono, I. Matrix effect on baked egg tolerance in children with IgE-mediated hen’s egg allergy. Pediatr. Allergy Immunol. 2016, 27, 465–470. [Google Scholar] [CrossRef]
- Alessandri, C.; Zennaro, D.; Scala, E.; Ferrara, R.; Bernardi, M.L.; Santoro, M.; Palazzo, P.; Mari, A. Ovomucoid (Gal d 1) specific IgE detected by microarray system predict tolerability to boiled hen’s egg and an increased risk to progress to multiple environmental allergen sensitisation. Clin. Exp. Allergy 2012, 42, 441–450. [Google Scholar] [CrossRef]
- Bartnikas, L.M.; Sheehan, W.J.; Tuttle, K.L.; Petty, C.R.; Schneider, L.C. Ovomucoid specific immunoglobulin E as a predictor of tolerance to cooked egg. Allergy Rhinol. Provid. 2015, 6, 198–204. [Google Scholar] [CrossRef]
- Benhamou Senouf, A.H.; Borres, M.P.; Eigenmann, P.A. Native and denatured egg white protein IgE tests discriminate hen’s egg allergic from egg-tolerant children. Pediatr. Allergy Immunol. 2015, 26, 12–17. [Google Scholar] [CrossRef]
- Chokshi, N.Y.; Sicherer, S.H. Molecular diagnosis of egg allergy: An update. Expert Rev. Mol. Diagn. 2015, 15, 895–906. [Google Scholar] [CrossRef]
- Vazquez-Ortiz, M.; Pascal, M.; Jiménez-Feijoo, R.; Lozano, J.; Giner, M.T.; Alsina, L.; Martín-Mateos, M.A.; Plaza, A.M. Ovalbumin-specific IgE/IgG4 ratio might improve the prediction of cooked and uncooked egg tolerance development in egg-allergic children. Clin. Exp. Allergy 2014, 44, 579–588. [Google Scholar] [CrossRef]
- Upton, J.; Nowak-Wegrzyn, A. The Impact of Baked Egg and Baked Milk Diets on IgE- and Non-IgE-Mediated Allergy. Clin. Rev. Allergy Immunol. 2018, 55, 118–138. [Google Scholar] [CrossRef]
- Leonard, S.A.; Nowak-Węgrzyn, A.H. Baked Milk and Egg Diets for Milk and Egg Allergy Management. Immunol. Allergy Clin. N. Am. 2016, 36, 147–159. [Google Scholar] [CrossRef]
- Holzhauser, T.; Wackermann, O.; Ballmer-Weber, B.K.; Bindslev-Jensen, C.; Scibilia, J.; Perono-Garoffo, L.; Utsumi, S.; Poulsen, L.K.; Vieths, S. Soybean (Glycine max) allergy in Europe: Gly m 5 (beta-conglycinin) and Gly m 6 (glycinin) are potential diagnostic markers for severe allergic reactions to soy. J. Allergy Clin. Immunol. 2009, 123, 452–458. [Google Scholar] [CrossRef]
- Ebisawa, M.; Brostedt, P.; Sj€olander, S.; Sato, S.; Borres, M.P.; Ito, K. Gly m 2S albumin is a major allergen with a high diagnostic value in soybean-allergic children. J. Allergy Clin. Immunol. 2013, 132, 976–978. [Google Scholar] [CrossRef]
- Kattan, J.D.; Sampson, H.A. Clinical reactivity to soy is best identified by component testing to Gly m 8. J. Allergy Clin. Immunol. Pract. 2015, 3, 970–972. [Google Scholar] [CrossRef]
- Mittag, D.; Vieths, S.; Vogel, L.; Becker, W.M.; Rihs, H.P.; Helbling, A.; Wüthrich, B.; Ballmer-Weber, B.K. Soybean allergy in patients allergic to birch pollen: Clinical investigation and molecular characterization of allergens. J. Allergy Clin. Immunol. 2004, 113, 148–154. [Google Scholar] [CrossRef]
- Kosma, P.; Sj€olander, S.; Landgren, E.; Borres, M.P.; Hedlin, G. Severe reactions after the intake of soy drink in birch pollen-allergic children sensitized to Gly m 4. Acta Paediatr. 2011, 100, 305–306. [Google Scholar] [CrossRef]
- Mastrorilli, C.; Tripodi, S.; Caffarelli, C.; Perna, S.; Di Rienzo-Businco, A.; Sfika, I.; Asero, R.; Dondi, A.; Bianchi, A.; Povesi Dascola, C.; et al. Endotypes of pollen-food syndrome in children with seasonal allergic rhinoconjunctivitis: A molecular classification. Allergy Eur. J. Allergy Clin. Immunol. 2016, 71, 1181–1191. [Google Scholar] [CrossRef]
