Challenges and Opportunities in Preclinical Research of Synthetic Cannabinoids for Pain Therapy
Abstract
:1. Introduction
2. Pharmacological Mechanism of Action in Pain Transmission and Pain Perception
3. Main Methods for in Vitro Assessment of Newly Synthetized Cannabinoids
3.1. Cell Viability and Toxicity
3.1.1. MTT Assay
3.1.2. ATP Assay
3.1.3. Genotoxicity Evaluation of Synthetic Cannabinoids by the Comet Assay
3.2. In Vitro Assessment of Synthetic Cannabinoid Metabolism
4. Animal Models for Assessing the Analgesic Effect of Synthetic Cannabinoids
5. Interaction of Synthetic Cannabinoids with Other Drugs
6. Toxicity of SCs
7. Liquid Chromatography–Electrospray Tandem Mass Spectrometry Methods for the Quantitation of Synthetic Cannabinoids
8. Improving the Solubility and Physicochemical Stability of Synthetic Cannabinoids
8.1. Inclusion of Cannabinoids in the Cavity of a Cyclodextrin
8.2. Transdermal Delivery of Cannabinoids
8.3. Enhancing Trans-Corneal Penetration
8.4. Advanced Pro-NanoLiposphere (PNL)
8.5. An Oral Formulation of THC and CBD—PTL401
8.6. Liposomal and Micelle Formulations of Cannabinoids
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zuardi, A.W. History of cannabis as a medicine: A review. Braz. J. Psychiatry 2006, 28, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Russo, E.B. History of Cannabis and Its Preparations in Saga, Science, and Sobriquet. Chem. Biodivers. 2007, 4, 1614–1648. [Google Scholar] [CrossRef] [PubMed]
- Pertwee, R.G. Cannabinoid pharmacology: The first 66 years. Br. J. Pharmacol. 2006, 147 (Suppl. 1), S163–S171. [Google Scholar] [CrossRef] [Green Version]
- Zou, S.; Kumar, U. Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System. Int. J. Mol. Sci. 2018, 19, 833. [Google Scholar]
- Mills, B.; Yepes, A.; Nugent, K. Synthetic Cannabinoids. Am. J. Med. Sci. 2015, 350, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Le Boisselier, R.; Alexandre, J.; Lelong-Boulouard, V.; Debruyne, D. Focus on cannabinoids and synthetic cannabinoids. Clin. Pharmacol. Ther. 2017, 101, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Diao, X.; Huestis, M.A. New Synthetic Cannabinoids Metabolism and Strategies to Best Identify Optimal Marker Metabolites. Front. Chem. 2019, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- Podda, G.; Constantinescu, C.S. Nabiximols in the treatment of spasticity, pain and urinary symptoms due to multiple sclerosis. Expert Opin. Biol. Ther. 2012, 12, 1517–1531. [Google Scholar] [CrossRef]
- Malik, Z.; Bayman, L.; Valestin, J.; Rizvi-Toner, A.; Hashmi, S.; Schey, R. Dronabinol increases pain threshold in patients with functional chest pain: A pilot double-blind placebo-controlled trial. Dis. Esophagus 2016, 30, 1–8. [Google Scholar] [CrossRef]
- Narang, S.; Gibson, D.; Wasan, A.D.; Ross, E.L.; Michna, E.; Nedeljkovic, S.S.; Jamison, R.N. Efficacy of Dronabinol as an Adjuvant Treatment for Chronic Pain Patients on Opioid Therapy. J. Pain 2008, 9, 254–264. [Google Scholar] [CrossRef]
- Schimrigk, S.; Marziniak, M.; Neubauer, C.; Kugler, E.M.; Werner, G.; Abramov-Sommariva, D. Dronabinol Is a Safe Long-Term Treatment Option for Neuropathic Pain Patients. Eur. Neurol. 2017, 78, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Burstein, S.H. Ajulemic acid: Potential treatment for chronic inflammation. Pharmacol. Res. Perspect. 2018, 6, e00394. [Google Scholar] [CrossRef] [PubMed]
- IASP Taxonomy—IASP. Available online: http://www.iasp-pain.org/Education/Content.aspx?ItemNumber=1698&navItemNumber=576#Neuropathicpain (accessed on 15 June 2014).
