Non-Alcoholic Beverages, Old and Novel, and Their Potential Effects on Human Health, with a Focus on Hydration and Cardiometabolic Health
Abstract
:1. Introduction
2. Health Effects of Non-Alcoholic Beverages
2.1. Soft Drinks
2.1.1. Calorific Soft Drinks
2.1.2. Caloric Soft Drinks and Obesity
2.1.3. Caloric Soft Drinks, T2DM, and CVD
2.1.4. Caloric Soft Drinks and Bone Health
2.1.5. Caloric Soft Drinks and Other Negative Health Effects
2.2. Non-Calorific Soft Drinks/Artificially-Sweetened Beverages (ASBs)
ASBs, Obesity, and T2DM
2.3. Caffeinated Beverages
2.3.1. Coffee and Tea
2.3.2. Health Benefits of Coffee and Tea
2.3.3. Potential Negative Effects of Coffee and Tea
2.4. Energy Drinks
2.4.1. Potential Benefits of Energy Drinks
2.4.2. Negative Health Effects of Energy Drinks
2.5. Sports Drinks
2.6. Kombucha-Type Drinks
2.6.1. Antimicrobial Properties of Kombucha
2.6.2. Antioxidant Activity in Kombucha
2.7. Sparkling Water-Based Beverages
2.7.1. Hydration Capabilities of Sparking Water
2.7.2. Potential Negatives of Carbonated Water Consumption
2.8. Importance of Hydration in the Context of CVD and T2DM
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Disclaimer
References
- USDA. A Closer Look at Current Intakes and Recommended Shifts—2015–2020 Dietary Guidelines—health.gov. Available online: https://health.gov/our-work/food-nutrition/2015–2020-dietary-guidelines/guidelines/chapter-2/a-closer-look-at-current-intakes-and-recommended-shifts/ (accessed on 10 September 2020).
- Popkin, B.M.; Armstrong, L.E.; Bray, G.M.; Caballero, B.; Frei, B.; Willett, W.C. A new proposed guidance system for beverage consumption in the United States. Am. J. Clin. Nutr. 2007, 86, 525. [Google Scholar] [CrossRef] [PubMed]
- Bandy, L.K.; Scarborough, P.; Harrington, R.A.; Rayner, M.; Jebb, S.A. Reductions in sugar sales from soft drinks in the UK from 2015 to 2018. Biol. Med. Central Med. 2020, 18, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Products—Data Briefs—Number 320—September 2018. Available online: https://www.cdc.gov/nchs/products/databriefs/db320.htm (accessed on 7 July 2020).
- Ferruzzi, M.G.; Tanprasertsuk, J.; Kris-Etherton, P.; Weaver, C.M.; Johnson, E.J. Perspective: The Role of Beverages as a Source of Nutrients and Phytonutrients. Adv. Nutr. 2020, 11, 507–523. [Google Scholar] [CrossRef] [PubMed]
- Dietary Reference Intake: Electrolytes and Water. The National Academies of Science, Engineering, and Medicine. Available online: http://www.nationalacademies.org/hmd/Activities/Nutrition/DRIElectrolytes.aspx (accessed on 7 July 2020).
- Centers for Disease Control and Prevention. Available online: https://wwwn.cdc.gov/nchs/nhanes/ (accessed on 7 July 2020).
- US Department of Health and Human Services; US Department of Agriculture. 2015–2020 Dietary Guidelines for Americans. 8th Edition. [cited 2017 Sep 28]. Available online: https://health.gov/dietaryguidelines/2015/guidelines/ (accessed on 7 July 2020).
- WHO. Diet, nutrition and the prevention of chronic diseases. WHO Tech. Rep. Ser. 2003, 916, 34–38. [Google Scholar]
- Guyenet, S.; Landen, J. Sugar Consumption in the US Diet between 1822 and 2005; Online Statistics Education: A Multimedia Course of Study; Rice University and Tufts University: Houston, TX, USA; Available online: http://onlinestatbook.com (accessed on 23 July 2020).
