Determination of Body Fat Ratio Standards in Children at Early School Age Using Bioelectric Impedance
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Procedures
2.3. Data Analysis
3. Results
4. Discussion
5. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef] [Green Version]
- Pandita, A.; Sharma, D.; Pandita, D.; Pawar, S.; Tariq, M.; Kaul, A. Childhood obesity: Prevention is better than cure. Diabetes Metab. Syndr. Obes. 2016, 9, 83–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopecký, M. Prevalence of overweight and obesity in children between the ages of 6 and 7 and the attitude of parents towards primary prevention in the Olomouc region. Hygiena 2016, 61, 4–10. [Google Scholar] [CrossRef]
- Tsigos, C.; Hainer, V.; Basdevant, A.; Finer, N.; Fried, M.; Mathus-Vliegen, E.; Micic, D.; Maislos, M.; Roman, G.; Schutz, Y.; et al. Management of obesity in adults: European clinical practice guidelines. Obes. Facts 2008, 1, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Bunc, V. Obesity—Causes and remedies. Phys. Act. Rev. 2016, 4, 50–56. [Google Scholar] [CrossRef]
- Cole, T.J.; Faith, M.S.; Pietrobelli, A.; Heo, M. What is the best measure of adiposity change in growing children: BMI, BMI %, BMI z-score or BMI centile? Eur. J. Clin. Nutr. 2005, 59, 419–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inokuchi, M.; Matsuo, N.; Takayama, J.I.; Hasegawa, T. BMI z-score is the optimal measure of annual adiposity change in elementary school children. Ann. Hum. Biol. 2011, 38, 747–751. [Google Scholar] [CrossRef]
- Verjans-Janssen, S.R.B.; van de Kolk, I.; Van Kann, D.H.H.; Kremers, S.P.J.; Gerards, S.M.P.L. Effectiveness of school-based physical activity and nutrition interventions with direct parental involvement on childrens BMI and energy balance-related behaviors—A systematic review. PLoS ONE 2018, 13, 1–24. [Google Scholar] [CrossRef]
- Heyward, V.H.; Wagner, D.R. Applied Body Composition Assessment, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2004; pp. 67–85. [Google Scholar]
- Block, G.; Dresser, C.M.; Hartman, A.M.; Carroll, M.D. Nutrient sources in the American diet: Quantitative data from the NHANES II survey. I. Vitamins and minerals. Am. J. Epidemiol. 1985, 122, 13–26. [Google Scholar] [CrossRef]
- Tremmel, M.; Gerdtham, U.-G.; Nilsson, P.M.; Saha, S. Economic Burden of Obesity: A Systematic Literature Review. Int. J. Environ. Res. Public Health 2017, 14, 435. [Google Scholar] [CrossRef]
- WHO Obesity. Preventing and Managing the Global Epidemic. Report of a WHO Consultation (WHO Technical Report Series 894); WHO: Geneva, Switzerland, 2004; Available online: http://www.who.int/nutrition/publications/obesity/WHO_TRS_894/en/ (accessed on 7 February 2020).
- WHO Child Growth Standards. BMI-for-Age; WHO: Geneva, Switzerland, 2019; Available online: http://www.who.int/childgrowth/standards/bmi_for_age/en/ (accessed on 7 February 2020).
- Vignerová, J.; Riedlová, P.; Bláha, P.; Kobzová, J.; Krejčovský, L.; Brabec, M.; Hrušková, M. Growth Charts. 6th Nation-Wide Anthropological Survey of Children and Adolescents 2001 Czech Republic, 1st ed.; PřF UK a SZÚ: Prague, Czech Republic, 2006; pp. 97–137. Available online: http://www.szu.cz/publikace/data/kniha-6-cav-2001-ke-stazeni. (accessed on 7 February 2020).
