Obesity and Brain Function: The Brain–Body Crosstalk
Abstract
:1. Introduction
2. Obesity, Weight Loss, and Neurocognitive Function
3. Obesity and Dementia
4. Obesity and Functional and Structural Brain Changes
5. Risk Factors
5.1. Childhood Maltreatment
5.2. Biological Pathways
6. Techniques for Assessing Obesity
7. Conclusions and Unanswered Questions
Author Contributions
Funding
Conflicts of Interest
References
- Kuk, J.L.; Ardern, C.I. Are metabolically normal but obese individuals at lower risk for all-cause mortality? Diabetes Care 2009, 32, 2297–2299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Global Database on Bady Mass Index WHO Website. 2015. Available online: http://appswhoint/bmi/indexjsp (accessed on 22 June 2020).
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Pasco, J.A.; Nicholson, G.C.; Brennan, S.L.; Kotowicz, M.A. Prevalence of Obesity and the Relationship between the Body Mass Index and Body Fat: Cross-Sectional, Population-Based Data. PLoS ONE 2012, 7, e29580. [Google Scholar] [CrossRef] [Green Version]
- Manson, J.E.; Skerrett, P.J.; Greenland, P.; VanItallie, T.B. The escalating pandemics of obesity and sedentary lifestyle. A call to action for clinicians. Arch. Intern. Med. 2004, 164, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Primeau, V.; Coderre, L.; Karelis, A.D.; Brochu, M.; Lavoie, M.-E.; Messier, V.; Sladek, R.; Rabasa-Lhoret, R. Characterizing the profile of obese patients who are metabolically healthy. Int. J. Obes. 2011, 35, 971–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasim, M.; Awan, F.R.; Najam, S.S.; Khan, A.R.; Khan, H.N. Role of Leptin Deficiency, Inefficiency, and Leptin Receptors in Obesity. Biochem. Genet. 2016, 54, 565–572. [Google Scholar] [CrossRef]
- Matikainen-Ankney, B.A.; Kravitz, A.V. Persistent effects of obesity: A neuroplasticity hypothesis. Ann. N. Y. Acad. Sci. 2018, 1428, 221–239. [Google Scholar] [CrossRef]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef]
- Yudkin, J.; Stehouwer, C.; Emeis, J.; Coppack, S. C-reactive protein in healthy subjects: Associations with obesity, insulin resistance, and endothelial dysfunction: A Potential role for cytokines originating from adipose tissue? Arterioscler. Thromb. Vasc. Biol. 1999, 19, 972–978. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, J.C.D.; Killcross, A.S.; Jenkins, T.A. Obesity and cognitive decline: Role of inflammation and vascular changes. Front. Neurosci. 2014, 8, 375. [Google Scholar] [CrossRef]
- Mora, M.; Granada, M.L.; Palomera, E.; Serra-Prat, M.; Puig-Domingo, M. Obestatin is associated to muscle strength, functional capacity and cognitive status in old women. Age 2013, 35, 2515–2523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batty, G.D.; Deary, I.J.; Zaninotto, P. Association of cognitive function with cause-specific mortality in middle and older age: Follow-up of participants in the English Longitudinal Study of Ageing. Am. J. Epidemiol. 2016, 183, 183–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mielke, M.M.; Machulda, M.M.; Hagen, C.E.; Edwards, K.K.; Roberts, R.O.; Pankratz, V.S.; Knopman, D.S.; Jack, C.R.; Petersen, R.C. Performance of the CogState computerized battery in the Mayo Clinic Study on Aging. Alzheimers Dement. 2015, 11, 1367–1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fergenbaum, J.H.; Bruce, S.; Lou, W.; Hanley, A.J.G.; Greenwood, C.; Young, T.K. Obesity and Lowered Cognitive Performance in a Canadian First Nations Population. Obesity 2009, 17, 1957–1963. [Google Scholar] [CrossRef]
- Prickett, C.; Brennan, L.; Stolwyk, R. Examining the relationship between obesity and cognitive function: A systematic literature review. Obes. Res. Clin. Pract. 2015, 9, 93–113. [Google Scholar] [CrossRef]
- Elias, M.F.; Elias, P.K.; Sullivan, L.M.; Wolf, P.A.; D’Agostino, R.B. Obesity, diabetes and cognitive deficit: The Framingham Heart Study. Neurobiol. Aging 2005, 26 (Suppl. 1), 11–16. [Google Scholar] [CrossRef]
