Characterization of Cytokines and Proliferation Marker Ki67 in Cleft Affected Lip Tissue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Characteristics of Subjects
2.2. Immunohistochemical Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tettamanti, L.; Avantaggiato, A.; Nardone, M.; Silvestre-Rangil, J.; Tagliabue, A. Cleft palate only: Current concepts. Oral Implant. 2017, 10, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Bilińska, M.; Osmola, K. Cleft lip and palate-risk factors, prenatal diagnosis, and health consequences. Ginekol. Pol. 2015, 86, 862–866. [Google Scholar] [CrossRef] [PubMed]
- Saunders, J.E.; Rankin, Z.; Noonan, K.Y. Otolaryngology and the global burden of disease. Otolaryngol. Clin. N. Am. 2018, 51, 515–534. [Google Scholar] [CrossRef] [PubMed]
- Costa, B.; Lima, J.E.; Gomide, M.R.; Rosa, O.P. Clinical and microbiological evaluation of the periodontal status of children with unilateral complete cleft lip and palate. Cleft Palate Craniofacial J. 2003, 40, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Papathanasiou, E.; Trotman, C.A.; Scott, A.R.; Van Dyke, T.E. Current and emerging treatments for postsurgical cleft lip scarring: Effectiveness and mechanisms. J. Dent. Res. 2017, 96, 1370–1377. [Google Scholar] [CrossRef] [PubMed]
- Jankovska, I.; Pilmane, M.; Akota, I. Expression of gene proteins, interleukins and β-defensin in cleft-affected tissue. Stomatologija 2017, 19, 103–108. [Google Scholar]
- Baroni, T.; Carinci, P.; Bellucci, C.; Lilli, C.; Becchetti, E.; Carinci, F.; Stabellini, G.; Pezzetti, F.; Caramelli, E.; Tognon, M.; et al. Cross-talk between interleukin-6 and transforming growth factor-beta3 regulates extracellular matrix production by human fibroblasts from subjects with non-syndromic cleft lip and palate. J. Periodontol. 2003, 74, 1447–1453. [Google Scholar] [CrossRef]
- Yang, R.; Yu, T.; Zhou, Y. Interplay between craniofacial stem cells and immune stimulus. Stem Cell Res. Ther. 2017, 8, 147. [Google Scholar] [CrossRef]
- Lee, R.T.; Briggs, W.H.; Cheng, G.C.; Rossiter, H.B.; Libby, P.; Kupper, T. Mechanical deformation promotes secretion of IL-1 alpha and IL-1 receptor antagonist. J. Immunol. 1997, 159, 5084–5088. [Google Scholar]
- Bianchi, M.E. DAMPs, PAMPs and alarmins: All we need to know about danger. J. Leukoc. Biol. 2007, 81, 1–5. [Google Scholar] [CrossRef]
- Lee, P.; Lee, D.J.; Chan, C.; Chen, S.W.; Ch’en, I.; Jamora, C. Dynamic expression of epidermal caspase 8 simulates a wound healing response. Nature 2009, 458, 519–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szabowski, A.; Maas-Szabowski, N.; Andrecht, S.; Kolbus, A.; Schorpp-Kistner, M.; Fusenig, N.E.; Angel, P. c-Jun and JunB antagonistically control cytokine-regulated mesenchymal-epidermal interaction in skin. Cell 2000, 103, 745–755. [Google Scholar] [CrossRef]
- Nazar Majeed, Z.; Philip, K.; Alabsi, A.M.; Pushparajan, S.; Swaminathan, D. Identification of gingival crevicular fluid sampling, analytical methods, and oral biomarkers for the diagnosis and monitoring of periodontal diseases: A systematic review. Dis. Markers 2016, 2016, 1804727. [Google Scholar] [CrossRef] [PubMed]
- Ryu, O.H.; Choi, S.J.; Linares, A.M.G.; Song, I.S.; Kim, Y.J.; Jang, K.T.; Hart, T.C. Gingival epithelial cell expression of macrophage inflammatory protein-1α induced by interleukin-1β and lipopolysaccharide. J. Periodontol. 2007, 78, 1627–1634. [Google Scholar] [CrossRef] [PubMed]