- Goldberg, D.S.; McGee, S.J. Pain as a global public health priority. BMC Public Health 2011, 11, 770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavalli, E.; Mammana, S.; Nicoletti, F.; Bramanti, P.; Mazzon, E. The neuropathic pain: An overview of the current treatment and future therapeutic approaches. Int. J. Immunopathol. Pharmacol. 2019, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saloner, B.; McGinty, E.E.; Beletsky, L.; Bluthenthal, R.; Beyrer, C.; Botticelli, M.; Sherman, S.G. A Public Health Strategy for the Opioid Crisis. Public Health Rep. 2018, 133, 24S–34S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogel, M.; Nordt, C.; Bitar, R.; Boesch, L.; Walter, M.; Seifritz, E.; Dürsteler, K.M.; Herdener, M. Cannabis use in Switzerland 2015–2045: A population survey based model. Int. J. Drug Policy 2019, 69, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Mounteney, J.; Griffiths, P.; Sedefov, R.; Noor, A.; Vicente, J.; Simon, R. The drug situation in Europe: An overview of data available on illicit drugs and new psychoactive substances from European monitoring in 2015. Addiction 2016, 111, 34–48. [Google Scholar] [CrossRef]
- Maldonado, R.; Baños, J.E.; Cabañero, D. The endocannabinoid system and neuropathic pain. Pain 2016, 157, S23–S32. [Google Scholar] [CrossRef] [Green Version]
- Potts, A.J.; Cano, C.; Thomas, S.H.L.; Hill, S.L. Synthetic cannabinoid receptor agonists: Classification and nomenclature. Clin. Toxicol. 2019, 1–17, 82–98. [Google Scholar] [CrossRef]
- Castaneto, M.S.; Gorelick, D.A.; Desrosiers, N.A.; Hartman, R.L.; Pirard, S.; Huestis, M.A. Synthetic cannabinoids: Epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depend. 2014, 144, 12–41. [Google Scholar] [CrossRef] [Green Version]
- Waugh, J.; Najafi, J.; Hawkins, L.; Hill, S.L.; Eddleston, M.; Vale, J.A.; Thompson, J.P.; Thomas, S.H.L. Epidemiology and clinical features of toxicity following recreational use of synthetic cannabinoid receptor agonists: A report from the United Kingdom National Poisons Information Service. Clin. Toxicol. 2016, 54, 512–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tai, S.; Fantegrossi, W.E. Synthetic Cannabinoids: Pharmacology, Behavioral Effects, and Abuse Potential. Curr. Addict. Rep. 2014, 1, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.P. Cannabinoids in pain management: CB1, CB2 and non-classic receptor ligands. Expert Opin. Investig. Drugs 2014, 23, 1123–1140. [Google Scholar] [CrossRef] [PubMed]
- Lugassy, D.; Nelson, L. Case files of the medical toxicology fellowship at the New York City poison control: Bromism: Forgotten, but not gone. J. Med. Toxicol. 2009, 5, 151–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cha, H.J.; Seong, Y.-H.; Song, M.-J.; Jeong, H.-S.; Shin, J.; Yun, J.; Han, K.; Kim, Y.-H.; Kang, H.; Kim, H.S. Neurotoxicity of Synthetic Cannabinoids JWH-081 and JWH-210. Biomol. Ther. 2015, 23, 597–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, C.; Opacka-Juffry, J.; Arevalo-Martin, A.; Garcia-Ovejero, D.; Molina-Holgado, E.; Molina-Holgado, F. Spicing Up Pharmacology: A Review of Synthetic Cannabinoids From Structure to Adverse Events. Adv. Pharmacol. 2017, 80, 135–168. [Google Scholar]
- Znaleziona, J.; Ginterová, P.; Petr, J.; Ondra, P.; Válka, I.; Ševčík, J.; Chrastina, J.; Maier, V. Determination and identification of synthetic cannabinoids and their metabolites in different matrices by modern analytical techniques—A review. Anal. Chim. Acta 2015, 874, 11–25. [Google Scholar] [CrossRef]
- Katona, I.; Sperlágh, B.; Sík, A.; Käfalvi, A.; Vizi, E.S.; Mackie, K.; Freund, T.F. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J. Neurosci. 1999, 19, 4544–4558. [Google Scholar] [CrossRef]
- Veress, G.; Meszar, Z.; Muszil, D.; Avelino, A.; Matesz, K.; Mackie, K.; Nagy, I. Characterisation of cannabinoid 1 receptor expression in the perikarya, and peripheral and spinal processes of primary sensory neurons. Brain Struct. Funct. 2013, 218, 733–750. [Google Scholar] [CrossRef]
- Yang, F.; Xu, Q.; Shu, B.; Tiwari, V.; He, S.-Q.; Vera-Portocarrero, L.P.; Dong, X.; Linderoth, B.; Raja, S.N.; Wang, Y.; et al. Activation of cannabinoid CB1 receptor contributes to suppression of spinal nociceptive transmission and inhibition of mechanical hypersensitivity by Aβ-fiber stimulation. Pain 2016, 157, 2582–2593. [Google Scholar] [CrossRef] [Green Version]
