Cortical Bone Trajectory Instrumentation with Vertebroplasty for Osteoporotic Thoracolumbar Compression Fracture
Abstract
1. Introduction
2. Case Series
3. Case illustration
4. Technique Demonstration
5. Postoperative Condition
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alexandru, D.; So, W. Evaluation and management of vertebral compression fractures. Perm J. 2012, 16, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Hulme, P.A.; Krebs, J.; Ferguson, S.J.; Berlemann, U. Vertebroplasty and kyphoplasty: A systematic review of 69 clinical studies. Spine 2006, 31, 1983–2001. [Google Scholar] [CrossRef] [PubMed]
- Denaro, V.; Longo, U.G.; Maffulli, N.; Denaro, L. Vertebroplasty and kyphoplasty. Clin. Cases Miner. Bone Metab. 2009, 6, 125–130. [Google Scholar] [PubMed]
- Luo, J.; Adams, M.A.; Dolan, P. Vertebroplasty and Kyphoplasty Can Restore Normal Spine Mechanics following Osteoporotic Vertebral Fracture. J. Osteoporos. 2010, 2010, 729257. [Google Scholar] [CrossRef] [PubMed]
- Lavelle, W.F.; Cheney, R. Recurrent fracture after vertebral kyphoplasty. Spine J. 2006, 6, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.Y.; Rhyu, K.W. Recompression of vertebral body after balloon kyphoplasty for osteoporotic vertebral compression fracture. Eur. Spine J. 2010, 19, 1907–1912. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.T.; Zhu, D.H.; Liu, H.F.; Zhang, F.; McGuire, R. Minimally invasive pedicle screw fixation combined with percutaneous vertebroplasty for preventing secondary fracture after vertebroplasty. J. Orthop. Surg. Res. 2015, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Zhang, F.; Jiang, X.; Jia, L.; McGuire, R. Minimally invasive pedicle screw fixation combined with percutaneous vertebroplasty in the surgical treatment of thoracolumbar osteoporosis fracture. J. Neurosurg. Spine 2013, 18, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Chotigavanich, C.; Sanpakit, S.; Wantthanaapisith, T.; Thanapipatsiri, S.; Chotigavanich, C. The surgical treatment of the osteoporotic vertebral compression fracture in the elderly patients with the spinal instrumentation. J. Med. Assoc. Thail. 2009, 92 (Suppl. 5), S109–S115. [Google Scholar]
- Santoni, B.G.; Hynes, R.A.; McGilvray, K.C.; Rodriguez-Canessa, G.; Lyons, A.S.; Henson, M.A.; Womack, W.J.; Puttlitz, C.M. Cortical bone trajectory for lumbar pedicle screws. Spine J. 2009, 9, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Matsukawa, K.; Yato, Y.; Kato, T.; Imabayashi, H.; Asazuma, T.; Nemoto, K. In vivo analysis of insertional torque during pedicle screwing using cortical bone trajectory technique. Spine 2014, 39, E240–E245. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.M.; Chen, C.H.; Lee, H.C.; Chuang, H.Y.; Chen, D.C.; Chu, Y.T.; Cho, D.Y. Minimal invasive surgical technique in midline lumbar inter-body fusion: A technique note. J. Clin. Neurosci. 2018, 55, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Matsukawa, K.; Yato, Y.; Hynes, R.A.; Imabayashi, H.; Hosogane, N.; Yoshihara, Y.; Asazuma, T.; Nemoto, K. Comparison of pedicle screw fixation strength among different transpedicular trajectories: A finite element study. Clin. Spine Surg. 2017, 30, 301–307. [Google Scholar] [CrossRef] [PubMed]
Case No. | Sex/Age | Level of Fracture | Blood Loss | T Score | VAS Change * | Sagittal Cobb’s Angle † |
---|---|---|---|---|---|---|
1 | F/82 | T12 | 35mL | −4.1 | 8 to 3 | 19° to 22° |
2 | M/65 | L1 | 50mL | −3.2 | 7 to 2 | 12° to 12° |
3 | F/89 | T11 | 40mL | −4.0 | 8 to 2 | 31° to 45° |
4 | F/78 | T12 | 25mL | −3.4 | 9 to 2 | 11° to 13° |
5 | F/53 | L1 | 30mL | −4.8 | 8 to 2 | 7° to 8° |
6 | M/51 | L1 | 50mL | −2.5 | 8 to 3 | 16° to 18° |
7 | F/77 | T12 | 50mL | −3.8 | 7 to 2 | 20° to 22° |
8 | F/81 | L1 | 25mL | −3.1 | 9 to 3 | 9° to 13° |
9 | F/72 | L1 | 25mL | −2.8 | 8 to 2 | 13° to 15° |
10 | F/84 | L1 | 40mL | −4.5 | 8 to 3 | 15° to 19° |
11 | F/80 | T12 | 30mL | −3.8 | 7 to 3 | 8° to 11° |
12 | F/78 | L1 | 35mL | −3.6 | 9 to 3 | 24° to 28° |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, W.-L.; Lin, Y.-H.; Chuang, H.-Y.; Lee, H.-C.; Chen, D.-C.; Chu, Y.-T.; Cho, D.-Y.; Chen, C.-H. Cortical Bone Trajectory Instrumentation with Vertebroplasty for Osteoporotic Thoracolumbar Compression Fracture. Medicina 2020, 56, 82. https://doi.org/10.3390/medicina56020082
Hsu W-L, Lin Y-H, Chuang H-Y, Lee H-C, Chen D-C, Chu Y-T, Cho D-Y, Chen C-H. Cortical Bone Trajectory Instrumentation with Vertebroplasty for Osteoporotic Thoracolumbar Compression Fracture. Medicina. 2020; 56(2):82. https://doi.org/10.3390/medicina56020082
Chicago/Turabian StyleHsu, Wei-Lin, Yu-Hsiang Lin, Hao-Yu Chuang, Han-Chung Lee, Der-Cherng Chen, Yen-Tse Chu, Der-Yang Cho, and Chao-Hsuan Chen. 2020. "Cortical Bone Trajectory Instrumentation with Vertebroplasty for Osteoporotic Thoracolumbar Compression Fracture" Medicina 56, no. 2: 82. https://doi.org/10.3390/medicina56020082
APA StyleHsu, W.-L., Lin, Y.-H., Chuang, H.-Y., Lee, H.-C., Chen, D.-C., Chu, Y.-T., Cho, D.-Y., & Chen, C.-H. (2020). Cortical Bone Trajectory Instrumentation with Vertebroplasty for Osteoporotic Thoracolumbar Compression Fracture. Medicina, 56(2), 82. https://doi.org/10.3390/medicina56020082