- Di Rienzi, S.C.; Britton, R.A. Adaptation of the Gut Microbiota to Modern Dietary Sugars and Sweeteners. Adv. Nutr. 2020, 11, 616–629. [Google Scholar] [CrossRef] [Green Version]
- Babey, S.H.; Jones, M.; Yu, H.; Goldstein, H. Bubbling over: Soda consumption and its link to obesity in California. Policy Brief. UCLA Cent. Health Policy Res. 2009, PB2009-5, 1–8. [Google Scholar]
- CDC. Available online: https://www.cdc.gov/pcd/issues/2015/14_0392.htm (accessed on 4 August 2020).
- Young, L.R.; Nestle, M. Expanding portion sizes in the US marketplace: Implications for nutrition counseling. J. Am. Diet Assoc. 2003, 103, 231–234. [Google Scholar] [CrossRef] [Green Version]
- WHO. Available online: https://www.who.int/elena/bbc/ssbs_childhood_obesity/en/ (accessed on 4 August 2020).
- Sakurai, M.; Nakamura, K.; Miura, K.; Takamura, T.; Yoshita, K.; Nagasawa, S.Y.; Morikawa, Y.; Ishizaki, M.; Kido, T.; Naruse, Y.; et al. Sugar-sweetened beverage and diet soda consumption and the 7-year risk for type 2 diabetes mellitus in middle-aged Japanese men. Eur. J. Nutr. 2014, 53, 251–258. [Google Scholar] [CrossRef]
- Schulze, M.B.; Manson, J.A.E.; Ludwig, D.S.; Colditz, G.A.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. J. Am. Med. Assoc. 2004, 292, 927–934. [Google Scholar] [CrossRef]
- Palmer, J.R.; Boggs, D.A.; Krishnan, S.; Hu, F.B.; Singer, M.; Rosenberg, L. Sugar-sweetened beverages and incidence of type 2 diabetes mellitus in African American women. Arch. Intern. Med. 2008, 168, 1487–1492. [Google Scholar] [CrossRef]
- Xi, B.; Huang, Y.; Reilly, K.H.; Li, S.; Zheng, R.; Barrio-Lopez, M.T.; Martinez-Gonzalez, M.A.; Zhou, D. Sugar-sweetened beverages and risk of hypertension and CVD: A dose-response meta-analysis. Br. J. Nutr. 2015, 113, 709–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Contreras, F.; Paniagua, R.; Avila-Díaz, M.; Cabrera-Muñoz, L.; Martínez-Muñiz, I.; Foyo-Niembro, E.; Amato, D. Cola beverage consumption induces bone mineralization reduction in ovariectomized rats. Arch. Med. Res. 2000, 31, 360–365. [Google Scholar] [CrossRef]
- McGartland, C.; Robson, P.J.; Murray, L.; Cran, G.; Savage, M.J.; Watkins, D.; Rooney, M.; Boreham, C. Carbonated soft drink consumption and bone mineral density in adolescence: The Northern Ireland young hearts project. J. Bone Miner. Res. 2003, 18, 1563–1569. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, R.; Zhao, Y.; Shi, Z. High consumption of soft drinks is associated with an increased risk of fracture: A 7-year follow-up study. Nutrients 2020, 12, 530. [Google Scholar] [CrossRef] [Green Version]
- Fried, E.J.; Nestle, M. The growing political movement against soft drinks in schools. JAMA 2002, 288, 2181. [Google Scholar] [CrossRef]
- Robertson, J. Sweetened drinks and children’s health--what do we know, and what can we do? Diabetes Technol. Ther. 2003, 5, 201–203. [Google Scholar] [CrossRef]