- Pertwee, R.G. The pharmacology of cannabinoid receptors and their ligands: An overview. Int. J. Obes. 2006, 30, S13–S18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales, P.; Reggio, P.H.; Jagerovic, N. An overview on medicinal chemistry of synthetic and natural derivatives of cannabidiol. Front. Pharmacol. 2017, 8, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grotenhermen, F. Clinical pharmacodynamics of cannabinoids. J. Cannabis Ther. 2004, 4, 29–78. [Google Scholar] [CrossRef]
- Mannucci, C.; Navarra, M.; Calapai, F.; Spagnolo, E.V.; Busardò, F.P.; Cas, R.D.; Ippolito, F.M.; Calapai, G. Neurological Aspects of Medical Use of Cannabidiol. CNS Neurol. Disord. Drug Targets 2017, 16, 541–553. [Google Scholar] [CrossRef] [Green Version]
- Madras, B.K. Update of Cannabis and its medical use. In Report to the WHO Expert Committee on Drug Dependence; WHO: Geneva, Switzerland, 2015; pp. 1–41. [Google Scholar]
- Hosking, R.D.; Zajicek, J.P. Therapeutic potential of cannabis in pain medicine. Br. J. Anaesth. 2008, 101, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Oz, M.; Al Kury, L.; Keun-Hang, S.Y.; Mahgoub, M.; Galadari, S. Cellular approaches to the interaction between cannabinoid receptor ligands and nicotinic acetylcholine receptors. Eur. J. Pharmacol. 2014, 731, 100–105. [Google Scholar] [CrossRef]
- Vučković, S.; Srebro, D.; Vujović, K.S.; Vučetić, Č.; Prostran, M. Cannabinoids and Pain: New Insights From Old Molecules. Front. Pharmacol. 2018, 9, 1259. [Google Scholar] [CrossRef] [Green Version]
- Nahtigal, I.; Blake, A.; Hand, A.; Florentinus-Mefailoski, A.; Hashemi, H.; Friedberg, J. The pharmacological properties of cannabis. J Pain Manag. 2016, 9, 481–491. [Google Scholar]
- O’Sullivan, S.E. An update on PPAR activation by cannabinoids. Br. J. Pharmacol. 2016, 173, 1899–1910. [Google Scholar] [CrossRef] [Green Version]
- Adan, A.; Kiraz, Y.; Baran, Y. Cell Proliferation and Cytotoxicity Assays. Curr. Pharm. Biotechnol. 2016, 17, 1213–1221. [Google Scholar] [CrossRef]
- Riss, T.L.; Moravec, R.A.; Niles, A.L.; Duellman, S.; Benink, H.A.; Worzella, T.J.; Minor, L. Cell Viability Assays. In Assay Guidance Manual; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, USA, 2004. [Google Scholar]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Marshall, N.J.; Goodwin, C.J.; Holt, S.J. A critical assessment of the use of microculture tetrazolium assays to measure cell growth and function. Growth Regul. 1995, 5, 69–84. [Google Scholar] [PubMed]
- Berridge, M.V.; Tan, A.S. Characterization of the Cellular Reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): Subcellular Localization, Substrate Dependence, and Involvement of Mitochondrial Electron Transport in MTT Reduction. Arch. Biochem. Biophys. 1993, 303, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Huyck, L.; Ampe, C.; Van Troys, M. The XTT cell proliferation assay applied to cell layers embedded in three-dimensional matrix. Assay Drug Dev. Technol. 2012, 10, 382–392. [Google Scholar] [CrossRef] [Green Version]
- Fisher, T.; Golan, H.; Schiby, G.; PriChen, S.; Smoum, R.; Moshe, I.; Peshes-Yaloz, N.; Castiel, A.; Waldman, D.; Gallily, R.; et al. In vitro and in vivo efficacy of non-psychoactive cannabidiol in neuroblastoma. Curr. Oncol. 2016, 23, S15. [Google Scholar] [CrossRef] [Green Version]
- Yun, J.; Yoon, K.S.; Lee, T.-H.; Lee, H.; Gu, S.M.; Song, Y.J.; Cha, H.J.; Han, K.M.; Seo, H.; Shin, J.; et al. Synthetic cannabinoid, JWH-030, induces QT prolongation through hERG channel inhibition. Toxicol. Res. 2016, 5, 1663–1671. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, J.D.; Williamson, E.M. Cannabinoids inhibit human keratinocyte proliferation through a non-CB1/CB2 mechanism and have a potential therapeutic value in the treatment of psoriasis. J. Dermatol. Sci. 2007, 45, 87–92. [Google Scholar] [CrossRef]
- Lukhele, S.T.; Motadi, L.R. Cannabidiol rather than Cannabis sativa extracts inhibit cell growth and induce apoptosis in cervical cancer cells. BMC Complement. Altern. Med. 2016, 16, 335. [Google Scholar] [CrossRef] [Green Version]