- Yagi, R.; Tanaka, S.; Motomura, Y.; Kubo, M. Regulation of the Il4 gene is independently controlled by proximal and distal 3’ enhancers in mast cells and basophils. Mol. Cell Biol. 2007, 27, 8087–8097. [Google Scholar] [CrossRef] [PubMed]
- Vijayanand, P.; Seumois, G.; Simpson, L.J.; Abdul-Wajid, S.; Baumjohann, D.; Panduro, M.; Huang, X.; Interlandi, J.; Djuretic, I.M.; Brown, D.R.; et al. Interleukin-4 production by follicular helper T cells requires the conserved Il4 enhancer hypersensitivity site V. Immunity 2012, 36, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, K.; Javadi, M.; Borghaei, R.C. Interleukin-4 suppresses IL-1-induced expression of matrix metalloproteinase-3 in human gingival fibroblasts. J. Periodontol. 2004, 75, 283–291. [Google Scholar] [CrossRef]
- Yamazaki, K.; Nakajima, T.; Gemmell, E.; Polak, B.; Seymour, G.J.; Hara, K. IL-4-and IL-6-producing cells in human periodontal disease tissue. J. Oral Pathol. Med. 1994, 23, 347–353. [Google Scholar] [CrossRef]
- Bao, L.; Alexander, J.B.; Shi, V.Y.; Mohan, G.C.; Chan, L.S. Interleukin-4 up-regulation of epidermal interleukin-19 expression in keratinocytes involves the binding of signal transducer and activator of transcription 6 (Stat6) to the imperfect Stat6 sites. Immunology 2014, 143, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Walch, L.; Massade, L.; Dufilho, M.; Brunet, A.; Rendu, F. Pro-atherogenic effect of interleukin-4 in endothelial cells: Modulation of oxidative stress, nitric oxide and monocyte chemoattractant protein-1 expression. Atherosclerosis 2006, 187, 285–291. [Google Scholar] [CrossRef]
- Scheller, J.; Chalaris, A.; Schmidt-Arras, D.; Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta Mol. Cell Res. 2011, 1813, 878–888. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Li, R.; Liu, S.; Xing, R.; Li, P. Inhibitory effect of metalloproteinase inhibitors on skin cell inflammation induced by jellyfish Nemopilema nomurai nematocyst venom. Toxins 2019, 11, 156. [Google Scholar] [CrossRef]
- Ficarra, G.; Baroni, G.; Massi, D. Pyostomatitis vegetans: Cellular immune profile and expression of IL-6, IL-8 and TNF-alpha. Head Neck Pathol. 2009, 4, 1–9. [Google Scholar] [CrossRef]
- Groeger, S.; Meyle, J. Oral mucosal epithelial cells. Front. Immunol. 2019, 10, 208. [Google Scholar] [CrossRef]
- Hong, D.S.; Angelo, L.S.; Kurzrock, R. Interleukin-6 and its receptor in cancer. Cancer 2007, 110, 1911–1928. [Google Scholar] [CrossRef]
- Harada, A.; Sekido, N.; Akahoshi, T.; Wada, T.; Mukaida, N.; Matsushima, K. Essential involvement of interleukin-8 (IL-8) in acute inflammation. J. Leukoc. Biol. 1994, 56, 559–564. [Google Scholar] [CrossRef]
- Lotti, F.; Maggi, M. Interleukin 8 and the male genital tract. J. Reprod. Immunol. 2013, 100, 54–65. [Google Scholar] [CrossRef]
- Zou, J.; Zhou, L.; Hu, C.; Jing, P.; Guo, X.; Liu, S.; Lei, Y.; Yang, S.; Deng, J.; Zhang, H. IL-8 and IP-10 expression from human bronchial epithelial cells BEAS-2B are promoted by Streptococcus pneumoniae endopeptidase O (PepO). BMC Microbiol. 2017, 17, 187. [Google Scholar] [CrossRef]
- Oliveira, N.F.; Damm, G.R.; Andia, D.C.; Salmon, C.; Nociti, F.H., Jr.; Line, S.R.; De Souza, A.P. DNA methylation status of the IL8 gene promoter in oral cells of smokers and non-smokers with chronic periodontitis. J. Clin. Periodontol. 2009, 36, 719–725. [Google Scholar] [CrossRef]
