What Is Considered a Variation of Biomechanical Parameters in Tensile Tests of Collagen-Rich Human Soft Tissues?—Critical Considerations Using the Human Cranial Dura Mater as a Representative Morpho-Mechanic Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Retrieval and Processing of Human Temporal Dura Mater Samples
2.2. Adjustment of Water Content
2.3. Mechanical Testing
2.4. Scanning Electron Microscopy
2.5. Data Processing and Statistical Analyses
3. Results
3.1. Elastic Modulus
3.2. Ultimate Tensile Strength
3.3. Strain at Maximum Force
3.4. Scanning Electron Microscopy
4. Discussion
4.1. The Experimental Side Involved in the Mechanical Variation of Human Soft Tissues
4.2. The Influence of Chemical Treatment onto the Variation of Mechanical Parameters
4.3. Water Content Does Influence the Mechanics of Human Soft Tissues
4.4. Extracellular Matrix as a Composite Structure Biases the Mechanical Parameters of Soft Tissues
4.5. Biological Variation Biases the Mechanical Variation to Larger Extent than the Experimental Setup
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bandak, F.A.; Vander Vorst, M.J.; Stuhmiller, L.M.; Mlakar, P.F.; Chilton, W.E.; Stuhmiller, J.H. An imaging-based computational and experimental study of skull fracture: Finite element model development. J. Neurotrauma 1995, 12, 679–688. [Google Scholar] [CrossRef]
- Hammer, N.; Klima, S. In-silico pelvis and sacroiliac joint motion-A review on published research using numerical analyses. Clin. Biomech. 2019, 61, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Ondruschka, B.; Lee, J.H.C.; Scholze, M.; Zwirner, J.; Tong, D.; Waddell, J.N.; Hammer, N. A biomechanical comparison between human calvarial bone and a skull simulant considering the role of attached periosteum and dura mater. Int. J. Legal Med. 2019, 133, 1603–1610. [Google Scholar] [CrossRef]
- Zwirner, J.; Bayer, R.; Japes, A.; Eplinius, F.; Dressler, J.; Ondruschka, B. Suicide by the intraoral blast of firecrackers—Experimental simulation using a skull simulant model. Int. J. Legal Med. 2017, 131, 1581–1587. [Google Scholar] [CrossRef]
- Zwirner, J.; Scholze, M.; Waddell, J.N.; Ondruschka, B.; Hammer, N. Mechanical Properties of Human Dura Mater in Tension—An Analysis at an Age Range of 2 to 94 Years. Sci. Rep. 2019, 9, 16655. [Google Scholar] [CrossRef] [Green Version]
- Zwirner, J.; Babian, C.; Ondruschka, B.; Schleifenbaum, S.; Scholze, M.; Waddell, N.J.; Hammer, N. Tensile properties of the human iliotibial tract depend on height and weight. Med. Eng. Phys. 2019, 69, 85–91. [Google Scholar] [CrossRef]
- Falland-Cheung, L.; Scholze, M.; Lozano, P.F.; Ondruschka, B.; Tong, D.C.; Brunton, P.A.; Waddell, J.N.; Hammer, N. Mechanical properties of the human scalp in tension. J. Mech. Behav. Biomed. Mater. 2018, 84, 188–197. [Google Scholar] [CrossRef]
- Roylance, D. Mechanics of Materials; Wiley: Hoboken, NJ, USA, 1995. [Google Scholar]
- Alizadeh, E.; Dehestani, M.; Zysset, P. An efficient two-scale 3D FE model of the bone fibril array: Comparison of anisotropic elastic properties with analytical methods and micro-sample testing. Biomech. Model. Mechanobiol. 2020. [Google Scholar] [CrossRef]