- Baumgartner, R.N. Body composition in healthy aging. Ann. N. Y. Acad Sci. 2000, 904, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Gába, A.; Přidalová, M. Age-related changes in body composition in a sample of Czech women aged 18–89 years: A cross-sectional study. Eur. J. Nutr. 2014, 53, 167–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, D.P.; Going, S.B.; Lohman, T.G.; Harsha, D.W.; Srinivasan, S.R.; Webber, L.S.; Berenson, G.S. Body fatness and risk for elevated blood pressure, total cholesterol, and serum lipoprotein ratios in children and adolescents. Am. J. Public Health 1992, 82, 358–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurson, K.R.; Eisenmann, J.C.; Welk, G.J. Development of youth percent body fat standards using receiver operating characteristic curves. Am. J. Prev. Med. 2011, 41, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Beaufrère, B.; Morio, B. Fat and protein redistribution with aging: Metabolic considerations. Eur. J. Clin. Nutr. 2000, 54, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Haberka, M.; Stolarz-Skrzypek, K.; Biedroń, M.; Szóstak-Janiak, K.; Partyka, M.; Olszanecka-Glinianowicz, M.; Gasior, Z. Obesity, Visceral Fat, and Hypertension-Related Complications. Metab. Syndr. Relat. Disord. 2018, 16, 521–529. [Google Scholar] [CrossRef]
- Van Gaal, L.F.; Mertens, I.L.; De Block, C.E. Mechanisms linking obesity with cardiovascular disease. Nature 2006, 444, 875–880. [Google Scholar] [CrossRef]
- Bunc, V. A movement intervention as a tool of the influence of physical fitness and health. Trends Sport Sci. 2018, 4, 209–216. [Google Scholar]
- Bunc, V. Walking like a tool of physical fitness and body composition influence. Antropomotoryka 2012, 22, 63–72. [Google Scholar]
- Bunc, V.; Skalská, M. Using walking as a tool for fitness and its influence on obesity and overweight individuals. Jacobs J. Obes. 2015, 1, 1–10. [Google Scholar]
- Lazaar, N.; Aucouturier, J.; Ratel, S.; Rance, M.; Meyer, M.; Duché, P. Effect of physical activity intervention on body composition in young children: Influence of body mass index status and gender. Acta Paediatr. 2007, 96, 1315–1320. [Google Scholar] [CrossRef] [PubMed]
- Roriz, D.E.; Oliveira, M.S.; Teixeira Seabra, A.F.; Ribeiro Maia, J.A. Effects of a recreational physical activity summer camp on body composition, metabolic syndrome and physical fitness in obese children. J. Sports Med. Phys. Fit. 2016, 56, 933–938. [Google Scholar]
- Eisenmann, J.C.; Heelan, K.A.; Welk, J.G. Assessing body composition among 3- to 8-year-old children: Anthropometry, BIA, and DXA. Obes. Res. 2004, 12, 1633–1640. [Google Scholar] [CrossRef] [PubMed]
- Sergi, G.; De Rui, M.; Stubbs, B.; Veronese, N.; Manzato, E. Measurement of lean body mass using bioelectrical impedance analysis: A consideration of the pros and cons. Aging Clin. Exp. Res. 2017, 29, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Kutáč, P.; Kopecký, M. Comparison of body fat using various bioelectrical impedance analyzers in university students. Acta Gymnica 2015, 45, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Ceccarelli, G.; Bellato, M.; Zago, M.; Cusella, G.; Sforza, C.; Lovecchio, N. BMI and inverted BMI as predictors of fat mass in young people: A comparison across the ages. Ann. Hum. Biol. 2020, 47, 237–243. [Google Scholar] [CrossRef]
- Laurson, K.R.; Eisenmann, J.C.; Welk, G.J. Body Mass Index Standards Based on Agreement with Health-Related Body Fat. Am. J. Prev. Med. 2011, 41, 100–105. [Google Scholar] [CrossRef]
- Czech Statistical Office. Statistics. 2018; ČSÚ: Praha, Czech Republic, 2018; Available online: https://vdb.czso.cz/vdbvo2/faces/index.jsf?page=vystup-objekt&pvo=DEM01&z=T&f=TABULKA&skupId=606&katalog=30845&pvo=DEM01&str=v33&evo=v866_!_VUZEMI97-100_1&c=v3~2__RP2019MP12DP31 (accessed on 20 February 2020).
