Structural Analysis of Brain Hub Region Volume and Cortical Thickness in Patients with Mild Cognitive Impairment and Dementia
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Mean Values of Volumes and Cortical Thickness
3.2. The Mann–Whitney U Test
3.3. Spearman’s Correlations
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sporns, C.; Honey, J.; Kötter, R. Identification and classification of hubs in brain networks. PLoS ONE 2007, 2, e1049. [Google Scholar] [CrossRef]
- Hagmann, P.; Cammoun, L.; Gigandet, X.; Meuli, R.; Honey, C.J.; Van Wedeen, J.; Sporns, O. Mapping the structural core of human cerebral cortex. PLoS Biol. 2008, 6, e159. [Google Scholar] [CrossRef]
- Hilgetag, C.C.; Kötter, R.; Stephan, K.E.; Sporns, O. Computational Neuroanatomy; Humana Press: Totowa, NJ, USA, 2002. [Google Scholar]
- Yu, Q.; Du, Y.; Chen, J.; Sui, J.; Adali, T.; Pearlson, G.D.; Calhoun, V.D. Application of Graph Theory to Assess Static and Dynamic Brain Connectivity: Approaches for Building Brain Graphs; IEEE: Piscataway, NJ, USA, 2018; Volume 106, pp. 886–906. [Google Scholar]
- Farahani, F.V.; Karwowski, W.; Lighthall, N.R. Application of Graph Theory for Identifying Connectivity Patterns in Human Brain Networks: A SYSTEMATIC Review; Frontiers Media SA: Lausanne, Switzerland, 2019; Volume 13, p. 585. [Google Scholar]
- van den Heuvel, O.; Sporns, O. Network Hubs in the Human Brain; Elsevier Current Trends: Amsterdam, The Netherlands, 2013; Volume 17, pp. 683–696. [Google Scholar]
- Oldham, S.; Fornito, A. The Development of Brain Network Hubs; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; Volume 39, p. 100607. [Google Scholar]
- van den Heuvel, M.P.; Sporns, O. Rich-club organization of the human connectome. J. Neurosci. 2011, 31, 15775–15786. [Google Scholar] [CrossRef]
- Dai, Z.; Yan, C.; Li, K.; Wang, Z.; Wang, J.; Cao, M.; Lin, Q.; Shu, N.; Xia, M.; Bi, Y.; et al. Identifying and Mapping Connectivity Patterns of Brain Network Hubs in Alzheimer’s Disease. Cereb. Cortex 2014, 25, 3723–3742. [Google Scholar] [CrossRef]
- Navas, D.; Papo, S.; Boccaletti, F.; Del-Pozo, R.; Bajo, F.; Maestú, J.H.; Martínez, P.; Gil, I.; Sendiña-Nadal, J.; Buldú, M. Functional hubs in mild cognitive impairment. Int. J. Bifurc. Chaos 2015, 25. [Google Scholar] [CrossRef] [Green Version]
- Guillon, J.; Attal, Y.; Colliot, O.; La Corte, V.B.; Dubois, D.; Schwartz, M.; Chavez, F.; De Vico Fallani, F. Loss of brain inter-frequency hubs in Alzheimer’s disease. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef]
- Zhou, M.; Zhang, F.; Zhao, L.; Qian, J.; Dong, C. Entorhinal cortex: A good biomarker of mild cognitive impairment and mild Alzheimer’s disease. Rev. Neurosci. 2016, 27, 185–195. [Google Scholar] [CrossRef]
- Holbrook, N.; Tustison, F.; Marquez, J.; Roberts, M.; Yassa, A.; Gillen, D. Anterolateral entorhinal cortex thickness as a new biomarker for early detection of Alzheimer’s disease. medRxiv 2019, 19011825. [Google Scholar] [CrossRef]
- Dale, B.; Fischl, M.; Sereno, I. Cortical Surface-Based Analysis: I. Segmentation and Surface Reconstruction. NeuroImage 1999, 9, 179–194. [Google Scholar] [CrossRef]