- Hartanto, A.; Yong, J.C.; Toh, W.X. Bidirectional associations between obesity and cognitive function in midlife adults: A longitudinal study. Nutrients 2019, 11, 2343. [Google Scholar] [CrossRef] [Green Version]
- Dye, L.; Boyle, N.B.; Champ, C.; Lawton, C. The relationship between obesity and cognitive health and decline. Proc. Nutr. Soc. 2017, 76, 443–454. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.; Hay, P.; Campbell, L.; Trollor, J.N. A review of the association between obesity and cognitive function across the lifespan: Implications for novel approaches to prevention and treatment. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2011, 12, 740–755. [Google Scholar] [CrossRef]
- Sabia, S.; Kivimaki, M.; Shipley, M.J.; Marmot, M.G.; Singh-Manoux, A. Body mass index over the adult life course and cognition in late midlife: The Whitehall II Cohort Study. Am. J. Clin. Nutr. 2009, 89, 601–607. [Google Scholar] [CrossRef] [Green Version]
- Pasco, J.; Sui, S.; Tembo, M.; Holloway-Kew, K.; Rufus, P.; Kotowicz, M. Sarcopenic Obesity and Falls in the Elderly. J. Gerontol. Geriatr. Res. 2018, 7, 1–14. [Google Scholar] [CrossRef]
- Wang, H.; Hai, S.; Liu, Y.X.; Cao, L.; Liu, P.; Yang, Y.; Dong, B. Associations between Sarcopenic Obesity and Cognitive Impairment in Elderly Chinese Community-Dwelling Individuals. J. Nutr. Health Aging 2019, 23, 14–20. [Google Scholar] [PubMed]
- Siervo, M.; Arnold, R.; Wells, J.C.; Tagliabue, A.; Colantuoni, A.; Albanese, E.; Brayne, C.; Stephan, B.C. Intentional weight loss in overweight and obese individuals and cognitive function: A systematic review and meta-analysis. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2011, 12, 968–983. [Google Scholar]
- Veronese, N.; Facchini, S.; Stubbs, B.; Luchini, C.; Solmi, M.; Manzato, E.; Sergi, G.; Maggi, S.; Cosco, T.; Fontana, L. Weight loss is associated with improvements in cognitive function among overweight and obese people: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2017, 72, 87–94. [Google Scholar]
- Veronese, N.; Facchini, S.; Stubbs, B.; Luchini, C.; Solmi, M.; Manzato, E.; Sergi, G.; Maggi, S.; Cosco, T.; Fontana, L. Time to diagnosis in young-onset dementia and its determinants: The INSPIRED study. Int. J. Geriatr. Psychiatry 2016, 31, 1217–1224. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Gustafson, D.; Rothenberg, E.; Blennow, K.; Steen, B.; Skoog, I. An 18-year follow-up of overweight and risk of Alzheimer disease. Arch. Intern. Med. 2003, 163, 1524–1528. [Google Scholar]
- Fitzpatrick, A.L.; Kuller, L.H.; Lopez, O.L.; Diehr, P.; O’Meara, E.S.; Longstreth, W.T.; Luchsinger, J.A. Midlife and Late-Life Obesity and the Risk of Dementia: Cardiovascular Health Study. Arch. Neurol. 2009, 66, 336–342. [Google Scholar]
- Pedditzi, E.; Peters, R.; Beckett, N. The risk of overweight/obesity in mid-life and late life for the development of dementia: A systematic review and meta-analysis of longitudinal studies. Age Ageing 2016, 45, 14–21. [Google Scholar]
- Singh-Manoux, A.; Dugravot, A.; Shipley, M.; Brunner, E.J.; Elbaz, A.; Sabia, S.; Kivimäki, M. Obesity trajectories and risk of dementia: 28 years of follow-up in the Whitehall II Study. Alzheimers Dement. 2018, 14, 178–186. [Google Scholar]
- Chu, L.W.; Tam, S.; Lee, P.W.; Yik, P.Y.; Song, Y.; Cheung, B.M.; Lam, K.S. Late-life body mass index and waist circumference in amnestic mild cognitive impairment and Alzheimer’s disease. J. Alzheimers Dis. 2009, 17, 223–232. [Google Scholar]