- Patterson, M.E.; Yee, J.K.; Wahjudi, P.; Mao, C.S.; Lee, W.N.P. Acute metabolic responses to high fructose corn syrup ingestion in adolescents with overweight/obesity and diabetes. J. Nutr. Intermed. Metab. 2018, 14, 1–7. [Google Scholar] [CrossRef]
- Tamez, M.; Monge, A.; López-Ridaura, R.; Fagherazzi, G.; Rinaldi, S.; Ortiz-Panozo, E.; Yunes, E.; Romieu, E.; Lajous, M. Soda Intake Is Directly Associated with Serum C-Reactive Protein Concentration in Mexican Women. J. Nutr. 2018, 148, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Stern, D.; Mazariegos, M.; Ortiz-Panozo, E.; Campos, H.; Malik, V.S.; Lajous, M.; López-Ridaura, R. Sugar-Sweetened Soda Consumption Increases Diabetes Risk Among Mexican Women. J. Nutr. 2019, 149, 795–803. [Google Scholar] [CrossRef]
- Zheng, F.; Yan, L.; Yang, Z.; Zhong, B.; Xie, W. HbA1c, diabetes and cognitive decline: The English Longitudinal Study of Ageing. Diabetologia 2018, 61, 839–848. [Google Scholar] [CrossRef] [Green Version]
- Kassaar, O.; Pereira Morais, M.; Xu, S.; Francis, P.T.; Ward, S.; Williams, R.J.; Adam, E.; Chamberlain, R.C.; Jenkins, B.; James, T.D.; et al. Macrophage Migration Inhibitory Factor is subjected to glucose modification and oxidation in Alzheimer’s Disease. Sci. Rep. 2017, 7, 45417. [Google Scholar]
- Sonnenburg, E.D.; Smits, S.A.; Tikhonov, M.; Higginbottom, S.K.; Wingreen, N.S.; Sonnenburg, J.L. Diet-induced extinctions in the gut microbiota compound over generations. Nature 2016, 529, 212–215. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, T.A.; Odden, M.C.; Coxson, P.G.; Guzman, D.; Lightwood, J.; Wang, Y.C.; Bibbins-Domingo, K. Health Benefits of Reducing Sugar-Sweetened Beverage Intake in High Risk Populations of California: Results from the Cardiovascular Disease (CVD) Policy Model. PLoS ONE 2013, 8, e81723. [Google Scholar] [CrossRef] [PubMed]
- Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014, 514, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Swithers, S.E.; Shearer, J. Sweetener associated with increased adiposity in young adults. Nat. Rev. Endocrinol. 2017, 13, 443–444. [Google Scholar] [CrossRef] [PubMed]
- Nettleton, J.A.; Lutsey, P.L.; Wang, Y.; Lima, J.A.; Michos, E.D.; Jacobs, D.R. Diet soda intake and risk of incident metabolic syndrome and type 2 diabetes in the multi-ethnic study of atherosclerosis (MESA). Diabetes Care 2009, 32, 688–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearlman, M.; Obert, J.; Casey, L. The Association Between Artificial Sweeteners and Obesity. Curr. Gastroenterol. Rep. 2017, 19, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sikalidis, A.K.; Maykish, A. The Gut Microbiome and Type 2 Diabetes Mellitus: Discussing A Complex Relationship. Biomedicines 2020, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Magnuson, B. Council Spokesperson Reviews Nature Study on Low-Calorie Sweeteners. Available online: https://caloriecontrol.org/council-spokesperson-berna-magnuson-reviews-nature-study-on-low-calorie-sweeteners/ (accessed on 10 September 2020).