- Stiefel, G.; Anagnostou, K.; Boyle, R.J.; Brathwaite, N.; Ewan, P.; Fox, A.T.; Huber, P.; Luyt, D.; Till, S.J.; Venter, C.; et al. BSACI guideline for the diagnosis and management of peanut and tree nut allergy. Clin. Exp. Allergy 2017, 47, 719–739. [Google Scholar] [CrossRef] [Green Version]
- Sicherer, S.H.; Furlong, T.J.; Muñoz-Furlong, A.; Burks, A.W.; Sampson, H.A. A voluntary registry for peanut and tree nut allergy: Characteristics of the first 5149 registrants. J. Allergy Clin. Immunol. 2001, 108, 128–132. [Google Scholar] [CrossRef] [Green Version]
- Rona, R.J.; Keil, T.; Summers, C.; Gislason, D.; Zuidmeer, L.; Sodergren, E.; Sigurdardottir, S.T.; Lindner, T.; Goldhahn, K.; Dahlstrom, J.; et al. The prevalence of food allergy: A meta-analysis. J. Allergy Clin. Immunol. 2007, 120, 638–646. [Google Scholar] [CrossRef]
- Grabenhenrich, L.B.; Dölle, S.; Moneret-Vautrin, A.; Köhli, A.; Lange, L.; Spindler, T.; Ruëff, F.; Nemat, K.; Maris, I.; Roumpedaki, E.; et al. Anaphylaxis in children and adolescents: The European Anaphylaxis Registry. J. Allergy Clin. Immunol. 2016, 137, 1128–1137. [Google Scholar] [CrossRef]
- Turner, P.J.; Gowland, M.H.; Sharma, V.; Ierodiakonou, D.; Harper, N.; Garcez, T.; Pumphrey, R.; Boyle, R.J. Increase in anaphylaxis-related hospitalizations but no increase in fatalities: An analysis of United Kingdom national anaphylaxis data, 1992–2012. J. Allergy Clin. Immunol. 2015, 135, 956–963. [Google Scholar] [CrossRef]
- González-Pérez, A.; Aponte, Z.; Vidaurre, C.F.; Rodríguez, L.A.G. Anaphylaxis epidemiology in patients with and patients without asthma: A United Kingdom database review. J. Allergy Clin. Immunol. 2010, 125, 1098–1104. [Google Scholar] [CrossRef]
- Beyer, K.; Grabenhenrich, L.; Härtl, M.; Beder, A.; Kalb, B.; Ziegert, M.; Finger, A.; Harandi, N.; Schlags, R.; Gappa, M.; et al. Predictive values of component-specific IgE for the outcome of peanut and hazelnut food challenges in children. Allergy Eur. J. Allergy Clin. Immunol. 2015, 70, 90–98. [Google Scholar] [CrossRef]
- Asarnoj, A.; Nilsson, C.; Lidholm, J.; Glaumann, S.; Östblom, E.; Hedlin, G.; van Hage, M.; Lilja, G.; Wickman, M. Peanut component Ara h 8 sensitization and tolerance to peanut. J. Allergy Clin. Immunol. 2012, 130, 468–472. [Google Scholar] [CrossRef]
- Krause, S.; Reese, G.; Randow, S.; Zennaro, D.; Quaratino, D.; Palazzo, P.; Ciardiello, M.A.; Petersen, A.; Becker, W.M.; Mari, A. Lipid transfer protein (Ara h 9) as a new peanut allergen relevant for a Mediterranean allergic population. J. Allergy Clin. Immunol. 2009, 124, 771–778. [Google Scholar] [CrossRef]
- Masthoff, L.J.N.; Mattsson, L.; Zuidmeer-Jongejan, L.; Lidholm, J.; Andersson, K.; Akkerdaas, J.H.; Versteeg, S.A.; Garino, C.; Meijer, Y.; Kentie, P.; et al. Sensitization to Cor a 9 and Cor a 14 is highly specific for a hazelnut allergy with objective symptoms in Dutch children and adults. J. Allergy Clin. Immunol. 2013, 132, 393–399. [Google Scholar] [CrossRef]
- Masthoff, L.J.N.; Blom, W.M.; Rubingh, C.M.; Klemans, R.J.B.; Remington, B.C.; Bruijnzeel-Koomen, C.A.F.M.; van Hoffen, E.; Houben, G.F.; Meyer, Y.; Pasmans, S.G.M.A.; et al. Sensitization to Cor a 9 or Cor a 14 has a strong impact on the distribution of thresholds to hazelnut. J. Allergy Clin. Immunol. Pract. 2018, 6, 2112–2114. [Google Scholar] [CrossRef]
- Beck, S.C.; Huissoon, A.P.; Baretto, R.L.; Krishna, M.T. A critical analysis of the utility of component tests in the diagnosis of pollen-related peanut and hazelnut allergy in the context of the BSACI guideline. Clin. Exp. Allergy 2017, 47, 1223–1224. [Google Scholar] [CrossRef]