- Brooks, S.J.; Benedict, C.; Burgos, J.; Kempton, M.J.; Kullberg, J.; Nordenskjöld, R.; Kilander, L.; Nylander, R.; Larsson, E.-M.; Johansson, L.; et al. Late-life obesity is associated with smaller global and regional gray matter volumes: A voxel-based morphometric study. Int. J. Obes. 2013, 37, 230–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raji, C.A.; Ho, A.J.; Parikshak, N.N.; Becker, J.T.; Lopez, O.L.; Kuller, L.H.; Hua, X.; Leow, A.D.; Toga, A.W.; Thompson, P.M. Brain structure and obesity. Hum. Brain Mapp. 2010, 31, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Gazdzinski, S.; Kornak, J.; Weiner, M.W.; Meyerhoff, D.J. Body mass index and magnetic resonance markers of brain integrity in adults. Ann. Neurol. 2008, 63, 652–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pannacciulli, N.; Del Parigi, A.; Chen, K.; Le, D.S.; Reiman, E.M.; Tataranni, P.A. Brain abnormalities in human obesity: A voxel-based morphometric study. Neuroimage 2006, 31, 1419–1425. [Google Scholar] [CrossRef]
- Yau, P.L.; Kang, E.H.; Javier, D.C.; Convit, A. Preliminary evidence of cognitive and brain abnormalities in uncomplicated adolescent obesity. Obesity 2014, 22, 1865–1871. [Google Scholar] [CrossRef] [Green Version]
- Van Opstal, A.M.; Wijngaarden, M.A.; van der Grond, J.; Pijl, H. Changes in brain activity after weight loss. Obes. Sci. Pract. 2019, 5, 459–467. [Google Scholar] [CrossRef] [Green Version]
- Opel, N.; Thalamuthu, A.; Milaneschi, Y.; Grotegerd, D.; Flint, C.; Leenings, R.; Goltermann, J.; Richter, M.; Hahn, T.; Woditsch, G.; et al. Brain structural abnormalities in obesity: Relation to age, genetic risk, and common psychiatric disorders: Evidence through univariate and multivariate mega-analysis including 6420 participants from the ENIGMA MDD working group. Mol. Psychiatry 2020, 1–14. [Google Scholar] [CrossRef]
- Danese, A.; Tan, M. Childhood maltreatment and obesity: Systematic review and meta-analysis. Mol. Psychiatry 2014, 19, 544–554. [Google Scholar] [CrossRef]
- Su, Y.; D’Arcy, C.; Yuan, S.; Meng, X. How does childhood maltreatment influence ensuing cognitive functioning among people with the exposure of childhood maltreatment? A systematic review of prospective cohort studies. J. Affect. Disord. 2019, 252, 278–293. [Google Scholar] [CrossRef]
- Goltermann, J.; Redlich, R.; Grotegerd, D.; Dohm, K.; Leehr, E.J.; Böhnlein, J.; Förster, K.; Meinert, S.; Enneking, V.; Richter, M.; et al. Childhood maltreatment and cognitive functioning: The role of depression, parental education, and polygenic predisposition. Neuropsychopharmacology 2020, 1–11. [Google Scholar] [CrossRef]
- Iozzo, P.; Guzzardi, M.A. Imaging of brain glucose uptake by PET in obesity and cognitive dysfunction: Life-course perspective. Endocr. Connect. 2019, 8, R169–R183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, E.B.; Mattson, M.P. The neuropathology of obesity: Insights from human disease. Acta Neuropathol. 2014, 127, 3–28. [Google Scholar] [CrossRef] [PubMed]
- Stranahan, A.M.; Arumugam, T.V.; Cutler, R.G.; Lee, K.; Egan, J.M.; Mattson, M.P. Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat. Neurosci. 2008, 11, 309–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, J.; Shin, K.O.; Park, S.Y.; Jang, K.S.; Kang, S. Effects of exercise and diet change on cognition function and synaptic plasticity in high fat diet induced obese rats. Lipids Health Dis. 2013, 12, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solin, M.S.; Ball, M.J.; Robertson, I.; De Silva, A.; Pasco, J.A.; Kotowicz, M.A.; Nicholson, G.C.; Collier, G.R. Relationship of serum leptin to total and truncal body fat. Clin. Sci. 1997, 93, 581–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, J. The long road to leptin. J. Clin. Investig. 2016, 126, 4727–4734. [Google Scholar] [CrossRef] [Green Version]
- Witte, A.V.; Köbe, T.; Graunke, A.; Schuchardt, J.P.; Hahn, A.; Tesky, V.A.; Pantel, J.; Flöel, A. Impact of leptin on memory function and hippocampal structure in mild cognitive impairment. Hum. Brain Mapp. 2016, 37, 4539–4549. [Google Scholar] [CrossRef]
- McGregor, G.; Clements, L.; Farah, A.; Irving, A.J.; Harvey, J. Age-dependent regulation of excitatory synaptic transmission at hippocampal temporoammonic-CA1 synapses by leptin. Neurobiol. Aging 2018, 69, 76–93. [Google Scholar] [CrossRef]