- Mirwald, R.L.; Baxter-Jones, A.D.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar]
- Müller, L.; Müller, E.; Hildebrandt, C.; Kapelari, K.; Raschner, C. The assessment of biological maturation for talent selection—Which method can be used? Sportverletz Sportschaden 2015, 29, 56–63. [Google Scholar]
- Vignerová, J.; Lhotská, L.; Bláha, P.; Roth, Z. Growth of the Czech child population 0–18 years compared to the World Health Organization growth reference. Am. J. Hum. Biol. 1997, 9, 459–468. [Google Scholar] [CrossRef]
- Mialich, M.S.; Sicchieri, J.M.F.; Junior, A.A.J. Analysis of Body Composition: A Critical Review of the Use of Bioelectrical Impedance. Anal. Int. J. Clin. Nutr 2014, 2, 1–10. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988; pp. 273–288. [Google Scholar]
- Dong, Y.; Jan, C.; Ma, Y.; Dong, B.; Zou, Z.; Yang, Y.; Xu, R.; Song, Y.; Ma, J.; Sawyer, S.M.; et al. Economic development and the nutritional status of Chinese school-aged children and adolescents from 1995 to 2014: An analysis of five successive national surveys. Lancet Diabetes Endocrinol. 2019, 7, 288–299. [Google Scholar] [CrossRef]
- Kutáč, P.; Jurková, S.; Farana, R. Morphological characteristics of young female artistic gymnasts from the Czech Republic. Sci. Gym. J. 2019, 11, 57–66. [Google Scholar]
- Skår, A.; Meza, T.J.; Fredriksen, P.M. Development of weight and height in Norwegian children: The Health Oriented Pedagogical Project (HOPP). Scand. J. Public Health 2018, 46, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M.; Bouchard, C.; Bar-Or, O. Growth, Maturation, and Physical Activity, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2004; pp. 41–81. [Google Scholar]
- Wijnhoven, T.M.A.; van Raaij, J.M.A.; Spinelli, A.; Rito, A.I.; Hovengen, R.; Kunesova, R.; Starc, G.; Rutter, H.; Sjöberg, A.; Petrauskiene, A.; et al. WHO European childhood obesity surveillance initiative 2008: Weight, height and body mass index in 6–9-year-old children. Pediatr. Obes. 2012, 8, 79–97. [Google Scholar] [CrossRef]
- WHO. Prevalence of Overweight and Obesity in Children and Adolescents; WHO: Geneva, Switzerland, 2009; Available online: http://www.euro.who.int/__data/assets/pdf_file/0005/96980/2.3.-Prevalence-of-overweight-and-obesity-EDITED_layouted_V3.pdf?ua=1 (accessed on 25 February 2020).