- Lobach, A.R.; Roberts, A.; Rowland, I.R. Assessing the in vivo data on low/no-calorie sweeteners and the gut microbiota. Food Chem. Toxicol. 2019, 124, 385–399. [Google Scholar] [CrossRef]
- Anderson, R.L.; Kirkland, J.J. The effect of sodium saccharin in the diet on caecal microflora. Food Cosmet. Toxicol. 1980, 18, 353–355. [Google Scholar] [CrossRef]
- Ruiz-Ojeda, F.J.; Plaza-Díaz, J.; Sáez-Lara, M.J.; Gil, A. Effects of Sweeteners on the Gut Microbiota: A Review of Experimental Studies and Clinical Trials. In Proceedings of the Advances in Nutrition; Oxford University Press: Oxford, UK, 2019; Volume 10, pp. S31–S48. [Google Scholar]
- Brown, R.J.; Walter, M.; Rother, K.I. Effects of diet soda on gut hormones in youths with diabetes. Diabetes Care 2012, 35, 959–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitch, C.; Keim, K.S. Academy of Nutrition and Dietetics. Position of the Academy of Nutrition and Dietetics: Use of nutritive and nonnutritive sweeteners. J. Acad. Nutr. Diet. 2012, 112, 739–758. [Google Scholar] [CrossRef] [PubMed]
- American Diabetic Association. Available online: https://www.diabetes.org/nutrition/understanding-carbs/get-to-know-carbs/sugar-substitutes (accessed on 4 August 2020).
- Johnson, R.K.; Lichtenstein, A.H.; Anderson, C.A.M.; Carson, J.A.; Després, J.-P.; Hu, F.B.; Kris-Etherton, P.M.; Otten, J.J.; Towfighi, A.; Wylie-Rosett, J.; et al. Low-Calorie Sweetened Beverages and Cardiometabolic Health: A Science Advisory from the American Heart Association. Circulation 2018, 138, e126–e140. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Amarnath, S.; Thulasimani, M.; Ramaswamy, S. Artificial sweeteners as a sugar substitute: Are they really safe? Indian J. Pharmacol. 2016, 48, 237–240. [Google Scholar] [CrossRef]
- Grotz, V.L.; Henry, R.R.; Mcgill, J.B.; Prince, M.J.; Shamoon, H.; Trout, J.R.; Pi-Sunyer, F.X. Lack of effect of sucralose on glucose homeostasis in subjects with type 2 diabetes. J. Am. Diet. Assoc. 2003, 103, 1607–1612. [Google Scholar] [CrossRef]
- Mezitis, N.H.E.; Maggio, C.A.; Koch, P.; Quddoos, A.; Allison, D.B.; Pi-Sunyer, F.X. Glycemic effect of a single high oral dose of the novel sweetener sucralose in patients with diabetes. Diabetes Care 1996, 19, 1004–1005. [Google Scholar] [CrossRef]
- The Economic Impact of the Coffee Industry. Available online: https://www.ncausa.org/Industry-Resources/Economic-Impact (accessed on 10 September 2020).
- Tea Consumption by Country|Statista. Available online: https://www.statista.com/statistics/940102/global-tea-consumption/ (accessed on 10 September 2020).