- Kleiven, S. Influence of impact direction on the human head in prediction of subdural hematoma. J. Neurotrauma 2003, 20, 365–379. [Google Scholar] [CrossRef]
- Zwirner, J.; Ondruschka, B.; Scholze, M.; Schulze-Tanzil, G.; Hammer, N. Mechanical and morphological description of human acellular dura mater as a scaffold for surgical reconstruction. J. Mech. Behav. Biomed. Mater. 2019, 96, 38–44. [Google Scholar] [CrossRef]
- Hammer, N.; Huster, D.; Fritsch, S.; Hadrich, C.; Koch, H.; Schmidt, P.; Sichting, F.; Wagner, M.F.; Boldt, A. Do cells contribute to tendon and ligament biomechanics? PLoS ONE 2014, 9, e105037. [Google Scholar] [CrossRef]
- Hammer, N.; Lingslebe, U.; Aust, G.; Milani, T.L.; Hadrich, C.; Steinke, H. Ultimate stress and age-dependent deformation characteristics of the iliotibial tract. J. Mech. Behav. Biomed. Mater. 2012, 16, 81–86. [Google Scholar] [CrossRef]
- Scholze, M.; Singh, A.; Lozano, P.F.; Ondruschka, B.; Ramezani, M.; Werner, M.; Hammer, N. Utilization of 3D printing technology to facilitate and standardize soft tissue testing. Sci. Rep. 2018, 8, 11340. [Google Scholar] [CrossRef] [Green Version]
- Sichting, F.; Steinke, H.; Wagner, M.F.; Fritsch, S.; Hadrich, C.; Hammer, N. Quantification of material slippage in the iliotibial tract when applying the partial plastination clamping technique. J. Mech. Behav. Biomed. Mater. 2015, 49, 112–117. [Google Scholar] [CrossRef]
- Gallagher, A.J.; Anniadh, A.N.; Bruyere, K.; Otténio, M.; Xie, H.; Gilchrist, M.D. Dynamic Tensile Properties of Human Skin. In Proceedings of the IRCOBI Conference, Dublin, Ireland, 12–14 September 2012. [Google Scholar]
- Lozano, P.F.; Scholze, M.; Babian, C.; Scheidt, H.; Vielmuth, F.; Waschke, J.; Ondruschka, B.; Hammer, N. Water-content related alterations in macro and micro scale tendon biomechanics. Sci. Rep. 2019, 9, 7887. [Google Scholar] [CrossRef]
- Zwirner, J.; Scholze, M.; Ondruschka, B.; Hammer, N. Tissue biomechanics of the human head are altered by Thiel embalming, restricting its use for biomechanical validation. Clin. Anat. 2019. [Google Scholar] [CrossRef]
- Gu, L.; Chafi, M.S.; Ganpule, S.; Chandra, N. The influence of heterogeneous meninges on the brain mechanics under primary blast loading. Compos. B Eng. 2012, 43, 3160–3166. [Google Scholar] [CrossRef] [Green Version]
- Schleifenbaum, S.; Prietzel, T.; Aust, G.; Boldt, A.; Fritsch, S.; Keil, I.; Koch, H.; Mobius, R.; Scheidt, H.A.; Wagner, M.F.; et al. Acellularization-Induced Changes in Tensile Properties Are Organ Specific—An In-Vitro Mechanical and Structural Analysis of Porcine Soft Tissues. PLoS ONE 2016, 11, e0151223. [Google Scholar] [CrossRef] [Green Version]
- Hammer, N.; Huster, D.; Boldt, A.; Hadrich, C.; Koch, H.; Mobius, R.; Schulze-Tanzil, G.; Scheidt, H.A. A preliminary technical study on sodium dodecyl sulfate-induced changes of the nano-structural and macro-mechanical properties in human iliotibial tract specimens. J. Mech. Behav. Biomed. Mater. 2016, 61, 164–173. [Google Scholar] [CrossRef]
- MacManus, D.B.; Pierrat, B.; Murphy, J.G.; Gilchrist, M.D. Protection of cortex by overlying meninges tissue during dynamic indentation of the adolescent brain. Acta Biomater. 2017, 57, 384–394. [Google Scholar] [CrossRef]