- Whyte, D.A.; Al-Hammadi, S.; Balhaj, G.; Brown, O.M.; Penefsky, H.S.; Souid, A.-K. Cannabinoids inhibit cellular respiration of human oral cancer cells. Pharmacology 2010, 85, 328–335. [Google Scholar] [CrossRef]
- Auld, D.S.; Zhang, Y.-Q.; Southall, N.T.; Rai, G.; Landsman, M.; MacLure, J.; Langevin, D.; Thomas, C.J.; Austin, C.P.; Inglese, J. A Basis for Reduced Chemical Library Inhibition of Firefly Luciferase Obtained from Directed Evolution. J. Med. Chem. 2009, 52, 1450–1458. [Google Scholar] [CrossRef] [Green Version]
- Lomakina, G.Y.; Modestova, Y.A.; Ugarova, N.N. Bioluminescence assay for cell viability. Biochemistry 2015, 80, 701–713. [Google Scholar] [CrossRef] [PubMed]
- Östling, O.; Johanson, K.J. Bleomycin, in Contrast to Gamma Irradiation, Induces Extreme Variation of DNA Strand Breakage from Cell to Cell. Int. J. Radiat. Biol. Relat. Stud. Physics Chem. Med. 1987, 52, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Olive, P.L.; Banáth, J.P. The comet assay: A method to measure DNA damage in individual cells. Nat. Protoc. 2006, 1, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Russo, C.; Ferk, F.; Mišík, M.; Ropek, N.; Nersesyan, A.; Mejri, D.; Holzmann, K.; Lavorgna, M.; Isidori, M.; Knasmüller, S. Low doses of widely consumed cannabinoids (cannabidiol and cannabidivarin) cause DNA damage and chromosomal aberrations in human-derived cells. Arch. Toxicol. 2019, 93, 179–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferk, F.; Gminski, R.; Al-Serori, H.; Mišík, M.; Nersesyan, A.; Koller, V.J.; Angerer, V.; Auwärter, V.; Tang, T.; Arif, A.T.; et al. Genotoxic properties of XLR-11, a widely consumed synthetic cannabinoid, and of the benzoyl indole RCS-4. Arch. Toxicol. 2016, 90, 3111–3123. [Google Scholar] [CrossRef] [Green Version]
- Diao, X.; Huestis, M. Approaches, Challenges, and Advances in Metabolism of New Synthetic Cannabinoids and Identification of Optimal Urinary Marker Metabolites. Clin. Pharmacol. Ther. 2017, 101, 239–253. [Google Scholar] [CrossRef]
- Wintermeyer, A.; Möller, I.; Thevis, M.; Jübner, M.; Beike, J.; Rothschild, M.A.; Bender, K. In vitro phase I metabolism of the synthetic cannabimimetic JWH-018. Anal. Bioanal. Chem. 2010, 398, 2141–2153. [Google Scholar] [CrossRef]
- Dhopeshwarkar, A.; Mackie, K. CB2 Cannabinoid receptors as a therapeutic target-what does the future hold? Mol. Pharmacol. 2014, 86, 430–437. [Google Scholar] [CrossRef] [Green Version]
- Herzberg, U.; Eliav, E.; Bennett, G.J.; Kopin, I.J. The analgesic effects of R(+)-WIN 55,212-2 mesylate, a high affinity cannabinoid agonist, in a rat model of neuropathic pain. Neurosci. Lett. 1997, 221, 157–160. [Google Scholar] [CrossRef]
- Pascual, D.; Goicoechea, C.; Suardíaz, M.; Martín, M.I. A cannabinoid agonist, WIN 55,212-2, reduces neuropathic nociception induced by paclitaxel in rats. Pain 2005, 118, 23–34. [Google Scholar] [CrossRef]
- Liang, Y.-C.; Huang, C.-C.; Hsu, K.-S. The synthetic cannabinoids attenuate allodynia and hyperalgesia in a rat model of trigeminal neuropathic pain. Neuropharmacology 2007, 53, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, J.; Yamada, K.; Naemura, A.; Yamashita, T.; Arai, R. Testing various herbs for antithrombotic effect. Nutrition 2005, 21, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Kinsey, S.G.; Mahadevan, A.; Zhao, B.; Sun, H.; Naidu, P.S.; Razdan, R.K.; Selley, D.E.; Imad Damaj, M.; Lichtman, A.H. The CB2 cannabinoid receptor-selective agonist O-3223 reduces pain and inflammation without apparent cannabinoid behavioral effects. Neuropharmacology 2011, 60, 244–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanus, L.; Breuer, A.; Tchilibon, S.; Shiloah, S.; Goldenberg, D.; Horowitz, M.; Pertwee, R.G.; Ross, R.A.; Mechoulam, R.; Fride, E. HU-308: A specific agonist for CB(2), a peripheral cannabinoid receptor. Proc. Natl. Acad. Sci. USA 1999, 96, 14228–14233. [Google Scholar] [CrossRef] [Green Version]
- Clayton, N.; Marshall, F.H.; Bountra, C.; O’Shaughnessy, C.T. CB1 and CB2 cannabinoid receptors are implicated in inflammatory pain. Pain 2002, 96, 253–260. [Google Scholar] [CrossRef]
- Elmes, S.J.R.; Winyard, L.A.; Medhurst, S.J.; Clayton, N.M.; Wilson, A.W.; Kendall, D.A.; Chapman, V. Activation of CB1 and CB2 receptors attenuates the induction and maintenance of inflammatory pain in the rat. Pain 2005, 118, 327–335. [Google Scholar] [CrossRef]