- Xu, P.; Ying, L.; Hong, G.; Wang, Y. The effects of the aqueous extract and residue of Matcha on the antioxidant status and lipid and glucose levels in mice fed a high-fat diet. Food Funct. 2016, 7, 294–300. [Google Scholar] [CrossRef]
- Kuriyama, S.; Shimazu, T.; Ohmori, K.; Kikuchi, N.; Nakaya, N.; Nishino, Y.; Tsubono, Y.; Tsuji, I. Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: The Ohsaki study. J. Am. Med. Assoc. 2006, 296, 1255–1265. [Google Scholar] [CrossRef]
- Huxley, R.; Lee, C.M.Y.; Barzi, F.; Timmermeister, L.; Czernichow, S.; Perkovic, V.; Grobbee, D.E.; Batty, D.; Woodward, M. Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: A systematic review with meta-analysis. Arch. Intern. Med. 2009, 169, 2053–2063. [Google Scholar] [CrossRef]
- Agardh, E.E.; Carlsson, S.; Ahlbom, A.; Efendic, S.; Grill, V.; Hammar, N.; Hilding, A.; Östenson, C.G. Coffee consumption, type 2 diabetes and impaired glucose tolerance in Swedish men and women. J. Intern. Med. 2004, 255, 645–652. [Google Scholar] [CrossRef]
- Fung, T.T.; Schulze, M.; Manson, J.A.E.; Willett, W.C.; Hu, F.B. Dietary patterns, meat intake, and the risk of type 2 diabetes in women. Arch. Intern. Med. 2004, 164, 2235–2240. [Google Scholar] [CrossRef] [PubMed]
- Van Dam, R.M.; Willett, W.C.; Manson, J.A.E.; Hu, F.B. Coffee, caffeine, and risk of type 2 diabetes: A prospective cohort study in younger and middle-aged U.S. women. Diabetes Care 2006, 29, 398–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, N.; Wu, Y.; Ma, J.; Wang, B.; Yu, R. Coffee consumption and risk of lung cancer: A meta-analysis. Lung Cancer 2010, 67, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Thelle, D.S.; Arnesen, E.; Førde, O.H. The Tromsø Heart Study: Does Coffee Raise Serum Cholesterol? N. Engl. J. Med. 1983, 308, 1454–1457. [Google Scholar] [CrossRef]
- Reissig, C.J.; Strain, E.C.; Griffiths, R.R. Caffeinated energy drinks-A growing problem. Drug Alcohol Depend. 2009, 99, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Clauson, K.A.; Shields, K.M.; McQueen, C.E.; Persad, N. Safety issues associated with commercially available energy drinks. J. Am. Pharm. Assoc. 2008, 48, e55–e67. [Google Scholar] [CrossRef]
- Alford, C.; Cox, H.; Wescott, R. The effects of Red Bull Energy Drink on human performance and mood. Amino Acids 2001, 21, 139–150. [Google Scholar] [CrossRef]
- Seifert, S.M.; Schaechter, J.L.; Hershorin, E.R.; Lipshultz, S.E. Health effects of energy drinks on children, adolescents, and young adults. Pediatrics 2011, 127, 511–528. [Google Scholar] [CrossRef] [Green Version]
- Branum, A.M.; Rossen, L.M.; Schoendorf, K.C. Trends in caffeine intake among U.S. children and adolescents. Pediatrics 2014, 133, 386–393. [Google Scholar] [CrossRef] [Green Version]
- Temple, J.L. Review: Trends, Safety, and Recommendations for Caffeine Use in Children and Adolescents. J. Am. Acad. Child Adolesc. Psychiatr. 2019, 58, 36–45. [Google Scholar] [CrossRef] [Green Version]
- American College of Obstetricians and Gynecologists. ACOG CommitteeOpinion No. 462: Moderate caffeine consumption during pregnancy. Obstet. Gynecol. 2010, 116, 467–468. [Google Scholar] [CrossRef] [PubMed]
- Vlajinac, H.D.; Petrovic, R.R.; Marinkovic, J.M.; Sipetic, S.B.; Adanja, B.J. Effect of Caffeine Intake During Pregnancy on Birth Weight. Am. J. Epidemiol. 1997, 145, 335–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vik, T.; Bakketeig, L.S.; Trygg, K.U.; Lund-Larsen, K.; Jacobsen, G. High caffeine consumption in the third trimester of pregnancy: Gender-specific effects on fetal growth. Paediatr. Perinat. Epidemiol. 2003, 17, 324–331. [Google Scholar] [CrossRef]
- Qian, J.; Chen, Q.; Ward, S.M.; Duan, E.; Zhang, Y. Impacts of Caffeine during Pregnancy. Trends Endocrinol. Metab. 2020, 31, 218–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Committee on Nutrition and the Council on Sports Medicine and Fitness. Sports drinks and energy drinks for children and adolescents: Are they appropriate? Pediatrics 2011, 127, 1182–1189. [CrossRef] [Green Version]
- Coombes, J.S.; Hamilton, K.L. The effectiveness of commercially available sports drinks. Sports Med. 2000, 29, 181–209. [Google Scholar] [CrossRef]
- Criswell, D.; Powers, S.; Lawler, J.; Tew, J.; Dodd, S.; Iryiboz, Y.; Tulley, R.; Wheeler, K. Influence of a carbohydrate-electrolyte beverage on performance and blood homeostasis during recovery from football. Int. J. Sport Nutr. 1991, 1, 178–191. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Wang, Q.R.; Fang, Z.L.; Zheng, I.; Zhou, Y.-J.; Wang, T.; Yu, A.-Q.; Yi, M.-Q. Effects of Three Commercially Available Sports Drinks on Substrate Metabolism and Subsequent Endurance Performance in a Postprandial State. Nutrients 2017, 9, 377. [Google Scholar] [CrossRef] [Green Version]
- Kombucha|Description, History, & Nutrition|Britannica. Available online: https://www.britannica.com/topic/kombucha (accessed on 10 July 2020).