- Hansen, K.S.; Ballmer-Weber, B.K.; Sastre, J.; Lidholm, J.; Andersson, K.; Oberhofer, H.; Lluch-Bernal, M.; Östling, J.; Mattsson, L.; Schocker, F.; et al. Component-resolved in vitro diagnosis of hazelnut allergy in Europe. J. Allergy Clin. Immunol. 2009, 123. [Google Scholar] [CrossRef]
- Costa, J.; Carrapatoso, I.; Oliveira, M.B.P.P.; Mafra, I. Walnut allergens: Molecular characterization, detection and clinical relevance. Clin. Exp. Allergy 2014, 44, 319–341. [Google Scholar] [CrossRef]
- Van der Valk, J.P.; Gerth van Wijk, R.; Vergouwe, Y.; Steyerberg, E.W.; Reitsma, M.; Wichers, H.J.; Savelkoul, H.F.; Vlieg-Boerstra, B.; de Groot, H.; Dubois, A.E.; et al. sIgE Ana o 1, 2 and 3 accurately distinguish tolerant from allergic children sensitized to cashew nuts. Clin. Exp. Allergy 2017, 47, 113–120. [Google Scholar] [CrossRef]
- Adatia, A.; Clarke, A.E.; Yanishevsky, Y.; Ben-Shoshan, M. Sesame allergy: Current perspectives. J. Asthma Allergy 2017, 10, 141–151. [Google Scholar] [CrossRef]
- Maruyama, N.; Nakagawa, T.; Ito, K.; Cabanos, C.; Borres, M.P.; Movérare, R.; Tanaka, A.; Sato, S.; Ebisawa, M. Measurement of specific IgE antibodies to Ses i 1 improves the diagnosis of sesame allergy. Clin. Exp. Allergy 2016, 46, 163–171. [Google Scholar] [CrossRef]
- Uotila, R.; Kukkonen, A.K.; Westerhout, W.M.; Remington, B.; Westerhout, J.; Pelkonen, A.S.; Mäkelä, M.J. Component-resolved diagnostics demonstrates that most peanut-allergic individuals could potentially introduce tree nuts to their diet. Clin. Exp. Allergy 2018, 48, 712–721. [Google Scholar] [CrossRef] [Green Version]
- Flores Kim, J.; McCleary, N.; Nwaru, B.I.; Stoddart, A.; Sheikh, A. Diagnostic accuracy, risk assessment, and cost-effectiveness of component-resolved diagnostics for food allergy: A systematic review. Allergy 2018, 73, 1609–1621. [Google Scholar] [CrossRef] [Green Version]
- Nwaru, B.I.; Hickstein, L.; Panesar, S.S.; Roberts, G.; Muraro, A.; Sheikh, A. EAACI Food Allergy and Anaphylaxis Guidelines Group Prevalence of common food allergies in Europe: A systematic review and meta-analysis. Allergy 2014, 69, 992–1007. [Google Scholar] [CrossRef]
- Eigenmann, P.A.; Lack, G.; Mazon, A.; Nieto, A.; Haddad, D.; Brough, H.A.; Caubet, J.C. Managing Nut Allergy: A Remaining Clinical Challenge. J. Allergy Clin. Immunol. Pract. 2017, 5, 296–300. [Google Scholar] [CrossRef]
- Eigenmann, P.A. Do we still need oral food challenges for the diagnosis of food allergy? Pediatr. Allergy Immunol. 2018, 29, 239–242. [Google Scholar] [CrossRef]
- Sapone, A.; Bai, J.C.; Ciacci, C.; Dolinsek, J.; Green, P.H.; Hadjivassiliou, M.; Kaukinen, K.; Rostami, K.; Sanders, D.S.; Schumann, M.; et al. Spectrum of gluten-related disorders: Consensus on new nomenclature and classification. BMC Med. 2012, 10, 13. [Google Scholar] [CrossRef]
- Ostblom, E.; Lilja, G.; Ahlstedt, S.; van Hage, M.; Wickman, M. Patterns of quantitative food-specific IgE-antibodies and reported food hypersensitivity in 4-year-old children. Allergy 2008, 63, 418–424. [Google Scholar] [CrossRef]
- Matricardi, P.M.; Bockelbrink, A.; Beyer, K.; Keil, T.; Niggemann, B.; Grüber, C.; Wahn, U.; Lau, S. Primary versus secondary immunoglobulin E sensitization to soy and wheat in the Multi-Centre Allergy Study cohort. Clin. Exp. Allergy 2008, 38, 493–500. [Google Scholar] [CrossRef]
- Dondi, A.; Tripodi, S.; Panetta, V.; Asero, R.; Businco, A.D.; Bianchi, A.; Carlucci, A.; Ricci, G.; Bellini, F.; Maiello, N.; et al. Pollen-induced allergic rhinitis in 1360 Italian children: Comorbidities and determinants of severity. Pediatr. Allergy Immunol. 2013, 24, 742–751. [Google Scholar] [CrossRef]