- Zehnder, M.; Greenspan, J.S.; Greenspan, D.; Bickel, M. Chemokine gene expression in human oral mucosa. Eur. J. Oral Sci. 1999, 107, 231–235. [Google Scholar] [CrossRef]
- Sato, Y.; Ohshima, T.; Kondo, T. Regulatory role of endogenous interleukin-10 in cutaneous inflammatory response of murine wound healing. Biochem. Biophys. Res. Commun. 1999, 265, 194–199. [Google Scholar] [CrossRef]
- Chatterjee, P.; Chiasson, V.L.; Bounds, K.R.; Mitchell, B.M. Regulation of the anti-inflammatory cytokines interleukin-4 and interleukin-10 during pregnancy. Front. Immunol. 2014, 5, 253. [Google Scholar] [CrossRef]
- Peranteau, W.H.; Zhang, L.; Muvarak, N.; Badillo, A.T.; Radu, A.; Zoltick, P.W.; Liechty, K.W. IL-10 overexpression decreases inflammatory mediators and promotes regenerative healing in an adult model of scar formation. J. Investig. Derm. 2008, 128, 1852–1860. [Google Scholar] [CrossRef]
- Reitamo, S.; Remitz, A.; Tamai, K.; Uitto, J. Interleukin-10 modulates type I collagen and matrix metalloprotease gene expression in cultured human skin fibroblasts. J. Clin. Investig. 1994, 94, 2489–2492. [Google Scholar] [CrossRef]
- Richardsen, E.; Andersen, S.; Al-Saad, S.; Rakaee, M.; Nordby, Y.; Pedersen, M.I.; Ness, N.; Grindstad, T.; Movik, I.; Dønnem, T.; et al. Evaluation of the proliferation marker Ki-67 in a large prostatectomy cohort. PLoS ONE 2017, 12, e0186852. [Google Scholar] [CrossRef]
- Valach, J.; Foltán, R.; Vlk, M.; Szabo, P.; Smetana, K., Jr. Phenotypic characterization of oral mucosa: What is normal? J. Oral Pathol. Med. 2017, 46, 834–839. [Google Scholar] [CrossRef]
- Scholzen, T.; Gerdes, J. The Ki-67 protein: From the known and the unknown. J. Cell Physiol. 2000, 182, 311–322. [Google Scholar] [CrossRef]
- Pilmane, M.; Rumba, I.; Sundler, F.; Luts, A. Patterns of distribution and occurrence of neuroendocrine elements in lungs of humans with chronic lung disease. Proc. Latv. Acad. Sci. 1998, 52, 144–152. [Google Scholar]
- Groeger, S.E.; Meyle, J. Epithelial barrier and oral bacterial infection. Periodontology 2000 2015, 69, 46–67. [Google Scholar] [CrossRef]
- Bulek, K.; Swaidani, S.; Aronica, M.; Li, X. Epithelium: The interplay between innate and Th2 immunity. Immunol. Cell Biol. 2010, 88, 257–268. [Google Scholar] [CrossRef]
- Graves, D.T.; Nooh, N.; Gillen, T.; Davey, M.; Patel, S.; Cottrell, D.; Amar, S. IL-1 plays a critical role in oral, but not dermal, wound healing. J. Immunol. 2001, 167, 5316–5320. [Google Scholar] [CrossRef]
- Dayan, S.; Stashenko, P.; Niederman, R.; Kupper, T.S. Oral epithelial overexpression of IL-1alpha causes periodontal disease. J. Dent. Res. 2004, 83, 786–790. [Google Scholar] [CrossRef]
- Becker, S.; Koren, H.S.; Henke, D.C. Interleukin-8 expression in normal nasal epithelium and its modulation by infection with respiratory syncytial virus and cytokines tumor necrosis factor, interleukin-1, and interleukin-6. Am. J. Respir. Cell Mol. Biol. 1993, 8, 20–27. [Google Scholar] [CrossRef]
- Sabat, R.; Grütz, G.; Warszawska, K.; Kirsch, S.; Witte, E.; Wolk, K.; Geginat, J. Biology of interleukin-10. Cytokine Growth Factor Rev. 2010, 21, 331–344. [Google Scholar] [CrossRef] [Green Version]
- Ustiashvili, M.; Kordzaia, D.; Mamaladze, M.; Jangavadze, M.; Sanodze, L. Investigation of functional activity human dental pulp stem cells at acute and chronic pulpitis. Georgian Med. News 2014, 234, 19–24. [Google Scholar]