- Fischl, M.I.; Sereno, R.B.H.; Tootell, A.; Dale, M. High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 1999, 8, 272–284. [Google Scholar] [CrossRef]
- Reuter, M.; Rosas, H.D.; Fischl, B. Highly Accurate Inverse Consistent Registration: A Robust Approach. NeuroImage 2010, 53, 1181–1196. [Google Scholar] [CrossRef] [Green Version]
- Segonne, F.; Dale, A.M.; Busa, E.; Glessner, M.; Salat, D.; Hahn, H.K.; Fischl, B. A hybrid approach to the skull stripping problem in MRI. NeuroImage 2004, 22, 1060–1075. [Google Scholar] [CrossRef]
- Segonne, F.; Pacheco, J.; Fischl, B. Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med. Imaging 2007, 26, 518–529. [Google Scholar] [CrossRef]
- Desikan, R.S.; Ségonne, F.; Fischl, B.; Quinn, B.T.; Dickerson, B.C.; Blacker, D.; Buckner, R.L.; Dale, A.M.; Maguire, R.P.; Hyman, B.T.; et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 2006, 31, 968–980. [Google Scholar] [CrossRef]
- Fischl, A.; Liu, A.; Dale, A. Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Med. Imaging 2001, 20, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Fischl, B.; Salat, D.; Busa, E.; Albert, M.; Dieterich, M.; Haselgrove, C.; van der Kouwe, A.; Killiany, R.; Kennedy, D.; Klaveness, S.; et al. Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 2002, 33, 341–355. [Google Scholar] [CrossRef] [Green Version]
- Fischl, B.; Dale, A.M. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. USA 2000, 97, 11050–11055. [Google Scholar] [CrossRef] [Green Version]
- Fischl, B.; Salat, D.H.; van der Kouwe, A.J.W.; Makris, N.; Ségonne, F.; Quinn, B.T.; Dale, A.M. Sequence-independent segmentation of magnetic resonance images. NeuroImage 2004, 23 (Suppl. 1), S69–S84. [Google Scholar] [CrossRef] [Green Version]
- Fischl, B.; Sereno, M.I. DaleCortical Surface-Based Analysis: II: Inflation, Flattening, and a Surface-Based Coordinate System. NeuroImage 1999, 9, 195–207. [Google Scholar]
- Fischl, B.; van der Kouwe, A.; Destrieux, C.; Halgren, E.; Ségonne, F.; Salat, D.H.; Busa, E.; Seidman, L.J.; Goldstein, J.; Kennedy, D.; et al. Automatically Parcellating the Human Cerebral Cortex. Cereb. Cortex 2004, 14, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Jovicich, J.; Salat, D.; van der Kouwe, A.; Quinn, B.; Czanner, S.; Busa, E.; Pacheco, J.; Albert, M.; Killiany, P.R.; et al. Reliability of MRI-derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade and manufacturer. NeuroImag 2006, 32, 180–194. [Google Scholar]
- Jovicich, J.; Czanner, S.; Greve, E.; Haley, A.; van der Kouwe, R.; Gollub, D.; Kennedy, F.; Schmitt, G.; Brown, J.; MacFall, B.; et al. Reliability in multi-site structural MRI studies: Effects of gradient non-linearity correction on phantom and human data. NeuroImage 2006, 30, 436–443. [Google Scholar] [PubMed]
- Reuter, M.; Fischl, B. Avoiding Asymmetry-Induced Bias in Longitudinal Image Processing. NeuroImage 2011, 57, 1921. [Google Scholar]
- Sled, J.G.; Zijdenbos, A.P.; Evans, A.C. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 1998, 17, 87–97. [Google Scholar]