- Inomata, N. Wheat allergy. Curr. Opin. Allergy Clin. Immunol. 2009, 9, 238–243. [Google Scholar] [CrossRef]
- Bock, S.A. Prospective appraisal of complaints of adverse reactions to foods in children during the first 3 years of life. Pediatrics 1987, 79, 683–688. [Google Scholar]
- Bock, S.A.; Sampson, H.A. Food allergy in infancy. Pediatr. Clin. N. Am. 1994, 41, 1047–1067. [Google Scholar] [CrossRef]
- Jansen, J.J.; Kardinaal, A.F.; Huijbers, G.; Vlieg-Boerstra, B.J.; Martens, B.P.; Ockhuizen, T. Prevalence of food allergy and intolerance in the adult Dutch population. J. Allergy Clin. Immunol. 1994, 93, 446–456. [Google Scholar] [CrossRef]
- Sampson, H.A. Food allergy. Part 1: Immunopathogenesis and clinical disorders. J. Allergy Clin. Immunol. 1999, 103, 717–728. [Google Scholar] [CrossRef]
- Baur, X.; Degens, P.O.; Sander, I. Baker’s asthma: Still among the most frequent occupational respiratory disorders. J. Allergy Clin. Immunol. 1998, 102, 984–997. [Google Scholar] [CrossRef]
- Ameille, J.; Pauli, G.; Calastreng-Crinquand, A.; Vervloët, D.; Iwatsubo, Y.; Popin, E.; Bayeux-Dunglas, M.C.; Kopferschmitt-Kubler, M.C. Reported incidence of occupational asthma in France, 1996–1999: The ONAP programme. Observatoire National des Asthmes Professionnels. Occup. Environ. Med. 2003, 60, 136–141. [Google Scholar] [CrossRef]
- Leira, H.L.; Bratt, U.; Slåstad, S. Notified cases of occupational asthma in Norway: Exposure and consequences for health and income. Am. J. Ind. Med. 2005, 48, 359–364. [Google Scholar] [CrossRef]
- Malo, J.L.; Chan-Yeung, M. Agents causing occupational asthma. J. Allergy Clin. Immunol. 2009, 123, 545–550. [Google Scholar] [CrossRef]
- Morita, E.; Kunie, K.; Matsuo, H. Food-dependent exercise-induced anaphylaxis. J. Dermatol. Sci. 2007, 47, 109–117. [Google Scholar] [CrossRef]
- Juhász, A.; Belova, T.; Florides, C.G.; Maulis, C.; Fischer, I.; Gell, G.; Birinyi, Z.; Ong, J.; Keeble-Gagnère, G.; Maharajan, A.; et al. Genome mapping of seed-borne allergens and immunoresponsive proteins in wheat. Sci. Adv. 2018, 4. [Google Scholar] [CrossRef]
- Battais, F.; Richard, C.; Jacquenet, S.; Denery-Papini, S.; Moneret-Vautrin, D.A. Wheat grain allergies: An update on wheat allergens. Eur. Ann. Allergy Clin. Immunol. 2008, 40, 67–76. [Google Scholar]
- Palosuo, K.; Varjonen, E.; Kekki, O.M.; Klemola, T.; Kalkkinen, N.; Alenius, H.; Reunala, T. Wheat omega-5 gliadin is a major allergen in children with immediate allergy to ingested wheat. J. Allergy Clin. Immunol. 2001, 108, 634–638. [Google Scholar] [CrossRef]
- Baar, A.; Pahr, S.; Constantin, C.; Scheiblhofer, S.; Thalhamer, J.; Giavi, S.; Papadopoulos, N.G.; Ebner, C.; Mari, A.; Vrtala, S.; et al. Molecular and immunological characterization of Tri a 36, a low molecular weight glutenin, as a novel major wheat food allergen. J. Immunol. 2012, 189, 3018–3025. [Google Scholar] [CrossRef]
- Fernandez-Rivas, M. Fruit and vegetable allergy. Chem. Immunol. Allergy 2015, 101, 162–170. [Google Scholar]
- Ballmer-Weber, B.K.; Hoffmann-Sommergruber, K. Molecular diagnosis of fruit and vegetable allergy. Curr. Opin. Allergy Clin. Immunol. 2011, 11, 229–235. [Google Scholar] [CrossRef]
- Price, A.; Ramachandran, S.; Smith, G.P.; Stevenson, M.L.; Pomeranz, M.K.; Cohen, D.E. Oral allergy syndrome (pollen-food allergy syndrome). Dermatitis 2015, 26, 78–88. [Google Scholar] [CrossRef]
- Kohn, J.B. What Is Oral Allergy Syndrome? J. Acad. Nutr. Diet. 2017, 117, 988. [Google Scholar] [CrossRef]
- Pauli, G.; Metz-Favre, C. Cross reactions between pollens and vegetable food allergens. Rev. Mal. Respir. 2013, 30, 328–337. [Google Scholar] [CrossRef]