- Dabas, A.; Seth, A. Prevention and Management of Childhood Obesity. Indian J. Pediatr. 2018, 85, 546–553. [Google Scholar] [CrossRef]
- Morimoto, A.; Nishimura, R.; Sano, H.; Matsudaira, T.; Miyashita, Y.; Shirasawa, T.; Koide, S.; Takahashi, E.; Tajima, N. Gender differences in the relationship between percent body fat(%BF) and body mass index (BMI) in Japanese children. Diabetes Res. Clin. Pract. 2007, 78, 123–125. [Google Scholar] [CrossRef]
- Hunt, L.P.; Ford, A.; Sabin, M.A.; Crowne, E.C.; Shield, J.P. Clinical measures of adiposity and percentage fat loss: Which measure most accurately reflects fat loss and what should we aim for? Arch. Dis. Child. 2007, 92, 399–403. [Google Scholar] [CrossRef] [Green Version]
6 Years | 7 Years | 8 Years | 9 Years | 10 Years | 11 Years | |
---|---|---|---|---|---|---|
Boys | 110 | 138 | 152 | 149 | 159 | 108 |
Girls | 87 | 165 | 168 | 171 | 156 | 111 |
Age (years) | P | n (%) | BH (cm) M ± SD | BM (kg) M ± SD | BF (%) M ± SD (95% CI) | VFA (cm2) M ± SD (95% CI) |
---|---|---|---|---|---|---|
6 | P1 < 25 | 22 (20.0) | 123.1 ± 4.9 | 20.9 ± 1.9 | 11.6 ± 2.1 (10.6, 12.5) | 33.7 ± 8.7 (29.8, 37.6) |
P2 25–75 | 64 (58.2) | 124.3 ± 5.5 | 23.9 ± 2.4 | 15.2 ± 3.8 (14.3, 16.1) | 36.6 ± 12.4 (34.0, 40.0) | |
P3 > 75 | 24 (21.8) | 127.8 ± 4.4 | 30.7 ± 3.8 | 25.0 ± 5.8 (22.6, 27.5) | 53.8 ± 15.2 (47.4, 60.2) | |
7 | P1 < 25 | 20 (14.5) | 126.3 ± 5.4 | 21.9 ± 2.1 | 10.8 ± 2.5 (9.6, 12.0) | 30.7 ± 9.5 (26.1, 35.2) |
P2 25–75 | 76 (55.1) | 126.4 ± 4.5 | 24.6 ± 2.3 | 15.1 ± 3.6 (14.3, 16.0) | 34.3 ± 12.1 (31.5, 37.1) | |
P3 > 75 | 42 (30.4) | 130.7 ± 4.6 | 32.7 ± 5.5 | 25.2 ± 7.6 (22.9, 27.6) | 57.5 ± 20.4 (51.2, 63.9) | |
8 | P1 < 25 | 20 (13.1) | 132.5 ± 4.7 | 24.6 ± 2.1 | 11.7 ± 3.4 (10.1, 13.4) | 30.1 ± 11.4 (24.7, 35.6) |
P2 25–75 | 73 (48.0) | 133.4 ± 5.5 | 28.3 ± 2.7 | 16.3 ± 4.1 (15.4, 17.3) | 35.6 ± 11.8 (32.8, 38.4) | |
P3 > 75 | 59 (38.9) | 135.9 ± 6.2 | 36.2 ± 5.4 | 26.6 ± 7.8 (24.5, 28.6) | 62.1 ± 21.4 (56.5, 67.7) | |
9 | P1 < 25 | 22 (14.8) | 134.6 ± 4.8 | 25.8 ± 1.9 | 12.1 ± 3.2 (10.7, 13.6) | 24.9 ± 13.8 (18.6, 31.2) |
P2 25–75 | 68 (45.6) | 138.5 ± 6.1 | 31.5 ± 3.2 | 16.7 ± 3.3 (15.9, 17.5) | 35.4 ± 10.9 (31.0, 37.5) | |