- Zhang, Y.; Dong, S.; Wang, J.; Wang, M.; Chen, M.; Huang, H. Involvement of Notch2 in all-trans retinoic acid-induced inhibition of mouse embryonic palate mesenchymal cell proliferation. Mol. Med. Rep. 2017, 16, 2538–2546. [Google Scholar] [CrossRef] [Green Version]
- Olvera, M.; Wickramasinghe, K.; Brynes, R.; Bu, X.; Ma, Y.; Chandrasoma, P. Ki67 expression in different epithelial types in columnar lined oesophagus indicates varying levels of expanded and aberrant proliferative patterns. Histopathology 2005, 47, 132–140. [Google Scholar] [CrossRef]
- Silva, D.C.; Gonçalves, A.K.; Cobucci, R.N.; Mendonça, R.C.; Lima, P.H.; Cavalcanti, G., Jr. Immunohistochemical expression of p16, Ki-67 and p53 in cervical lesions—A systematic review. Pathol. Res. Pract. 2017, 213, 723–729. [Google Scholar] [CrossRef]
- Wu, T.; Xiong, X.; Zhang, W.; Zou, H.; Xie, H.; He, S. Morphogenesis of rete ridges in human oral mucosa: A pioneering morphological and immunohistochemical study. Cells Tissues Organs 2013, 197, 239–248. [Google Scholar] [CrossRef]
- Ren, L.; Jiang, Z.Q.; Fu, Y.; Leung, W.K.; Jin, L. The interplay of lipopolysaccharide-binding protein and cytokines in periodontal health and disease. J. Clin. Periodontol. 2009, 36, 619–626. [Google Scholar] [CrossRef]
- Bastos, M.F.; Lima, J.A.; Vieira, P.M.; Mestnik, M.J.; Faveri, M.; Duarte, P.M. TNF-alpha and IL-4 levels in generalized aggressive periodontitis subjects. Oral Dis. 2009, 15, 82–87. [Google Scholar] [CrossRef]
- Fujihashi, K.; Kono, Y.; Beagley, K.W.; Yamamoto, M.; McGhee, J.R.; Mestecky, J.; Kiyono, H. Cytokines and periodontal disease: Immunopathological role of interleukins for B cell responses in chronic inflamed gingival tissues. J. Periodontol. 1993, 64, 400–406. [Google Scholar]
- Thumbigere Math, V.; Rebouças, P.; Giovani, P.A.; Puppin-Rontani, R.M.; Casarin, R.; Martins, L.; Wang, L.; Krzewski, K.; Introne, W.J.; Somerman, M.J.; et al. Periodontitis in Chédiak-Higashi syndrome: An altered immunoinflammatory response. JDR Clin. Trans. Res. 2018, 3, 35–46. [Google Scholar] [CrossRef]
- Lappin, D.F.; MacLeod, C.P.; Kerr, A.; Mitchell, T.; Kinane, D.F. Anti-inflammatory cytokine IL-10 and T cell cytokine profile in periodontitis granulation tissue. Clin. Exp. Immunol. 2001, 123, 294–300. [Google Scholar] [CrossRef]
- Walker, K.F.; Lappin, D.F.; Takahashi, K.; Hope, J.; Macdonald, D.G.; Kinane, D.F. Cytokine expression in periapical granulation tissue as assessed by immunohistochemistry. Eur. J. Oral Sci. 2000, 108, 195–201. [Google Scholar] [CrossRef]
- Minshall, C.; Arkins, S.; Straza, J.; Conners, J.; Dantzer, R.; Freund, G.G.; Kelley, K.W. IL-4 and insulin-like growth factor-I inhibit the decline in Bcl-2 and promote the survival of IL-3-deprived myeloid progenitors. J. Immunol. 1997, 159, 1225–1232. [Google Scholar]
- Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol. 2003, 3, 23–35. [Google Scholar] [CrossRef]
- Jiang, C.M.; Liu, J.; Zhao, J.Y.; Xiao, L.; An, S.; Gou, Y.C.; Quan, H.X.; Cheng, Q.; Zhang, Y.L.; He, W.; et al. Effects of hypoxia on the immunomodulatory properties of human gingiva-derived mesenchymal stem cells. J. Dent. Res. 2015, 94, 69–77. [Google Scholar] [CrossRef]
- Benatti, B.B.; Silvério, K.G.; Casati, M.Z.; Sallum, E.A.; Nociti, F.H., Jr. Inflammatory and bone-related genes are modulated by aging in human periodontal ligament cells. Cytokine 2009, 46, 176–181. [Google Scholar] [CrossRef]
Factors/Subjects | Ki67 | IL-1 | IL-4 | IL-6 | IL-8 | IL-10 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