- Zuidmeer, L.; Goldhahn, K.; Rona, R.J.; Gislason, D.; Madsen, C.; Summers, C.; Sodergren, E.; Dahlstrom, J.; Lindner, T.; Sigurdardottir, S.T.; et al. The prevalence of plant food allergies: A systematic review. J. Allergy Clin. Immunol 2008, 121, 1210–1218. [Google Scholar] [CrossRef]
- Burney, P.; Summers, C.; Chinn, S.; Hooper, R.; van Ree, R.; Lidholm, J. Prevalence and distribution of sensitization to foods in the European Community Respiratory Health Survey: A EuroPrevall analysis. Allergy 2010, 65, 1182–1188. [Google Scholar] [CrossRef]
- Muluk, N.B.; Cingi, C. Oral allergy syndrome. Am. J. Rhinol. Allergy. 2018, 32, 27–30. [Google Scholar] [CrossRef]
- Bassler, O.Y.; Weiss, J.; Wienkoop, S.; Lehmann, K.; Scheler, C.; Dolle, S.; Schwarz, D.; Franken, P.; George, E.; Worm, M.; et al. Evidence for novel tomato seed allergens: IgE-reactive legumin and vicilin proteins identified by multidimensional protein fractionation mass spectrometry and in silico epitope modeling. J. Proteome Res. 2009, 8, 1111–1122. [Google Scholar] [CrossRef]
- Yagami, A.; Ebisawa, M. New findings, pathophysiology, and antigen analysis in pollen-food allergy syndrome. Curr. Opin. Allergy Clin. Immunol. 2019, 19, 218–223. [Google Scholar] [CrossRef]
- Andersen, M.B.; Hall, S.; Dragsted, L.O. Identification of european allergy patterns to the allergen families PR-10, LTP, and profilin from Rosaceae fruits. Clin. Rev. Allergy Immunol. 2011, 41, 4–19. [Google Scholar] [CrossRef]
- Bublin, M.; Lauer, I.; Oberhuber, C.; Alessandri, S.; Briza, P.; Radauer, C.; Himly, M.; Breiteneder, H.; Vieths, S.; Hoffmann-Sommergruber, K. Production and characterization of an allergen panel for component-resolved diagnosis of celery allergy. Mol. Nutr. Food Res. 2008, 52, S241–S250. [Google Scholar] [CrossRef]
- Hoffmann-Sommergruber, K. Pathogenesis-related (PR)-proteins identified as allergens. Biochem. Soc. Trans. 2002, 30 Pt 6, 930–935. [Google Scholar] [CrossRef] [Green Version]
- Van Winkle, R.C.; Chang, C. The biochemical basis and clinical evidence of food allergy due to lipid transfer proteins: A comprehensive review. Clin. Rev. Allergy Immunol. 2014, 46, 211–224. [Google Scholar] [CrossRef]
- Egger, M.; Hauser, M.; Mari, A.; Ferreira, F.; Gadermaier, G. The role of lipid transfer proteins in allergic diseases. Curr. Allergy Asthma Rep. 2010, 10, 326–335. [Google Scholar] [CrossRef]
- Asero, R.; Pravettoni, V. Anaphylaxis to plant-foods and pollen allergens in patients with lipid transfer protein syndrome. Curr. Opin. Allergy Clin. Immunol. 2013, 13, 379–385. [Google Scholar] [CrossRef]
- Gadermaier, G.; Hauser, M.; Egger, M.; Ferrara, R.; Briza, P.; Santos, K.S.; Zennaro, D.; Girbl, T.; Zuidmeer-Jongejan, L.; Mari, A.; et al. Sensitization prevalence, antibody crossreactivity and immunogenic peptide profile of Api g 2, the non-specific lipid transfer protein 1 of celery. PLoS ONE 2011, 6, e24150. [Google Scholar] [CrossRef]
- Vejvar, E.; Himly, M.; Briza, P.; Eichhorn, S.; Ebner, C.; Hemmer, W.; Ferreira, F.; Gadermaier, G. Allergenic relevance of nonspecific lipid transfer proteins 2: Identification and characterization of Api g 6 from celery tuber as representative of a novel IgE binding protein family. Mol. Nutr. Food Res. 2013, 57, 2061–2070. [Google Scholar] [CrossRef]
- Basagaña, M.; Elduque, C.; Teniente-Serra, A.; Casas, I.; Roger, A. Clinical Profile of Lipid Transfer Protein Syndrome in a Mediterranean Area. J. Investig. Allergol. Clin. Immunol. 2018, 28, 58–60. [Google Scholar] [CrossRef]