- Nackley, A.G.; Makriyannis, A.; Hohmann, A.G. Selective activation of cannabinoid CB(2) receptors suppresses spinal fos protein expression and pain behavior in a rat model of inflammation. Neuroscience 2003, 119, 747–757. [Google Scholar] [CrossRef]
- Quartilho, A.; Mata, H.P.; Ibrahim, M.M.; Vanderah, T.W.; Porreca, F.; Makriyannis, A.; Malan, T.P. Inhibition of inflammatory hyperalgesia by activation of peripheral CB2 cannabinoid receptors. Anesthesiology 2003, 99, 955–960. [Google Scholar] [CrossRef]
- Deng, L.; Guindon, J.; Cornett, B.L.; Makriyannis, A.; Mackie, K.; Hohmann, A.G. Chronic Cannabinoid Receptor 2 Activation Reverses Paclitaxel Neuropathy Without Tolerance or Cannabinoid Receptor 1–Dependent Withdrawal. Biol. Psychiatry 2015, 77, 475–487. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, W.; Mikami, T.; Iwamura, H. Involvement of central cannabinoid CB2 receptor in reducing mechanical allodynia in a mouse model of neuropathic pain. Eur. J. Pharmacol. 2008, 583, 56–61. [Google Scholar] [CrossRef]
- Li, A.-L.; Lin, X.; Dhopeshwarkar, A.S.; Thomaz, A.C.; Carey, L.M.; Liu, Y.; Nikas, S.P.; Makriyannis, A.; Mackie, K.; Hohmann, A.G. Cannabinoid CB2 Agonist AM1710 Differentially Suppresses Distinct Pathological Pain States and Attenuates Morphine Tolerance and Withdrawal. Mol. Pharmacol. 2019, 95, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Rahn, E.J.; Deng, L.; Thakur, G.A.; Vemuri, K.; Zvonok, A.M.; Lai, Y.Y.; Makriyannis, A.; Hohmann, A.G. Prophylactic Cannabinoid Administration Blocks the Development of Paclitaxel-Induced Neuropathic Nociception during Analgesic Treatment and following Cessation of Drug Delivery. Mol. Pain 2014, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Rahn, E.J.; Makriyannis, A.; Hohmann, A.G. Activation of cannabinoid CB1 and CB2 receptors suppresses neuropathic nociception evoked by the chemotherapeutic agent vincristine in rats. Br. J. Pharmacol. 2007, 152, 765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, L.A.; Bonner, T.I.; Lolait, S.J. Localization of cannabinoid receptor mRNA in rat brain. J. Comp. Neurol. 1993, 327, 535–550. [Google Scholar] [CrossRef] [PubMed]
- Galiègue, S.; Mary, S.; Marchand, J.; Dussossoy, D.; Carrière, D.; Carayon, P.; Bouaboula, M.; Shire, D.; Le Fur, G.; Casellas, P. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur. J. Biochem. 1995, 232, 54–61. [Google Scholar] [CrossRef]
- Zhang, J.; Hoffert, C.; Vu, H.K.; Groblewski, T.; Ahmad, S.; O’Donnell, D. Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. Eur. J. Neurosci. 2003, 17, 2750–2754. [Google Scholar] [CrossRef]
- Gewandter, J.S.; Dworkin, R.H.; Turk, D.C.; McDermott, M.P.; Baron, R.; Gastonguay, M.R.; Gilron, I.; Katz, N.P.; Mehta, C.; Raja, S.N.; et al. Research designs for proof-of-concept chronic pain clinical trials: Immpact recommendations. Pain 2014, 155, 1683–1695. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.S.; Zhang, S. Polypharmacology: Drug discovery for the future. Expert Rev. Clin. Pharmacol. 2013, 6, 41–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abrams, D.I.; Couey, P.; Shade, S.B.; Kelly, M.E.; Benowitz, N.L. Cannabinoid-opioid interaction in chronic pain. Clin. Pharmacol. Ther. 2011, 90, 844–851. [Google Scholar] [CrossRef]
- Hill, K.P.; Palastro, M.D.; Johnson, B.; Ditre, J.W. Cannabis and Pain: A Clinical Review. Cannabis Cannabinoid Res. 2017, 2, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Urits, I.; Borchart, M.; Hasegawa, M.; Kochanski, J.; Orhurhu, V.; Viswanath, O. An Update of Current Cannabis-Based Pharmaceuticals in Pain Medicine. Pain Ther. 2019, 8, 41–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahn, E.J.; Hohmann, A.G. Cannabinoids as Pharmacotherapies for Neuropathic Pain: From the Bench to the Bedside. Neurotherapeutics 2009, 6, 713–737. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Baler, R.D.; Compton, W.M.; Susan, R.B. Adverse Health Effects of Marijuana Use Nora. N. Engl. J. Med. 2016, 370, 2219–2227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, C.; Boddington, D. Teenage Cardiac Arrest Following Abuse of Synthetic Cannabis. Heart Lung Circ. 2015, 24, e162–e163. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, C.Y.; Gilchrist, B.L. A Case of Cannabinoid Hyperemesis Syndrome Caused by Synthetic Cannabinoids. J. Emerg. Med. 2013, 45, 544–546. [Google Scholar] [CrossRef] [PubMed]