P3 > 75 | 59 (39.6) | 141.5 ± 6.2 | 40.2 ± 6.8 | 27.1 ± 7.0 (25.3, 28.9) | 67.5 ± 21.9 (61.8, 73.2) | |
10 | P1 < 25 | 27 (17.0) | 142.7 ± 9.5 | 29.6 ± 4.1 | 10.7 ± 3.6 (9.3, 12.2) | 20.4 ± 10.6 (16.1, 24.7) |
P2 25–75 | 68 (42.8) | 142.7 ± 6.0 | 34.1 ± 3.7 | 16.7 ± 5.2 (15.4, 18.0) | 35.7 ± 14.7 (30.3, 36.9) | |
P3 > 75 | 64 (40.2) | 145.2 ± 4.9 | 45.4. ± 7.3 | 29.8 ± 6.5 (28.1, 31.4) | 77.7 ± 25.1 (71.4, 83.9) | |
11 | P1 < 25 | 20 (18.5) | 147.8 ± 4.0 | 32.7 ± 1.9 | 13.2 ± 3.6 (11.5, 15.0) | 23.7 ± 9.8 (19.0, 28.4) |
P2 25–75 | 46 (42.6) | 147.9 ± 6.3 | 37.9 ± 4.0 | 16.8 ± 4.2 (15.5, 18.0) | 39.0 ± 14.2 (36.1, 44.9) | |
P3 > 75 | 42 (38.9) | 151.5 ± 6.2 | 51.0 ± 7.2 | 29.8 ± 7.5 (27.4, 32.1) | 83.9 ± 27.9 (75.2, 92.6) |
Age (years) | P | n (%) | BH (cm) M ± SD | BM (kg) M ± SD | BF (%) M ± SD (95% CI) | VFA (cm2) M ± SD (95% CI) |
---|---|---|---|---|---|---|
6 | P1 < 25 | 24 (27.6) | 120.3 ± 4.2 | 19.4 ± 1.9 | 12.1 ± 2.6 (11.0, 13.3) | 28.7 ± 13.0 (23.1, 34.3) |
P2 25–75 | 41 (47.1) | 120.8 ± 5.3 | 22.3 ± 2.2 | 18.0 ± 4.3 (16.7, 19.4) | 37.8 ± 13.4 (35.5, 42.1) | |
P3 > 75 | 22 (25.3) | 124.8 ± 5.1 | 29.0 ± 5.2 | 28.2 ± 5.3 (25.9, 30.6) | 56.8 ± 14.2 (50.5, 63.1) | |
7 | P1 < 25 | 39 (23.6) | 124.5 ± 9.0 | 20.6 ± 2.1 | 12.7 ± 3.6 (11.5, 13.9) | 26.5 ± 10.4 (23.1, 30.0) |
P2 25–75 | 74 (44.8) | 124.4 ± 5.7 | 23.9 ± 2.6 | 18.6 ± 4.0 (17.4, 19.3) | 34.7 ± 13.1 (31.6, 37.8) | |
P3 > 75 | 52 (31.6) | 128.7 ± 5.8 | 31.4 ± 4.6 | 29.1 ± 6.2 (27.4, 30.8) | 58.2 ± 17.9 (53.2, 63.2) | |
8 | P1 < 25 | 44 (26.2) | 129.5 ± 5.2 | 22.5 ± 2.2 | 11.3 ± 4.3 (9.9, 12.6) | 20.5 ± 12.5 (16.6., 24.3) |
P2 25–75 | 76 (45.2) | 133.4 ± 6.2 | 28.1 ± 3.2 | 18.1 ± 3.8 (17.2, 19.0) | 33.7 ± 13.8 (30.5, 36.8) | |
P3 > 75 | 48 (28.6) | 134.5 ± 4.2 | 35.8. ± 4.9 | 30.1 ± 6.2 (28.3, 31.9) | 62.8 ± 17.1 (57.9, 67.8) | |
9 | P1 < 25 | 35 (20.5) | 136.8 ± 5.1 | 26.1 ± 2.0 | 13.9 ± 3.7 (12.6, 15.2) | 23.7 ± 11.3 (19.8, 27.6) |
P2 25–75 | 97 (56.7) | 137.0 ± 5.7 | 30.5 ± 3.1 | 18.7 ± 4.3 (17.9, 19.6) | 34.3 ± 16.1 (31.0, 37.5) | |
P3 > 75 | 39 (22.8) | 138.5 ± 7.3 | 39.5 ± 6.9 | 31.5 ± 6.3 (29.4, 33.5) | 69.2 ± 20.0 (62.8, 75.7) | |
10 | P1 < 25 | 24 (15.4) | 140.5 ± 6.7 | 28.7 ± 2.7 | 15.1 ± 3.6 (13.5, 16.6) | 23.0 ± 11.8 (17.9, 28.1) |