- Sreeramulu, G.; Zhu, Y.; Knol, W. Kombucha Fermentation and Its Antimicrobial Activity. J. Agric. Food Chem. 2000, 48, 2589–2594. [Google Scholar] [CrossRef]
- Battikh, H.; Chaieb, K.; Bakhrouf, A.; Ammar, E. Antibacterial and antifungal activities of black and green kombucha teas. J. Food Biochem. 2013, 37, 231–236. [Google Scholar] [CrossRef]
- Ponmurugan, P.; Muthumani, T.; Jayabalan, R.; Swaminathan, K. A comparative study on kombucha tea and black tea. J. Plant. Crop. 2006, 34, 688–693. [Google Scholar]
- Maksimovíc, Z.; Maleňcíc, D.; Kovǎcevíc, N. Polyphenol contents and antioxidant activity of Maydis stigma extracts. Bioresour. Technol. 2005, 96, 873–877. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.-W.; Ji, B.-P.; Zhou, F.; Li, B.; Luo, Y.; Yang, L.; Li, T. Hypocholesterolaemic and antioxidant effects of kombucha tea in high-cholesterol fed mice. J. Sci. Food Agric. 2009, 89, 150–156. [Google Scholar] [CrossRef]
- Food Data Central. Available online: https://fdc.nal.usda.gov/fdc-app.html#/?query=kombucha (accessed on 10 July 2020).
- Clean Water Space » Sparkling Water Is the New Soda. Available online: http://www.cawater-info.net/all_about_water/en/?p=4410 (accessed on 10 July 2020).
- Cuomo, R.; Grasso, R.; Sarnelli, G.; Capuano, G.; Nicolai, E.; Nardone, G.; Pomponi, D.; Budillon, G.; Ierardi, E. Effects of carbonated water on functional dyspepsia and constipation. Eur. J. Gastroenterol. Hepatol. 2002, 14, 991–999. [Google Scholar] [CrossRef]
- Wakisaka, S.; Nagai, H.; Mura, E.; Matsumoto, T.; Moritani, T.; Nagai, N. The Effects of Carbonated Water upon Gastric and Cardiac Activities and Fullness in Healthy Young Women. J. Nutr. Sci. Vitaminol. 2012, 58, 333–338. [Google Scholar] [CrossRef] [Green Version]
- Maughan, R.J.; Owen, J.H.; Shirreffs, S.M.; Leiper, J.B. Post-exercise rehydration in man: Effects of electrolyte addition to ingested fluids. Eur. J. Appl. Physiol. Occup. Physiol. 1994, 69, 209–215. [Google Scholar] [CrossRef]
- Dallosso, H.M.; McGrother, C.W.; Matthews, R.J.; Donaldson, M.M.K. The association of diet and other lifestyle factors with overactive bladder and stress incontinence: A longitudinal study in women. BJU Int. 2003, 92, 69–77. [Google Scholar] [CrossRef]
- CDC. Available online: https://www.cdc.gov/oralhealth/basics/childrens-oral-health/fl_caries.htm (accessed on 4 August 2020).