E | E | CT | E | CT | E | CT | E | CT | E | CT | |
1. | ++/+++ | +/++ | + | +++ | ++ | +++ | ++ | ++/+++ | +++ | +++ | +++ |
2. | 0/+ | +++ | ++ | +++ | ++ | ++++ | ++ | +++ | +++ | +++ | +++ |
3. | 0/+ | + | ++ | ++ | ++ | +/++ | 0 | 0 | 0 | +/++ | + |
4. | 0 | 0 | +/++ | + | + | 0 | ++ | ++ | +/++ | + | + |
5. | ++/+++ | ++ | +++ | + | +++ | ++ | +++ | 0 | ++ | ++ | +++ |
6. | ++ | +++ | ++ | ++ | +++ | +++ | +++ | ++ | ++ | +++ | ++ |
7. | ++ | +++ | ++ | +++ | +++ | +++ | +++ | +++ | +++ | +++ | ++ |
8. | ++/+++ | +++ | ++ | +++ | +++ | +++ | +++ | +/++ | ++ | +++ | ++ |
9. | +++ | +++ | ++ | +++ | +++ | +++ | +++ | 0 | ++ | +++ | ++ |
10. | ++/+++ | ++++ | ++ | +++ | +++ | +++ | +++ | 0 | + | ++++ | +++ |
11. | 0/+ | +/++ | ++ | + | + | +/++ | ++ | 0/+ | ++/+++ | ++ | ++ |
12. | ++ | +++ | ++ | +++ | + | +++ | +++ | ++ | ++ | +++ | ++ |
13. | 0/+ | ++ | ++ | 0 | + | +/++ | ++ | 0 | + | ++ | ++ |
14. | ++ | +++ | +++ | +++ | +++ | ++/+++ | +++ | 0/+ | +++ | ++/++ | +++ |
15. | ++ | ++ | ++ | ++ | ++ | ++ | ++ | +/++ | +++ | ++ | ++ |
16. | +/++ | +++ | ++ | +++ | ++ | ++ | +++ | +/++ | +++ | ++ | +/++ |
Subjects common | ++ * | ++/+++ * | ++ | Var ++/+++ | ++ * | +++ | +++ | Var +-+++ * | ++/+++ | ++/+++ * | ++ * |
Control | 0 | + | ++ | ++ | + | +/++ | ++ | +/++ | ++ | + | + |
Detected Factor | Mann–Whitney U | Z-Score | p-Value |
---|---|---|---|
IL-1 in epithelium | 14.5 | 2.06431 | 0.01394 |
IL-8 in epithelium | 15.5 | 2.35907 | 0.01828 |
IL-10 in epithelium | 20.5 | 2.33854 | 0.01928 |
Ki67 in epithelium | 10.5 | 3.00669 | 0.00262 |
IL-4 in connective tissue | 16 | 2.32221 | 0.02034 |
IL-10 in connective tissue | 6 | 3.30736 | 0.00094 |
Factor 1 | Factor 2 | R | p-Value |
---|---|---|---|
Very strong positive correlation | |||
IL-10 in epithelium | IL-8 in epithelium | 0.92791 | 0 |
Strong positive correlation | |||
IL-10 in epithelium | IL-4 in epithelium | 0.77857 | 0.00038 |
IL-10 in epithelium | IL-1 in epithelium | 0.72389 | 0.00152 |
IL-1 in epithelium | IL-8 in epithelium | 0.77684 | 0.0004 |
IL-1 in epithelium | IL-4 in epithelium | 0.68943 | 0.00313 |
IL-4 in epithelium | IL-8 in epithelium | 0.72045 | 0.00164 |
Ki67 in epithelium | IL-8 in epithelium | 0.64175 | 0.00736 |
IL-10 in connective tissue | IL-4 in connective tissue | 0.65084 | 0.00632 |
Moderate positive correlation | |||
Ki67 in epithelium | IL-10 in epithelium | 0.56539 | 0.02246 |
IL-1 in connective tissue | IL-4 in connective tissue | 0.55068 | 0.02707 |
IL-10 in connective tissue | IL-1 in connective tissue | 0.51299 | 0.04214 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pilmane, M.; Sidhoma, E.; Akota, I.; Kazoka, D. Characterization of Cytokines and Proliferation Marker Ki67 in Cleft Affected Lip Tissue. Medicina 2019, 55, 518. https://doi.org/10.3390/medicina55090518
Pilmane M, Sidhoma E, Akota I, Kazoka D. Characterization of Cytokines and Proliferation Marker Ki67 in Cleft Affected Lip Tissue. Medicina. 2019; 55(9):518. https://doi.org/10.3390/medicina55090518
Chicago/Turabian StylePilmane, Mara, Elga Sidhoma, Ilze Akota, and Dzintra Kazoka. 2019. "Characterization of Cytokines and Proliferation Marker Ki67 in Cleft Affected Lip Tissue" Medicina 55, no. 9: 518. https://doi.org/10.3390/medicina55090518
APA StylePilmane, M., Sidhoma, E., Akota, I., & Kazoka, D. (2019). Characterization of Cytokines and Proliferation Marker Ki67 in Cleft Affected Lip Tissue. Medicina, 55(9), 518. https://doi.org/10.3390/medicina55090518