P2 25–75 | 85 (54.5) | 142.9 ± 6.5 | 34.0 ± 3.8 | 18.6 ± 4.8 (17.6, 19.7) | 33.6 ± 15.2 (30.3, 36.9) | |
P3 > 75 | 47 (30.1) | 147.6 ± 6.9 | 46.7 ± 7.3 | 32.4 ± 6.7 (30.5, 34.4) | 81.2 ± 21.8 (74.8, 87.6) | |
11 | P1 < 25 | 22 (19.8) | 145.2 ± 7.7 | 31.1 ± 3.4 | 13.4 ± 3.5 (11.8, 15.0) | 19.9 ± 9.6 (15.5, 24.3) |
P2 25–75 | 62 (55.9) | 151.1 ± 7.1 | 39.4 ± 4.6 | 19.4 ± 4.3 (18.3, 20.5) | 40.5 ± 17.2 (36.1, 44.9) | |
P3 > 75 | 27 (24.3) | 152.2 ± 6.5 | 52.5 ± 8.9 | 31.8 ± 7.2 (28.9, 34.6) | 82.3 ± 28.8 (70.9, 93.7) |
Age (years) | P | Boys | Girls | ||
---|---|---|---|---|---|
Δ BF (%) | Δ VFA (cm2) | Δ BF (%) | Δ VFA (cm2) | ||
6 | P1 vs. P2 | −3.6 *** | −2.9 NS | −5.9 *** | −9.1 * |
P2 vs. P3 | −9.8 *** | −16.6 *** | −10.2 *** | −19.0 *** | |
7 | P1 vs. P2 | −4.3 *** | −3.6 NS | −5.9 *** | −8.2 ** |
P2 vs. P3 | −10.2 *** | −23.2 *** | −10.8 *** | −23.5 *** | |
8 | P1 vs. P2 | −4.6 *** | −5.5 NS | −6.8 *** | −13.2 *** |
P2 vs. P3 | −10.2 *** | −26.5 *** | −12.1 *** | −29.2 *** | |
9 | P1 vs. P2 | −4.6 *** | −10.5 ** | −4.8 *** | −10.6 ** |
P2 vs. P3 | −10.4 *** | −32.2 *** | −12.7 *** | −35.0 *** | |
10 | P1 vs. P2 | −6.0 *** | −15.3 *** | −3.5 ** | −10.6 ** |
P2 vs. P3 | −13.1 *** | −42.0 *** | −13.8 *** | −47.7 *** | |
11 | P1 vs. P2 | −3.6 ** | −15.3 *** | −6.0 *** | −20.6 *** |
P2 vs. P3 | −13.0 *** | −44.8 *** | −12.3 *** | −41.8 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kutac, P.; Bunc, V.; Sigmund, M. Determination of Body Fat Ratio Standards in Children at Early School Age Using Bioelectric Impedance. Medicina 2020, 56, 641. https://doi.org/10.3390/medicina56120641
Kutac P, Bunc V, Sigmund M. Determination of Body Fat Ratio Standards in Children at Early School Age Using Bioelectric Impedance. Medicina. 2020; 56(12):641. https://doi.org/10.3390/medicina56120641
Chicago/Turabian StyleKutac, Petr, Václav Bunc, and Martin Sigmund. 2020. "Determination of Body Fat Ratio Standards in Children at Early School Age Using Bioelectric Impedance" Medicina 56, no. 12: 641. https://doi.org/10.3390/medicina56120641
APA StyleKutac, P., Bunc, V., & Sigmund, M. (2020). Determination of Body Fat Ratio Standards in Children at Early School Age Using Bioelectric Impedance. Medicina, 56(12), 641. https://doi.org/10.3390/medicina56120641