- Schleifenbaum, S.; Prietzel, T.; Hadrich, C.; Mobius, R.; Sichting, F.; Hammer, N. Tensile properties of the hip joint ligaments are largely variable and age-dependent—An in-vitro analysis in an age range of 14-93 years. J. Biomech. 2016, 49, 3437–3443. [Google Scholar] [CrossRef]
- Steinke, H.; Lingslebe, U.; Bohme, J.; Slowik, V.; Shim, V.; Hadrich, C.; Hammer, N. Deformation behavior of the iliotibial tract under different states of fixation. Med. Eng. Phys. 2012, 34, 1221–1227. [Google Scholar] [CrossRef]
- Trindade, V.L.; Martins, P.A.; Santos, S.; Parente, M.P.; Natal Jorge, R.M.; Santos, A.; Santos, L.; Fernandes, J.M. Experimental study of the influence of senescence in the biomechanical properties of the temporal tendon and deep temporal fascia based on uniaxial tension tests. J. Biomech. 2012, 45, 199–201. [Google Scholar] [CrossRef]
- McGarvey, K.A.; Lee, J.M.; Boughner, D.R. Mechanical suitability of glycerol-preserved human dura mater for construction of prosthetic cardiac valves. Biomaterials 1984, 5, 109–117. [Google Scholar]
- Protasoni, M.; Sangiorgi, S.; Cividini, A.; Culuvaris, G.T.; Tomei, G.; Dell’Orbo, C.; Raspanti, M.; Balbi, S.; Reguzzoni, M. The collagenic architecture of human dura mater. J. Neurosurg. 2011, 114, 1723–1730. [Google Scholar] [CrossRef] [Green Version]
- van Noort, R.; Black, M.M.; Martin, T.R.; Meanley, S. A study of the uniaxial mechanical properties of human dura mater preserved in glycerol. Biomaterials 1981, 2, 41–45. [Google Scholar]
- Zwirner, J.; Ondruschka, B.; Scholze, M.; Hammer, N. Surface coating and speckling of the human iliotibial tract does not affect its load-deformation properties. Sci. Rep. in revision.
- Hammer, N.; Loffler, S.; Bechmann, I.; Steinke, H.; Hadrich, C.; Feja, C. Comparison of modified Thiel embalming and ethanol-glycerin fixation in an anatomy environment: Potentials and limitations of two complementary techniques. Anat. Sci. Educ. 2015, 8, 74–85. [Google Scholar] [CrossRef]
- Hammer, N.; Schroder, C.; Schleifenbaum, S. On the suitability of Thiel-fixed samples for biomechanical purposes: Critical considerations on the articles of Liao et al. “Elastic Properties of Thiel-Embalmed Human Ankle Tendon and Ligament” and Verstraete et al. "Impact of Drying and Thiel Embalming on Mechanical Properties of Achilles Tendons". Clin. Anat. 2016, 29, 424–425. [Google Scholar] [CrossRef]
- Abe, M.; Takahashi, M.; Horiuchi, K.; Nagano, A. The changes in crosslink contents in tissues after formalin fixation. Anal. Biochem. 2003, 318, 118–123. [Google Scholar] [CrossRef]
- Werner, M.; Chott, A.; Fabiano, A.; Battifora, H. Effect of formalin tissue fixation and processing on immunohistochemistry. Am. J. Surg. Pathol. 2000, 24, 1016–1019. [Google Scholar] [CrossRef]
- Bass, C.R.; Planchak, C.J.; Salzar, R.S.; Lucas, S.R.; Rafaels, K.A.; Shender, B.S.; Paskoff, G. The temperature-dependent viscoelasticity of porcine lumbar spine ligaments. Spine (Phila Pa 1976) 2007, 32, E436–E442. [Google Scholar] [CrossRef]
- Wang, Y.; Hahn, J.; Zhang, Y. Mechanical Properties of Arterial Elastin With Water Loss. J. Biomech. Eng. 2018, 140. [Google Scholar] [CrossRef] [Green Version]
- Ramadan, S.; Paul, N.; Naguib, H.E. Standardized static and dynamic evaluation of myocardial tissue properties. Biomed. Mater. 2017, 12, 025013. [Google Scholar] [CrossRef]