- Cooper, Z.D. Adverse Effects of Synthetic Cannabinoids: Management of Acute Toxicity and Withdrawal. Curr. Psychiatry Rep. 2016, 18, 52. [Google Scholar] [CrossRef] [Green Version]
- Cohen, K.; Weinstein, A.M. Synthetic and Non-synthetic Cannabinoid Drugs and Their Adverse Effects—A Review From Public Health Prospective. Front. Public Health 2018, 6, 162. [Google Scholar] [CrossRef]
- Payne, K.S.; Mazur, D.J.; Hotaling, J.M.; Pastuszak, A.W. Cannabis and Male Fertility: A Systematic Review. J. Urol. 2019, 202, 674–681. [Google Scholar] [CrossRef]
- Starowicz, K.; Malek, N.; Przewlocka, B. Cannabinoid receptors and pain. Wiley Interdiscip. Rev. Membr. Transp. Signal. 2013, 2, 121–132. [Google Scholar] [CrossRef]
- Teske, J.; Weller, J.P.; Fieguth, A.; Rothämel, T.; Schulz, Y.; Tröger, H.D. Sensitive and rapid quantification of the cannabinoid receptor agonist naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) in human serum by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878, 2659–2663. [Google Scholar] [CrossRef]
- Dresen, S.; Kneisel, S.; Weinmann, W.; Zimmermann, R.; Auwärter, V. Development and validation of a liquid chromatography-tandem mass spectrometry method for the quantitation of synthetic cannabinoids of the aminoalkylindole type and methanandamide in serum and its application to forensic samples. J. Mass Spectrom. 2011, 46, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Ammann, J.; McLaren, J.M.; Gerostamoulos, D.; Beyer, J. Detection and quantification of new designer drugs in human blood: Part 1—Synthetic cannabinoids. J. Anal. Toxicol. 2012, 36, 372–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kneisel, S.; Auwärter, V. Analysis of 30 synthetic cannabinoids in serum by liquid chromatography-electrospray ionization tandem mass spectrometry after liquid-liquid extraction. J. Mass Spectrom. 2012, 47, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Ambroziak, K.; Adamowicz, P. Simple screening procedure for 72 synthetic cannabinoids in whole blood by liquid chromatography—Tandem mass spectrometry. Forensic Toxicol. 2018, 36, 280–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kneisel, S.; Speck, M.; Moosmann, B.; Corneillie, T.M.; Butlin, N.G.; Auwärter, V. LC/ESI-MS/MS method for quantification of 28 synthetic cannabinoids in neat oral fluid and its application to preliminary studies on their detection windows. Anal. Bioanal. Chem. 2013, 405, 4691–4706. [Google Scholar] [CrossRef]
- Kacinko, S.L.; Xu, A.; Homan, J.W.; McMullin, M.M.; Warrington, D.M.; Logan, B.K. Development and validation of a liquid chromatography-tandem mass spectrometry method for the identification and quantification of JWH-018, JWH-073, JWH-019, and JWH-250 in human whole blood. J. Anal. Toxicol. 2011, 35, 386–393. [Google Scholar] [CrossRef] [Green Version]
- Poklis, J.L.; Amira, D.; Wise, L.E.; Wiebelhaus, J.M.; Haggerty, B.J.; Poklis, A. Detection and disposition of JWH-018 and JWH-073 in mice after exposure to “Magic Gold” smoke. Forensic Sci. Int. 2012, 220, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Oh, D.A.; Parikh, N.; Khurana, V.; Cognata Smith, C.; Vetticaden, S. Effect of food on the pharmacokinetics of dronabinol oral solution versus dronabinol capsules in healthy volunteers. Clin. Pharmacol. 2017, 9, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Zgair, A.; Wong, J.C.; Lee, J.B.; Mistry, J.; Sivak, O.; Wasan, K.M.; Hennig, I.M.; Barrett, D.A.; Constantinescu, C.S.; Fischer, P.M.; et al. Dietary fats and pharmaceutical lipid excipients increase systemic exposure to orally administered cannabis and cannabis-based medicines. Am. J. Transl. Res. 2016, 8, 3448. [Google Scholar]
- Cherniakov, I.; Izgelov, D.; Barasch, D.; Davidson, E.; Domb, A.J.; Hoffman, A. Piperine-pro-nanolipospheres as a novel oral delivery system of cannabinoids: Pharmacokinetic evaluation in healthy volunteers in comparison to buccal spray administration. J. Control. Release 2017, 266, 1–7. [Google Scholar] [CrossRef]
- Pacifici, R.; Marchei, E.; Salvatore, F.; Guandalini, L.; Busardò, F.P.; Pichini, S. Evaluation of long-term stability of cannabinoids in standardized preparations of cannabis flowering tops and cannabis oil by ultra-high-performance liquid chromatography tandem mass spectrometry. Clin. Chem. Lab. Med. 2018, 56, 94–96. [Google Scholar] [CrossRef] [PubMed]