- Rial, M.J.; Sastre, J.D. Food Allergies Caused by Allergenic Lipid Transfer Proteins: What is behind the Geografic Restriction? Curr. Allergy Asthma Rep. 2018, 18, 56. [Google Scholar] [CrossRef]
- Radauer, C.; Breiteneder, H. Evolutionary biology of plant food allergens. J. Allergy Clin. Immunol. 2007, 120, 518–525. [Google Scholar] [CrossRef]
- Santos, A.; Van Ree, R. Profilins: Mimickers of allergy or relevant allergens? Int. Arch. Allergy Immunol. 2011, 155, 191–204. [Google Scholar] [CrossRef]
- Asero, R.; Tripodi, S.; Dondi, A.; Di Rienzo Businco, A.; Sfika, I.; Bianchi, A.; Candelotti, P.; Caffarelli, C.; Povesi Dascola, C.; Ricci, G.; et al. Prevalence and Clinical Relevance of IgE Sensitization to Profilin in Childhood: A Multicenter Study. Int. Arch. Allergy Immunol. 2015, 168, 25–31. [Google Scholar] [CrossRef]
- De Jesus-Pires, C.; Ferreira-Neto, J.R.C.; Pacifico Bezerra-Neto, J.; Kido, E.A.; de Oliveira Silva, R.L.; Pandolfi, V.; Wanderley-Nogueira, A.C.; Binneck, E.; da Costa, A.F.; Pio-Ribeiro, G.; et al. Plant Thaumatin-like Proteins: Function, Evolution and Biotechnological Applications. Curr. Protein Pept. Sci. 2019, 18. [Google Scholar] [CrossRef]
- Gonzalez-Mancebo, E.; Gonzalez-de-Olano, D.; Trujillo, M.J.; Santos, S.; Gandolfo-Cano, M.; Meléndez, A.; Juárez, R.; Morales, P.; Calso, A.; Mazuela, O.; et al. Prevalence of sensitization to lipid transfer proteins and profilins in a population of 430 patients in the south of Madrid. J. Investig. Allergol. Clin. Immunol. 2011, 21, 278–282. [Google Scholar]
- Asero, R.; Piantanida, M.; Pinter, E.; Pravettoni, V. The clinical relevance of lipid transfer protein. Clin. Exp. Allergy 2018, 48, 6–12. [Google Scholar] [CrossRef]
- Mota, I.; Gaspar, Â.; Benito-Garcia, F.; Correia, M.; Arêde, C.; Piedade, S.; Sampaio, G.; Pires, G.; Santa-Marta, C.; Borrego, L.M.; et al. Anaphylaxis caused by lipid transfer proteins: An unpredictable clinical syndrome. Allergol. Immunopathol. 2018, 46, 565–570. [Google Scholar] [CrossRef]
- García-Mozo, H. Poaceae pollen as the leading aeroallergen worldwide: A review. Allergy 2017, 72, 1849–1858. [Google Scholar] [CrossRef] [Green Version]
- Bublin, M.; Pfister, M.; Radauer, C.; Oberhuber, C.; Bulley, S.; Dewitt, A.M.; Lidholm, J.; Reese, G.; Vieths, S.; Breiteneder, H.; et al. Component-resolved diagnosis of kiwifruit allergy with purified natural and recombinant kiwifruit allergens. J. Allergy Clin. Immunol. 2011, 125, 687–694. [Google Scholar] [CrossRef]
- Bernardi, M.L.; Giangrieco, I.; Camardella, L.; Ferrara, R.; Palazzo, P.; Panico, M.R.; Crescenzo, R.; Carratore, V.; Zennaro, D.; Liso, M.; et al. Allergenic lipid transfer proteins from plant-derived foods do not immunologically and clinically behave homogeneously: The kiwifruit LTP as a model. PLoS ONE 2011, 6, e27856. [Google Scholar] [CrossRef]
- Blanco, C. Latex-fruit syndrome. Curr. Allergy Asthma Rep. 2003, 3, 47–53. [Google Scholar] [CrossRef]
- Wagner, S.; Breiteneder, H. The latex-fruit syndrome. Biochem. Soc. Trans. 2002, 30, 935–940. [Google Scholar] [CrossRef] [Green Version]
- Radauer, C.; Adhami, F.; Fürtler, I.; Wagner, S.; Allwardt, D.; Scala, E.; Ebner, C.; Hafner, C.; Hemmer, W.; Mari, A.; et al. Latex-allergic patients sensitized to the major allergen hevein and hevein-like domains of class I chitinases show no increased frequency of latex-associated plant food allergy. Mol. Immunol. 2011, 48, 600–609. [Google Scholar] [CrossRef]
- Sharp, M.F.; Lopata, A.L. Fish allergy: In review. Clin. Rev. Allergy Immunol. 2014, 46, 258–271. [Google Scholar] [CrossRef]
- The NCBI Taxonomy Database. Available online: https://www.ncbi.nlm.nih.gov/taxonomy (accessed on 2 April 2019).