- Grillo, C.A.; Piroli, G.G.; Junor, L.; Wilson, S.P.; Mott, D.D.; Wilson, M.A.; Reagan, L. Obesity/hyperleptinemic phenotype impairs structural and functional plasticity in the rat hippocampus. Physiol. Behav. 2011, 105, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Sanborn, V.; Preis, S.R.; Ang, A.; Devine, S.; Mez, J.; DeCarli, C.; Au, R.; Alosco, M.L.; Gunstad, J. Association between Leptin, Cognition, and Structural Brain Measures Among “Early” Middle-Aged Adults: Results from the Framingham Heart Study Third Generation Cohort. J. Alzheimers Dis. 2020, 1–11. [Google Scholar] [CrossRef]
- Erion, J.R.; Wosiski-Kuhn, M.; Dey, A.; Hao, S.; Davis, C.L.; Pollock, N.K.; Stranahan, A.M. Obesity elicits interleukin 1-mediated deficits in hippocampal synaptic plasticity. J. Neurosci. 2014, 34, 2618–2631. [Google Scholar] [PubMed] [Green Version]
- Feinkohl, I.; Janke, J.; Slooter, A.J.C.; Winterer, G.; Spies, C.; Pischon, T. Plasma leptin, but not adiponectin, is associated with cognitive impairment in older adults. Psychoneuroendocrinology 2020, 120, 104783. [Google Scholar] [PubMed]
- Guglielmi, G.; Ponti, F.; Agostini, M.; Amadori, M.; Battista, G.; Bazzocchi, A. The role of DXA in sarcopenia. Aging Clin. Exp. Res. 2016, 28, 1047–1060. [Google Scholar] [PubMed]
- Cesari, M.; Ferrini, A.; Zamboni, V.; Pahor, M. Sarcopenia: Current clinical and research issues. Open Access J. Gerontol. Geriatr. Med. 2008, 1, 14–23. [Google Scholar]
- Pasco, J.A.; Mohebbi, M.; Holloway, K.L.; Brennan-Olsen, S.L.; Hyde, N.K.; Kotowicz, M.A. Musculoskeletal decline and mortality: Prospective data from the Geelong Osteoporosis Study. J. Cachexia Sarcopenia Muscle 2017, 8, 482–489. [Google Scholar]
- Pasco, J.A.; Holloway, K.L.; Stuart, A.L.; Williams, L.J.; Brennan-Olsen, S.L.; Berk, M. The subjective wellbeing profile of the ‘pretiree’ demographic: A cross-sectional study. Maturitas 2018, 110, 111–117. [Google Scholar]
- Cesari, M.; Pahor, M.; Lauretani, F.; Zamboni, V.; Bandinelli, S.; Bernabei, R.; Guralnik, J.M.; Ferrucci, L. Skeletal muscle and mortality results from the InCHIANTI Study. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64A, 377–384. [Google Scholar]
- Frank-Wilson, A.W.; Farthing, J.P.; Chilibeck, P.D.; Arnold, C.M.; Davison, K.S.; Olszynski, W.P.; Kontulainen, S.A. Lower leg muscle density is independently associated with fall status in community-dwelling older adults. Osteoporos. Int. 2016, 27, 2231–2240. [Google Scholar]
- Forhan, M.; Gill, S.V. Obesity, functional mobility and quality of life. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 129–137. [Google Scholar]
- Lauretani, F.; Russo, C.R.; Bandinelli, S.; Bartali, B.; Cavazzini, C.; Di Iorio, A.; Corsi, A.M.; Rantanen, T.; Guralnik, J.M.; Ferrucci, L. Age-associated changes in skeletal muscles and their effect on mobility: An operational diagnosis of sarcopenia. J. Appl. Physiol. 2003, 95, 1851–1860. [Google Scholar]
- Shannon, C.A.; Brown, J.R.; Del Pozzi, A.T. Comparison of Body Composition Prediction Equations with Air Displacement Plethysmography in Overweight and Obese Caucasian Males. Int. J. Exerc. Sci. 2019, 12, 1034–1044. [Google Scholar] [PubMed]
- Wagner, D.R.; Castañeda, F.; Bohman, B.; Sterr, W. Comparison of a 2D iPad application and 3D body scanner to air displacement plethysmography for measurement of body fat percentage. J. Hum. Nutr. Diet. 2019, 32, 781–788. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sui, S.X.; Pasco, J.A. Obesity and Brain Function: The Brain–Body Crosstalk. Medicina 2020, 56, 499. https://doi.org/10.3390/medicina56100499
Sui SX, Pasco JA. Obesity and Brain Function: The Brain–Body Crosstalk. Medicina. 2020; 56(10):499. https://doi.org/10.3390/medicina56100499
Chicago/Turabian StyleSui, Sophia X., and Julie A. Pasco. 2020. "Obesity and Brain Function: The Brain–Body Crosstalk" Medicina 56, no. 10: 499. https://doi.org/10.3390/medicina56100499
APA StyleSui, S. X., & Pasco, J. A. (2020). Obesity and Brain Function: The Brain–Body Crosstalk. Medicina, 56(10), 499. https://doi.org/10.3390/medicina56100499