- Harada, A.; Hashidzume, A.; Takashima, Y. Cyclodextrin-Based Supramolecular Polymers; Springer: Berlin/Heidelberg, Gerany, 2006; pp. 1–43. [Google Scholar]
- Uekama, K.; Hirayama, F.; Irie, T. Cyclodextrin Drug Carrier Systems. Chem. Rev. 1998, 98, 2045–2076. [Google Scholar] [CrossRef] [PubMed]
- Kingsley, K.; Lee, S.; Greenbaum, E. Cannabinoid Formulations with Improved Solubility. U.S. Patent Application No. 15/592,135, 31 January 2019. [Google Scholar]
- Stinchcomb, L.; Nalluri, B. Transdermal delivery of cannabidiol. U.S. Patent No. 8,449,908, 28 March 2013. [Google Scholar]
- Ding, S. Recent developments in ophthalmic drug delivery. Pharm. Sci. Technol. Today 1998, 1, 328–335. [Google Scholar] [CrossRef]
- Kabiri, M.; Kamal, S.H.; Pawar, S.V.; Roy, P.R.; Derakhshandeh, M.; Kumar, U.; Hatzikiriakos, S.G.; Hossain, S.; Yadav, V.G. A stimulus-responsive, in situ-forming, nanoparticle-laden hydrogel for ocular drug delivery. Drug Deliv. Transl. Res. 2018, 8, 484–495. [Google Scholar] [CrossRef] [Green Version]
- Nucci, C.; Bari, M.; Spanò, A.; Corasaniti, M.; Bagetta, G.; Maccarrone, M.; Morrone, L.A. Potential roles of (endo)cannabinoids in the treatment of glaucoma: From intraocular pressure control to neuroprotection. Prog. Brain Res. 2008, 173, 451–464. [Google Scholar]
- Tomida, I.; Pertwee, R.G.; Azuara-Blanco, A. Cannabinoids and glaucoma. Br. J. Ophthalmol. 2004, 88, 708–713. [Google Scholar] [CrossRef]
- Cherniakov, I.; Izgelov, D.; Domb, A.J.; Hoffman, A. The effect of Pro NanoLipospheres (PNL) formulation containing natural absorption enhancers on the oral bioavailability of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in a rat model. Eur. J. Pharm. Sci. 2017, 109, 21–30. [Google Scholar] [CrossRef]
- Atsmon, J.; Cherniakov, I.; Izgelov, D.; Hoffman, A.; Domb, A.J.; Deutsch, L.; Deutsch, F.; Heffetz, D.; Sacks, H. PTL401, a New Formulation Based on Pro-Nano Dispersion Technology, Improves Oral Cannabinoids Bioavailability in Healthy Volunteers. J. Pharm. Sci. 2018, 107, 1423–1429. [Google Scholar] [CrossRef]
- Gershkovich, P.; Qadri, B.; Yacovan, A.; Amselem, S.; Hoffman, A. Different impacts of intestinal lymphatic transport on the oral bioavailability of structurally similar synthetic lipophilic cannabinoids: Dexanabinol and PRS-211,220. Eur. J. Pharm. Sci. 2007, 31, 298–305. [Google Scholar] [CrossRef]
- Winnicki, R. Cannabinoid Formulations. U.S. Patent No. 8,808,734, 19 Augest 2012. [Google Scholar]
SC Class | Representatives | SCSC Class | Representativess |
---|---|---|---|
Aminoalkylindoles | AM-1241 JWH-018 JWH-210 JWH-081 | Naphthoylindoles | WIN55,212 JWH-015 JWH-019 JWH-020 JWH-073 JWH-122 JWH-200 |
Adamantoylindoles | AKB48 | Phenylacetylindoles | JWH-250 |
Benzoylindoles | RCS-4 | Tetramethylcyclopropyl ketone indoles | XLR-11 |
Cyclohexylphenols | CP-47497 CP-47497 C8 CP55940 | Quinolinyl ester indoles | PB-22 |
Dibenzopyrans | HU-210 | Indazole carboxamide compounds | AB-FUBINACA AB-PINACA |
Naphthoylpyrroles | JWH-030 |
Pain States | Author | Synthetic Cannabinoid | Route of Delivery | Animal Model | Results |
---|---|---|---|---|---|
Neuropathic pain conditions | Herzberg et al. [62] | R(+)-WIN 55,212-2 mesylate | systemic | a rat model of traumatic injury of the sciatic nerve | antinociceptive effects similar to those of THC |
Pascual et al. [63] | WIN 55,212-2 | systemic | a rat model of a neuropathic condition induced by paclitaxel | sustained inhibition of the thermal hyperalgesia and allodynia determined by paclitaxel | |
Liang et al. [64] | WIN 55,212-2 | systemic | a rat model of trigeminal neuralgia | attenuate allodynia and hyperalgesia | |
Yamamoto et al. [73] | JWH133 | intrathecal | a mouse model of partial sciatic nerve ligation | decrease mechanical allodynia | |
Kinsey et al. [66] | O-3223 | systemic | different types of mice pain models | antinociceptive effects without the development of tolerance or apparent cannabinoid behavioural effects | |
Inflammatory pain | Hanus et al. [67] | HU-308 | systemic | formalin murine model of pain | attenuates formalin-evoked pain behaviour |