- Ruethers, T.; Taki, A.C.; Johnston, E.B.; Nugraha, R.; Le, T.T.K.; Kalic, T.; McLean, T.R.; Kamath, S.D.; Lopata, A.L. Seafood allergy: A comprehensive review of fish and shellfish allergens. Mol. Immunol. 2018, 100, 28–57. [Google Scholar] [CrossRef]
- Tong, W.S.; Yuen, A.W.; Wai, C.Y.; Leung, N.Y.; Chu, K.H.; Leung, P.S. Diagnosis of fish and shellfish allergies. J. Asthma Allergy 2018, 11, 247–260. [Google Scholar] [CrossRef]
- Farioli, L.; Losappio, L.M.; Giuffrida, M.G.; Pravettoni, V.; Micarelli, G.; Nichelatti, M.; Scibilia, J.; Mirone, C.; Cavallarin, L.; Lamberti, C.; et al. Mite-induced asthma and IgE levels to shrimp, mite, tropomyosin, arginine kinase and Der p 10 are the most relevant risk factors for challenge-proven shrimp allergy. Int. Arch. Allergy Immunol. 2017, 174, 133–143. [Google Scholar] [CrossRef]
- Van Hage, M.; Biederman, T.; Platts-Mills, T.A.E. Allergy to Mammalian Meat. In EAACI Molecular Allergology User’s Guide; The European Academy of Allergy and Clinical Immunology (EAACI): Zurich, Switzerland, 2016; Volume B14, pp. 193–198. [Google Scholar]
- Wilson, J.M.; Shuyler, A.J.; Workman, L.; Gupta, M.; James, H.R.; Posthumus, J.; McGowan, E.C.; Commins, S.P.; Platts-Mills, T.A.E. Investigation into the a-Gal syndrome: Characteristics of 261 children and adults reporting red meat allergy. J. Allergy Clin. Immunol. Pract. 2019. [Google Scholar] [CrossRef]
- Commins, S.P.; James, H.R.; Stevens, W.; Pochan, S.L.; Land, M.H.; King, C.; Mozzicato, S.; Platts-Mills, T.A. Delayed clinical and ex vivo response to mammalian meat in patients with IgE to Galactose-alpha-1.3-galctose. J. Allergy Clin. Immunol. 2014, 134, 108–115. [Google Scholar] [CrossRef]
- Martelli, A.; De Chiara, A.; Corvo, M.; Restani, P.; Fiocchi, A. Beef allergy in children with cow’s milk allergy; cow’s milk allergy in children with beef allergy. Ann. Allergy Asthma Immunol. 2002, 89, 38–43. [Google Scholar] [CrossRef]
- Sicherer, S.H.; Sampson, H.A. Food allergy: A review and uptodate on epidemiology, pathogenesis, diagnosis, prevention and management. J. Allergy Clin. Immunol. 2018, 141, 41–58. [Google Scholar] [CrossRef]
- Fiocchi, A.; Brazek, J.; Schunermann, H.J.; Bahna, S.L.; von Berg, A.; Beyer, K.; Bozzola, M.; Bradsher, J.; Compalati, E.; Ebisawa, M.; et al. World Allergy Organization (WAO) diagnosis and rational for action against Cow’s milk allergy (DRACMA) guidelines. Pediatr. Allergy Immunol. 2010, 21, 1–125. [Google Scholar]
- Posthumus, J.; James, H.R.; Lane, C.J.; Matos, L.A.; Platts-Mills, T.A.E.; Commins, S.P. Initial description of pork-cat syndrome in the United States. J. Allergy Clin. Immunol. 2013, 131, 923–925. [Google Scholar] [CrossRef] [Green Version]
- Popescu, F.D. Cross-reactivity between aeroallergens and food allergens. World J. Methodol. 2015, 5, 31–50. [Google Scholar] [CrossRef]
- Chung, C.H.; Mirakhur, B.; Chan, E.; Le, Q.T.; Berlin, J.; Morse, M.; Murphy, B.A.; Satinover, S.M.; Hosen, J.; Mauro, D.; et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N. Engl. J. Med. 2008, 358, 1109–1117. [Google Scholar] [CrossRef]
- Steinke, J.W.; Platts-Mills, T.A.E.; Commins, S.P. The alpha gal story: Lessons learned from connecting the dots. J. Allergy Clin. Immunol. 2015, 135, 589–596. [Google Scholar] [CrossRef]
- Commins, S.P.; Satinover, S.M.; Hosen, J.; Mozena, J.; Borish, L.; Lewis, B.D.; Woodfolk, J.A.; Platts-Mills, T.A. Delayed anaphylaxis, angioedema, or urticaria after consumption of red meat in patients with IgE antibodies specific for galactose-alpha-1,3-galactose. J. Allergy Clin. Immunol. 2009, 123, 426–433. [Google Scholar] [CrossRef]
- Stewart, P.H.; McMullan, K.L.; LeBlanc, S.B. Delayed red meat allergy: Clinical ramifications of galactose-alpha-1,3-galactose sensitization. Ann. Allergy Asthma Immunol. 2015, 115, 260–264. [Google Scholar] [CrossRef]
- Stone, C.A.; Commins, S.P.; Choudhary, S.; Vethody, C.; Heavrin, J.L.; Wingerter, J.; Hemler, J.A.; Babe, K.; Phillips, E.J.; Norton, A.E. Anaphylaxis after vaccination in a pediatric patient: Further implicating alpha-gal allergy. J. Allergy Clin. Immunol. Pract. 2019, 7, 322–324. [Google Scholar] [CrossRef]
- Brestoff, J.R.; Tesfazghi, M.T.; Zaydman, M.A.; Jackups, R., Jr.; Kim, B.S.; Scott, M.G.; Gronowski, A.M.; Grossman, B.J. The B antigen protects vagainst the development of red meat allergy. J. Allergy Clin. Immunol. Pract. 2018, 6, 1790–1791. [Google Scholar] [CrossRef]