- Den Heijer, T.; Van Der Lijn, F.; Koudstaal, P.J.; Hofman, A.; Van Der Lugt, A.; Krestin, G.P.; Niessen, W.J.; Breteler, M.M. A 10-year follow-up of hippocampal volume on magnetic resonance imaging in early dementia and cognitive decline. Brain 2010, 133, 1163–1172. [Google Scholar]
- Csernansky, J.G.; Wang, L.; Swank, J.; Miller, J.P.; Gado, M.; McKeel, D.; Miller, M.I.; Morris, J.C. Preclinical detection of Alzheimer’s disease: Hippocampal shape and volume predict dementia onset in the elderly. NeuroImage 2005, 25, 783–792. [Google Scholar]
- Karas, P.; Scheltens, S.; Rombouts, R.; Van Schijndel, M.; Klein, B.; Jones, W.; Van Der Flier, H.; Vrenken, F.; Barkhof, F. Precuneus atrophy in early-onset Alzheimer’s disease: A morphometric structural MRI study. Neuroradiology 2007, 49, 967–976. [Google Scholar]
- Zarei, M.; Ibarretxe-Bilbao, N.; Compta, Y.; Hough, C.; Junque, N.; Bargallo, E.; Tolosa, M.; Martí, J. Cortical thinning is associated with disease stages and dementia in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2013, 84, 875–881. [Google Scholar]
- De Jong, L.W.; Van Der Hiele, K.; Veer, I.M.; Houwing, J.J.; Westendorp, R.G.; Bollen, E.L.; De Bruin, P.W.; Middelkoop, H.A.; Van Buchem, M.A.; Van Der Grond, J. Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: An MRI study. Brain 2008, 131, 3277–3285. [Google Scholar]
- Coupé, P.; Manjón, J.V.; Lanuza, E.; Catheline, C. Lifespan Changes of the Human Brain in Alzheimer’s Disease. Sci. Rep. 2019, 9, 1–12. [Google Scholar]
- Blanc, S.J.; Colloby, N.; Philippi, X.; De Pétigny, B.; Jung, C.; Demuynck, C.; Phillipps, P.; Anthony, A.; Thomas, F.; Bing, J.; et al. Cortical thickness in dementia with lewy bodies and alzheimer’s disease: A comparison of prodromal and dementia stages. PLoS ONE 2015, 10, e0127396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Age | MoCA | |||
---|---|---|---|---|
MCI | Dementia | MCI | Dementia | |
N | 5 | 6 | 5 | 6 |
Mean | 62.0 | 69.5 | 25.4 | 11.7 |
Median | 62.0 | 71.0 | 25.0 | 12.0 |
Std. Deviation | 10.6 | 2.7 | 2.5 | 4.9 |
Minimum | 48.0 | 66.0 | 23.0 | 4.0 |
Maximum | 77.0 | 72.0 | 28.0 | 18.0 |
Group | N | Mean | SD | SE | |
---|---|---|---|---|---|
Left Hippocampus Volume, mm3 | MCI | 5 | 4048.620 | 453.702 | 202.902 |
Dementia | 6 | 2882.800 | 652.183 | 266.253 | |
Right Hippocampus Volume, mm3 | MCI | 5 | 4209.600 | 699.158 | 312.673 |
Dementia | 6 | 3059.567 | 541.566 | 221.093 | |
Left Pallidum Volume, mm3 | MCI | 5 | 1796.220 | 262.356 | 117.329 |
Dementia | 6 | 1605.667 | 241.104 | 98.430 | |
Right Pallidum Volume, mm3 | MCI | 5 | 1754.340 | 235.098 | 105.139 |
Dementia | 6 | 1593.517 | 190.760 | 77.877 | |
Left Putamen Volume, mm3 | MCI | 5 | 4479.360 | 642.134 | 287.171 |
Dementia | 6 | 3652.117 | 548.654 | 223.987 | |
Right Putamen Volume, mm3 | MCI | 5 | 4497.800 | 616.991 | 275.927 |
Dementia | 6 | 4031.617 | 305.439 | 124.695 | |
Left Thalamus Volume, mm3 | MCI | 5 | 6802.060 | 1187.686 | 531.150 |
Dementia | 6 | 5936.450 | 940.564 | 383.984 | |
Right Thalamus Volume, mm3 | MCI | 5 | 6756.820 | 1097.194 | 490.680 |