- Sikalidis, A.K. From food for survival to food for personalized optimal health. A historical perspective of how food and nutrition gave rise to nutrigenomics. J. Am. Coll. Nutr. 2019, 38, 84–95. [Google Scholar] [CrossRef]
- Maykish, A.; Sikalidis, A.K. Utilization of Hydroxyl-Methyl Butyrate, Leucine, Lysine, Glutamine and Arginine Supplementation in Nutritional Management of Sarcopenia—Implications and Clinical Considerations for Type 2 Diabetes Mellitus Risk Modulation. J. Pers. Med. 2020, 10, 19. [Google Scholar] [CrossRef] [Green Version]
- H2O/H2♡ Seltzer 0.0%—The World’s 1st Wine-Infused Soft Seltzer—No Alcohol Soft Seltzer|The World’s 1st Wine-Infused Sparkling Beverage with 0.0% Alcohol—Sonoma, CA, 95452. Available online: https://h2oseltzer.com/ (accessed on 17 July 2020).
- Hard Seltzer. Available online: https://en.wikipedia.org/wiki/Hard_seltzer#cite_note-7 (accessed on 2 August 2020).
- Whiteclaw. Available online: https://locator.whiteclaw.com/?gclid=Cj0KCQjwyJn5BRDrARIsADZ9ykHmZNmIy7mTS0PTWBDSGe-AI0vIIvxxANqCykxrJlRL7PElVanWtf4aAruHEALw_wcB (accessed on 2 August 2020).
- Thornton, S.N. Increased Hydration Can Be Associated with Weight Loss. Front. Nutr. 2016, 3, 18. [Google Scholar] [CrossRef] [Green Version]
- Watso, J.C.; Farquhar, W.B. Hydration Status and Cardiovascular Function. Nutrients 2019, 11, 1866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemetais, G.; Melander, O.; Vecchio, M.; Bottin, J.H.; Enhörning, S.; Perrier, E.T. Effect of increased water intake on plasma copeptin in healthy adults. Eur. J. Nutr. 2018, 57, 1883–1890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrier, E.; Vergne, S.; Klein, A.; Poupin, M.; Rondeau, P.; Le Bellego, L.; Armstrong, L.E.; Lang, F.; Stookey, J.; Tack, I. Hydration biomarkers in free-living adults with different levels of habitual fluid consumption. Br. J. Nutr. 2013, 109, 1678–1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muscogiuri, G.; Barrea, L.; Annunziata, G.; Vecchiarini, M.; Orio, F.; Di Somma, C.; Colao, A.; Savastano, S. Water intake keeps type 2 diabetes away? Focus on copeptin. Endocrine 2018, 62, 292–298. [Google Scholar] [CrossRef]
- Lang, F.; Guelinckx, I.; Lemetais, G.; Melander, O. Two Liters a Day Keep the Doctor Away? Considerations on the Pathophysiology of Suboptimal Fluid Intake in the Common Population. Kidney Blood Press. Res. 2017, 42, 483–494. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Available online: https://www.cancer.org/treatment/treatments-and-side-effects/physical-side-effects/eating-problems/fluids-and-dehydration.html (accessed on 2 August 2020).
- American Heart Association. Available online: https://www.heart.org/en/healthy-living/fitness/fitness-basics/staying-hydrated-staying-healthy (accessed on 2 August 2020).
- CDC Water. Available online: https://www.cdc.gov/healthywater/drinking/nutrition/index.html (accessed on 16 August 2020).
- Dietary Guidelines for Americans 2015–2020. Available online: https://health.gov/our-work/food-nutrition/2015-2020-dietary-guidelines/guidelines/ (accessed on 2 August 2020).
- Canada’s Dietary Guidelines. Available online: https://food-guide.canada.ca/en/guidelines/ (accessed on 2 August 2020).