- Commins, S.P.; Jerath, M.R.; Cox, K.; Erickson, L.D.; Platts-Mills, T. Delayed anaphylaxis to alpha gal an oligosaccharide in mammalian meat. Allergol. Int. 2016, 65, 16–20. [Google Scholar] [CrossRef]
- Hamsten, C.; Starkhammar, M.; Tran, T.A.T.; Johansson, M.; Bengtsson, U.; Ahlén, G.; Sällberg, M.; Grönlund, H.; van Hage, M. Identification of galactose-a-1,3-galactose in the gastrointestinal tract of the tick Ixodes ricinus; possible relationship with red meat allergy. Allergy 2013, 68, 549–552. [Google Scholar] [CrossRef]
Cow’s Milk Protein | Allergen | Allergenicity | Features |
---|---|---|---|
Casein Family (coagulum: has approximately 80% of the CM proteins) | |||
Casein | Bos d 8 | Major | Resistant to high temperatures High sequence homology (>85%) with proteins from goat and sheep Very low cross- reactivity (<5%) with milks from donkey, mare, buffalo, or camel |
Alpha s1-casein | Bos d 9 | Major | |
Alpha s2-casein | Bos d 10 | Major | |
Beta-casein | Bos d 11 | Major | |
Kappa-casein | Bos d12 | Major | |
Whey (sensible to heating, lose IgE binding after 15–20 min of boiling at >90 °C) [16] | |||
Alpha-lactalbumin | Bos d 4 | Major | ~65% of whey, present in the milk of almost all mammals |
Beta-lactoglobulin | Bos d 5 | Major | ~25% of whey, not present in the human breast milk |
Bovine serum albumin | Bos d 6 | Minor | ~8% of whey, is one of the major beef allergens, responsible for cross reactivity between CM and raw beef |
Immunoglobulins | Bos d 7 | Minor | Especially G class, may play a role in cross-reactivity with beef [8] |
Lactoferrin | Bos d lactoferrin * | Minor | Is a multifunctional protein of the transferrin family [8] |
Hen Eggs Allergen Name | Features |
---|---|
nGal d 1 (Ovomucoid) |
|
nGal d 2 (Ovalbumin) |
|
nGal d 3 (Conalbumin) |
|
nGal d 5 * |
|
Soybean Allergen Name | Biochemical Name and Features | |
---|---|---|
rGly m 4 | PR-10 |
|
nGly m 5 (Beta conglycinin) | 7S Globuline |
|
nGly m 6 (Glycinin) | 11S Globuline |
Allergen Source | Biochemical Name | ||
---|---|---|---|
Stable Proteins | Labile Proteins | ||
SSP | LTP | PR-10 | |
Peanut Arachis hypogaea | rAra h 1 rAra h 2 rAra h 3 rAra h 6 | rAra h 9 | rAra h 8 |
Hazelnut Corylus avellana | rCor a 9 rCor a 14 | rCor a 8 | rCor a 1 |
Cashew nut Anacardium occidentale | rAna o 3 rAna o 2 * | ||
Walnut Juglans regia | rJug r 1 nJug r 2 * | rJug r 3 | |
Brazil nut Bertholletia axcelsa | rBer e 1 |
Allergen Name | Biochemical Name | Molecular Weight (kDa) | Clinical Relevance |
---|---|---|---|
Tri a 14 | Non-specific LTP 1 | 9 |
|
Tri a 19 | ω-5 gliadin | 65 |
|
nTri aA_TI * | Alpha-amylase inhibitors | 13 |
|
Fruit/Vegetable Source | Biochemical Name | |||||
---|---|---|---|---|---|---|
Actinidin | LTP | Kiwellin | TLP | PR-10 | Profilin | |
Apple Malus domestica | rMal d 3 | rMal d 1 | ||||
Kiwi Actinidia deliciosa | nAct d 1 * | nAct d 5 * | nAct d 2 * | rAct d 8 | ||
Peach Prunus persica | rPru p 3 | rPru p 1 | rPru p 4 | |||
Celery Apium graveolens | rApi g 1.01 |
Seafood Source | Allergen Name | Biochemical Name | Features |
---|---|---|---|
Carp | rCyp c 1 | Parvalbumin |
|
Cod | rGad c 1 | Parvalbumin |
|
Shrimp | rPen a 1 | Tropomyosin |
|
nPen m 2 * | Arginine kinase |
| |
nPen m 4 * | Calcium binding protein |
|
Type of Meat Allergy | History | IgE | Major Allergen |
---|---|---|---|
Primary meat sensitivity in childhood |
|
| Bos d 6 |
Pork–Cat Syndrome |
|
| Fel d 7 Sus s 6 |
Delayed Anaphylaxis to Red Meat or the Alpha-Gal syndrome |
|
| Alpha-gal |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calamelli, E.; Liotti, L.; Beghetti, I.; Piccinno, V.; Serra, L.; Bottau, P. Component-Resolved Diagnosis in Food Allergies. Medicina 2019, 55, 498. https://doi.org/10.3390/medicina55080498
Calamelli E, Liotti L, Beghetti I, Piccinno V, Serra L, Bottau P. Component-Resolved Diagnosis in Food Allergies. Medicina. 2019; 55(8):498. https://doi.org/10.3390/medicina55080498
Chicago/Turabian StyleCalamelli, Elisabetta, Lucia Liotti, Isadora Beghetti, Valentina Piccinno, Laura Serra, and Paolo Bottau. 2019. "Component-Resolved Diagnosis in Food Allergies" Medicina 55, no. 8: 498. https://doi.org/10.3390/medicina55080498