Clayton et al. [68] | GW405833 | local and systemic | carrageenan model of inflammatory pain | decrease carrageenan-evoked hyperalgesia and hind paw swelling | |
Elmes et al. [69] | HU210 and JWH-133 | systemic | carrageenan model of inflammatory pain in rats | attenuates inflammatory hypersensitivity and swelling | |
Nackley et al. [70] and Quartilho et al. [71] | AM1241 | local or systemic | carrageenan model of inflammatory pain | reduces paw oedema and attenuates the progression of carrageenan-induced hyperalgesia | |
Cancer pain | Deng et al. [72]; Li et al. [74]; Rahn et al. [75] | AM1710 | systemic | a mouse/rat chemotherapy-induced neuropathy model | blocked chemotherapy-induced allodynia without generating tolerance, physical withdrawal and other side effects of the central nervous system’s associated CB1 receptors |
Rahn et al. [76] | WIN55,212-2 (R,S)-AM1241 | intrathecal | a rat vincristine-induced neuropathy model | suppressed vincristine-evoked mechanical allodynia without causing catalepsy |
Compound for Which LC-ESI-MS/MS Method Was Searched in the Scientific Literature | Number of Additional Synthetic Cannabinoids Analyzed | Biological Fluid and Quantity | Sample Pre-Treatment | Synthetic Cannabinoid Extraction | Chromatographic Column Used for the Chromatographic Separation | Limit of Detection (LOD) and/or Lower Limit of Quantitation (LLOQ) for the Compound JWH-018 |
---|---|---|---|---|---|---|
JWH-018 [93] | 0 | Human serum, 200 μL | 100 μL water, 20 μL internal standard and 10 mg NaHCO3 | 1 mL Hexane/ethyl acetate 99+1 (v/v) | Luna C18 column | LOD 0.07 ng/mL and LLOQ 0.21 ng/mL |
JWH-018 [94] | 7 | Human serum, 1 mL | 20 μL internal standard, 0.5 mL borate buffer (pH 9) | 1.5 mL of n-hexane/ethylacetate 90:10 (v/v) | Luna phenyl hexyl column | LLOQ 0.1 ng/mL |
JWH-018 [95] | 24 | Human blood, 100 μL | 10 μL internal standard, 0.2 mL trizma buffer | 1 mL 1-chlorobutane containing 10% isopropanol | Eclipse XDB C18 column | LLOQ 0.5 ng/mL |
JWH-018 [96] | 29 | Human serum, 1 mL | 10 μL internal standard, 0.5 mL carbonate buffer (pH 10) | 1.5 mL of n-hexane/ethyl acetate 99:1 (v/v) | Luna phenyl hexyl column | LOD 0.02 ng/mL, LLOQ 0.1 ng/mL |
JWH-018 [97] | 71 | Human blood, 200 μL | 20 μL internal standard | 600 μL of ice-cold acetonitrile | Kinetex C18 | LOD 0.02 ng/mL, LLOQ 0.1 ng/mL |
JWH-018 [98] | 27 | Neat oral fluid, 200 μL | 10 μL internal standard | 600 μL of ice-cold acetonitrile | Luna phenyl hexyl column | LOD 0.02 ng/mL, LLOQ 0.2 ng/mL |
JWH-018 [99] | 3 | Human blood, 200 μL | 25 μL internal standard, 200 μL, saturated sodium bicarbonate, 200 μL saturated sodium chloride | 3 mL 99% hexane/1% ethyl acetate | Acquity UPLC HSS T3 C18 column | LOD 0.006 ng/mL, LLOQ 0.1 ng/mL |
JWH-018 [100] | 1 | Mouse blood, 250 μL | 750 μL drug-free human blood, 50 μL internal standard | 2 mL of ice-cold acetonitrile | Zorbax Eclipse XDB C18 column | LLOQ 1 ng/mL |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamba, B.I.; Stanciu, G.D.; Urîtu, C.M.; Rezus, E.; Stefanescu, R.; Mihai, C.T.; Luca, A.; Rusu-Zota, G.; Leon-Constantin, M.-M.; Cojocaru, E.; et al. Challenges and Opportunities in Preclinical Research of Synthetic Cannabinoids for Pain Therapy. Medicina 2020, 56, 24. https://doi.org/10.3390/medicina56010024
Tamba BI, Stanciu GD, Urîtu CM, Rezus E, Stefanescu R, Mihai CT, Luca A, Rusu-Zota G, Leon-Constantin M-M, Cojocaru E, et al. Challenges and Opportunities in Preclinical Research of Synthetic Cannabinoids for Pain Therapy. Medicina. 2020; 56(1):24. https://doi.org/10.3390/medicina56010024
Chicago/Turabian StyleTamba, Bogdan Ionel, Gabriela Dumitrita Stanciu, Cristina Mariana Urîtu, Elena Rezus, Raluca Stefanescu, Cosmin Teodor Mihai, Andrei Luca, Gabriela Rusu-Zota, Maria-Magdalena Leon-Constantin, Elena Cojocaru, and et al. 2020. "Challenges and Opportunities in Preclinical Research of Synthetic Cannabinoids for Pain Therapy" Medicina 56, no. 1: 24. https://doi.org/10.3390/medicina56010024
APA StyleTamba, B. I., Stanciu, G. D., Urîtu, C. M., Rezus, E., Stefanescu, R., Mihai, C. T., Luca, A., Rusu-Zota, G., Leon-Constantin, M.-M., Cojocaru, E., Gafton, B., & Alexa-Stratulat, T. (2020). Challenges and Opportunities in Preclinical Research of Synthetic Cannabinoids for Pain Therapy. Medicina, 56(1), 24. https://doi.org/10.3390/medicina56010024