Dementia | 6 | 5970.650 | 681.772 | 278.332 | |
Left Superior Parietal Gyrus Cortical Thickness, mm | MCI | 5 | 2.153 | 0.096 | 0.043 |
Dementia | 6 | 2.160 | 0.129 | 0.053 | |
Right Superior Parietal Gyrus Cortical Thickness, mm | MCI | 5 | 2.102 | 0.110 | 0.049 |
Dementia | 6 | 2.095 | 0.123 | 0.050 | |
Left Superior Frontal Gyrus Cortical Thickness, mm | MCI | 5 | 2.438 | 0.098 | 0.044 |
Dementia | 6 | 2.452 | 0.142 | 0.058 | |
Right Superior Frontal Gyrus Cortical Thickness, mm | MCI | 5 | 2.410 | 0.111 | 0.050 |
Dementia | 6 | 2.462 | 0.131 | 0.053 | |
Left Precuneus Cortical Thickness, mm | MCI | 5 | 2.280 | 0.069 | 0.031 |
Dementia | 6 | 2.245 | 0.214 | 0.088 | |
Right Precuneus Cortical Thickness, mm | MCI | 5 | 2.280 | 0.115 | 0.051 |
Dementia | 6 | 2.179 | 0.144 | 0.059 | |
Left Insula Cortical Thickness, mm | MCI | 5 | 2.960 | 0.234 | 0.105 |
Dementia | 6 | 2.851 | 0.202 | 0.083 | |
Right Insula Cortical Thickness, mm | MCI | 5 | 2.969 | 0.206 | 0.092 |
Dementia | 6 | 2.824 | 0.128 | 0.052 | |
Left Lingual Gyrus Cortical Thickness, mm | MCI | 5 | 1.962 | 0.144 | 0.064 |
Dementia | 6 | 2.000 | 0.060 | 0.025 | |
Right Lingual Gyrus Cortical Thickness, mm | MCI | 5 | 1.957 | 0.180 | 0.081 |
Dementia | 6 | 1.975 | 0.077 | 0.031 | |
Left Entorhinal Cortex Cortical Thickness, mm | MCI | 5 | 2.896 | 0.304 | 0.136 |
Dementia | 6 | 2.226 | 0.349 | 0.143 | |
Right Entorhinal Cortex Cortical Thickness, mm | MCI | 5 | 2.986 | 0.482 | 0.215 |
Dementia | 6 | 2.515 | 0.511 | 0.209 |
W | p | |
---|---|---|
Left Hippocampus Volume, mm3 | 27.000 | 0.030 * |
Right Hippocampus Volume, mm3 | 28.000 | 0.017 * |
Left Pallidum Volume, mm3 | 22.000 | 0.247 |
Right Pallidum Volume, mm3 | 22.000 | 0.247 |
Left Putamen Volume, mm3 | 25.000 | 0.082 |
Right Putamen Volume, mm3 | 22.000 | 0.247 |
Left Thalamus Volume, mm3 | 21.000 | 0.329 |
Right Thalamus Volume, mm3 | 21.000 | 0.329 |
Left Superior Parietal Gyrus Cortical Thickness, mm | 14.000 | 0.931 |
Right Superior Parietal Gyrus Cortical Thickness, mm | 16.500 | 0.855 |
Left Superior Frontal Gyrus Cortical Thickness, mm | 14.000 | 0.931 |
Right Superior Frontal Gyrus Cortical Thickness, mm | 13.000 | 0.792 |
Left Precuneus Cortical Thickness, mm | 16.000 | 0.931 |
Right Precuneus Cortical Thickness, mm | 22.000 | 0.247 |
Left Insula Cortical Thickness, mm | 15.000 | 1.000 |
Right Insula Cortical Thickness, mm | 22.000 | 0.247 |
Left Lingual Gyrus Cortical Thickness, mm | 13.000 | 0.784 |
Right Lingual Gyrus Cortical Thickness, mm | 13.000 | 0.792 |
Left Entorhinal Cortex Cortical Thickness, mm | 28.000 | 0.017 * |
Right Entorhinal Cortex Cortical Thickness, mm | 24.000 | 0.126 |
Left Hippocampus Volume, mm3 | Right Hippocampus Volume, mm3 | Left Entorhinal Cortex Cortical Thickness, mm | ||||
---|---|---|---|---|---|---|
MCI | Dementia | MCI | Dementia | MCI | Dementia | |
N | 5 | 6 | 5 | 6 | 5 | 6 |
Mean | 4048.620 | 2882.800 | 4209.600 | 3059.567 | 2.896 | 2.226 |
Median | 3742.100 | 2938.200 | 4004.000 | 2995.400 | 2.896 | 2.260 |
Std. Deviation | 453.702 | 652.183 | 699.158 | 541.566 | 0.304 | 0.349 |