- Australian Dietary Guidelines. Available online: https://www.eatforhealth.gov.au/guidelines/australian-dietary-guidelines-1-5 (accessed on 2 August 2020).
- Food-Based Dietary Guidelines in Europe. Available online: https://ec.europa.eu/jrc/en/health-knowledge-gateway/promotion-prevention/nutrition/food-based-dietary-guidelines (accessed on 2 August 2020).
- Jones, A.C.; Kirkpatrick, S.I.; Hammond, D. Beverage consumption and energy intake among Canadians: Analyses of 2004 and 2015 national dietary intake data. Nutr. J. 2019, 18, 60. [Google Scholar] [CrossRef] [Green Version]
- Heibati, M.; Stedmon, C.A.; Stenroth, K.; Toljander, J.; Säve-Söderbergh, M.; Murphy, K.R. Assessment of drinking water quality at the tap using fluorescence spectroscopy. Water Res. 2017, 125, 1–10. [Google Scholar] [CrossRef] [Green Version]
Beverage Category | Recommended Daily Intake * (fl oz) | Potential Benefit (s) | Concern (s) | References |
---|---|---|---|---|
Caloric Soft Drinks | 0–8 | None | Excess calorie consumption leading to obesity, T2DM risk, CVD risk, decreased bone density | 1, 10–27 |
Noncaloric Soft Drinks | 0–16 | Fewer calories | Decreased satiety, increased calorie uptake, T2DM risk | 1, 30–47 |
Coffee and Tea | 0–40 | Low to no calorie, decreased T2DM risk, lower cholesterol and triglyceride levels (tea) | Lung cancer risk (coffee), elevated cholesterol levels (coffee), decreased birth weight | 1, 48–57 |
Energy Drinks | 0–8 | Increased brain function, memory, reaction time | Elevated heart rate, increased blood pressure, excess consumption may lead to caffeine related deaths or seizures | 1, 59–68 |
Sports Drinks | 0–16 | Improved performance, plasma maintenance, beneficial for glycogen deficient individuals | Caloric, not always necessary | 1, 69–71 |
Kombucha | 0–16 | Antimicrobial and antifungal properties, increased antioxidant activity, low calorie | Caloric-excess consumption could lead to weight gain | 1, 72–78 |
Sparkling Water | 20–50 | Hydrates as well as water, better electrolyte levels, decreased intestinal distress, increased fullness, higher satiety levels | Increased risk of overactive bladder, stress incontinence | 1, 79–89 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikalidis, A.K.; Kelleher, A.H.; Maykish, A.; Kristo, A.S. Non-Alcoholic Beverages, Old and Novel, and Their Potential Effects on Human Health, with a Focus on Hydration and Cardiometabolic Health. Medicina 2020, 56, 490. https://doi.org/10.3390/medicina56100490
Sikalidis AK, Kelleher AH, Maykish A, Kristo AS. Non-Alcoholic Beverages, Old and Novel, and Their Potential Effects on Human Health, with a Focus on Hydration and Cardiometabolic Health. Medicina. 2020; 56(10):490. https://doi.org/10.3390/medicina56100490
Chicago/Turabian StyleSikalidis, Angelos K., Anita H. Kelleher, Adeline Maykish, and Aleksandra S. Kristo. 2020. "Non-Alcoholic Beverages, Old and Novel, and Their Potential Effects on Human Health, with a Focus on Hydration and Cardiometabolic Health" Medicina 56, no. 10: 490. https://doi.org/10.3390/medicina56100490
APA StyleSikalidis, A. K., Kelleher, A. H., Maykish, A., & Kristo, A. S. (2020). Non-Alcoholic Beverages, Old and Novel, and Their Potential Effects on Human Health, with a Focus on Hydration and Cardiometabolic Health. Medicina, 56(10), 490. https://doi.org/10.3390/medicina56100490