- Hamann, M.C.; Sacks, M.S.; Malinin, T.I. Quantification of the collagen fibre architecture of human cranial dura mater. J. Anat. 1998, 192 Pt 1, 99–106. [Google Scholar]
- Kurosu, H. Biochemical studies on collagen and connectin from human skeletal muscle: Age-related changes in the properties of elasticity (author’s transl). Nihon Seikeigeka Gakkai Zasshi 1979, 53, 1641–1652. [Google Scholar]
- Zwirner, J.; Ondruschka, B.; Scholze, M.; Hammer, N. Passive load-deformation properties of human temporal muscle. J. Biomech. 2020, 106, 109829. [Google Scholar] [CrossRef]
- Clavert, P.; Kempf, J.F.; Bonnomet, F.; Boutemy, P.; Marcelin, L.; Kahn, J.L. Effects of freezing/thawing on the biomechanical properties of human tendons. Surg. Radiol. Anat. 2001, 23, 259–262. [Google Scholar] [CrossRef]
- Quirinia, A.; Viidik, A. Freezing for postmortal storage influences the biomechanical properties of linear skin wounds. J. Biomech. 1991, 24, 819–823. [Google Scholar] [CrossRef]
- Full, S.M.; Delman, C.; Gluck, J.M.; Abdmaulen, R.; Shemin, R.J.; Heydarkhan-Hagvall, S. Effect of fiber orientation of collagen-based electrospun meshes on human fibroblasts for ligament tissue engineering applications. J. Biomed. Mater. Res. B Appl. Biomater. 2015, 103, 39–46. [Google Scholar] [CrossRef]
- Zwirner, J.; Zhang, M.; Ondruschka, B.; Akita, K.; Hammer, N. An ossifying bridge—On the structural continuity between the Achilles tendon and the plantar fascia. Sci. Rep. 2020, 10, 14523. [Google Scholar] [CrossRef]
- Vazquez-Portalatin, N.; Alfonso-Garcia, A.; Liu, J.C.; Marcu, L.; Panitch, A. Physical, Biomechanical, and Optical Characterization of Collagen and Elastin Blend Hydrogels. Ann. Biomed. Eng. 2020. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zwirner, J.; Scholze, M.; Ondruschka, B.; Hammer, N. What Is Considered a Variation of Biomechanical Parameters in Tensile Tests of Collagen-Rich Human Soft Tissues?—Critical Considerations Using the Human Cranial Dura Mater as a Representative Morpho-Mechanic Model. Medicina 2020, 56, 520. https://doi.org/10.3390/medicina56100520
Zwirner J, Scholze M, Ondruschka B, Hammer N. What Is Considered a Variation of Biomechanical Parameters in Tensile Tests of Collagen-Rich Human Soft Tissues?—Critical Considerations Using the Human Cranial Dura Mater as a Representative Morpho-Mechanic Model. Medicina. 2020; 56(10):520. https://doi.org/10.3390/medicina56100520
Chicago/Turabian StyleZwirner, Johann, Mario Scholze, Benjamin Ondruschka, and Niels Hammer. 2020. "What Is Considered a Variation of Biomechanical Parameters in Tensile Tests of Collagen-Rich Human Soft Tissues?—Critical Considerations Using the Human Cranial Dura Mater as a Representative Morpho-Mechanic Model" Medicina 56, no. 10: 520. https://doi.org/10.3390/medicina56100520
APA StyleZwirner, J., Scholze, M., Ondruschka, B., & Hammer, N. (2020). What Is Considered a Variation of Biomechanical Parameters in Tensile Tests of Collagen-Rich Human Soft Tissues?—Critical Considerations Using the Human Cranial Dura Mater as a Representative Morpho-Mechanic Model. Medicina, 56(10), 520. https://doi.org/10.3390/medicina56100520