Minimum | 3708.800 | 1882.700 | 3370.600 | 2395.800 | 2.428 | 1.773 |
Maximum | 4683.100 | 3764.900 | 5166.600 | 3966.300 | 3.214 | 2.711 |
Variable | MoCA | |
---|---|---|
1. MoCA | Spearman’s rho | - |
p-value | - | |
2. Left Hippocampus Volume, mm3 | Spearman’s rho | 0.767 ** |
p-value | 0.006 | |
3. Right Hippocampus Volume, mm3 | Spearman’s rho | 0.785 ** |
p-value | 0.004 | |
4. Left Pallidum Volume, mm3 | Spearman’s rho | 0.443 |
p-value | 0.172 | |
5. Right Pallidum Volume, mm3 | Spearman’s rho | 0.584 |
p-value | 0.059 | |
6. Left Putamen Volume, mm3 | Spearman’s rho | 0.470 |
p-value | 0.144 | |
7. Right Putamen Volume, mm3 | Spearman’s rho | 0.589 |
p-value | 0.057 | |
8. Left Thalamus Volume, mm3 | Spearman’s rho | 0.374 |
p-value | 0.257 | |
9. Right Thalamus Volume, mm3 | Spearman’s rho | 0.333 |
p-value | 0.316 | |
10. Left Superior Parietal Gyrus Cortical Thickness, mm | Spearman’s rho | 0.169 |
p-value | 0.619 | |
11. Right Superior Parietal Gyrus Cortical Thickness, mm | Spearman’s rho | 0.304 |
p-value | 0.363 | |
12. Left Superior Frontal Gyrus Cortical Thickness, mm | Spearman’s rho | −0.260 |
p-value | 0.440 | |
13. Right Superior Frontal Gyrus Cortical Thickness, mm | Spearman’s rho | −0.283 |
p-value | 0.399 | |
14. Left Precuneus Cortical Thickness, mm | Spearman’s rho | 0.123 |
p-value | 0.718 | |
15. Right Precuneus Cortical Thickness, mm | Spearman’s rho | 0.648 * |
p-value | 0.031 | |
16. Left Insula Cortical Thickness, mm | Spearman’s rho | −0.055 |
p-value | 0.873 | |
17. Right Insula Cortical Thickness, mm | Spearman’s rho | 0.192 |
p-value | 0.572 | |
18. Left Lingual Gyrus Cortical Thickness, mm | Spearman’s rho | −0.092 |
p-value | 0.789 | |
19. Right Lingual Gyrus Cortical Thickness, mm | Spearman’s rho | −0.005 |
p-value | 0.989 | |
20. Left Entorhinal Cortex Cortical Thickness, mm | Spearman’s rho | 0.767 ** |
p-value | 0.006 | |
21. Right Entorhinal Cortex Cortical Thickness, mm | Spearman’s rho | 0.612 * |
p-value | 0.045 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdanovskis, N.; Platkājis, A.; Kostiks, A.; Karelis, G. Structural Analysis of Brain Hub Region Volume and Cortical Thickness in Patients with Mild Cognitive Impairment and Dementia. Medicina 2020, 56, 497. https://doi.org/10.3390/medicina56100497
Zdanovskis N, Platkājis A, Kostiks A, Karelis G. Structural Analysis of Brain Hub Region Volume and Cortical Thickness in Patients with Mild Cognitive Impairment and Dementia. Medicina. 2020; 56(10):497. https://doi.org/10.3390/medicina56100497
Chicago/Turabian StyleZdanovskis, Nauris, Ardis Platkājis, Andrejs Kostiks, and Guntis Karelis. 2020. "Structural Analysis of Brain Hub Region Volume and Cortical Thickness in Patients with Mild Cognitive Impairment and Dementia" Medicina 56, no. 10: 497. https://doi.org/10.3390/medicina56100497
APA StyleZdanovskis, N., Platkājis, A., Kostiks, A., & Karelis, G. (2020). Structural Analysis of Brain Hub Region Volume and Cortical Thickness in Patients with Mild Cognitive Impairment and Dementia. Medicina, 56(10), 497. https://doi.org/10.3390/medicina56100497