An Investigation into Video Game Addiction in Pre-Adolescents and Adolescents: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Instrument
2.3. Cultural Validation of the Gas and Preliminary Testing
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Limitations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mihara, S.; Higuchi, S. Cross-sectional and longitudinal epidemiological studies of Internet gaming disorder: A systematic review of the literature. Psychiatry Clin. Neurosci. 2017, 71, 425–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eichenbaum, A.; Bavelier, D.; Green, C.S. Video games: Play that can do serious good. Am. J. Play 2014, 7, 50–72. [Google Scholar]
- Lemmens, J.S.; Valkenburg, P.M.; Peter, J. Development and validation of a game addiction scale for adolescents. Media Psychol. 2009, 12, 77–95. [Google Scholar] [CrossRef]
- The American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association Publishing: Washington, DC, USA, 2013. [Google Scholar]
- Rasmussen, M.; Meilstrup, C.R.; Bendtsen, P.; Pedersen, T.P.; Nielsen, L.; Madsen, K.R.; Holstein, B.E. Perceived problems with computer gaming and Internet use are associated with poorer social relations in adolescence. Int. J. Public Health 2015, 60, 179–188. [Google Scholar] [CrossRef]
- Wang, C.-W.; Chan, C.L.; Mak, K.-K.; Ho, S.-Y.; Wong, P.W.; Ho, R.T. Prevalence and correlates of video and internet gaming addiction among Hong Kong adolescents: A pilot study. Sci. World J. 2014. [Google Scholar] [CrossRef] [Green Version]
- Choo, H.; Gentile, D.; Sim, T.; Li, D.D.; Khoo, A.; Liau, A. Pathological video-gaming among Singaporean youth. Ann. Acad. Med. Singap. 2010, 39, 822–829. [Google Scholar]
- Gentile, D.A.; Stone, W. Violent video game effects on children and adolescents. A review of the literature. Minerva Pediatr. 2005, 57, 337–358. [Google Scholar]
- Gentile, D. Pathological video-game use among youth ages 8 to 18: A national study. Psychol. Sci. 2009, 20, 594–602. [Google Scholar] [CrossRef]
- Mentzoni, R.A.; Brunborg, G.S.; Molde, H.; Myrseth, H.; Skouverøe, K.J.M.; Hetland, J.; Pallesen, S. Problematic video game use: Estimated prevalence and associations with mental and physical health. CyberpsycholBehavSocNetw 2011, 14, 591–596. [Google Scholar] [CrossRef]
- Tejeiro Salguero, R.A.; Morán, R.M.B. Measuring problem video game playing in adolescents. Addiction 2002, 97, 1601–1606. [Google Scholar] [CrossRef]
- King, D.L.; Delfabbro, P.H.; Zwaans, T.; Kaptsis, D. Clinical features and axis I comorbidity of Australian adolescent pathological Internet and video game users. Aust. N. Z. J. Psychiatry 2013, 47, 1058–1067. [Google Scholar] [CrossRef] [PubMed]
- Lam, L.T. Internet gaming addiction, problematic use of the internet, and sleep problems: A systematic review. Curr. Psychiatry Rep. 2014, 16, 444. [Google Scholar] [CrossRef] [PubMed]
- Saunders, J.B.; Hao, W.; Long, J.; King, D.L.; Mann, K.; Fauth-Bühler, M.; Rumpf, H.J.; Bowden-Jones, H.; Rahimi-Movaghar, A.; Chung, T.; et al. Gaming disorder: Its delineation as an important condition for diagnosis, management, and prevention. J. Behav. Addict. 2017, 6, 271–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khazaal, Y.; Chatton, A.; Rothen, S.; Achab, S.; Thorens, G.; Zullino, D.; Gmel, G. Psychometric properties of the 7-item game addiction scale among french and German speaking adults. BMC Psychiatry 2016, 16, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, D. Korean policy on treatment and rehabilitation for adolescents’ Internet addiction. In International Symposium on the Counseling and Treatment of Youth Internet Addiction; National Youth Commission: Seoul, Korea; 2007.
- Johansson, A.; Götestam, K.G. Internet addiction: Characteristics of a questionnaire and prevalence in Norwegian youth (12–18 years). Scand. J. Psychol. 2004, 45, 223–229. [Google Scholar] [CrossRef]
- Durkee, T.; Kaess, M.; Carli, V.; Parzer, P.; Wasserman, C.; Floderus, B.; Apter, A.; Balazs, J.; Barzilay, S.; Bobes, J.; et al. Prevalence of pathological internet use among adolescents in Europe: Demographic and social factors. Addiction 2012, 107, 2210–2222. [Google Scholar] [CrossRef]
- Lemmens, J.S.; Valkenburg, P.M.; Peter, J. Psychosocial causes and consequences of pathological gaming. Comput. Hum. Behav. 2011, 27, 144–152. [Google Scholar] [CrossRef]
- Petry, N.M.; Rehbein, F.; Gentile, D.A.; Lemmens, J.S.; Rumpf, H.J.; Mößle, T.; Bischof, G.; Tao, R.; Fung, D.S.; Borges, G.; et al. An international consensus for assessing internet gaming disorder using the new DSM-5 approach. Addiction 2014, 109, 1399–1406. [Google Scholar] [CrossRef]
- WHO. ICD-11 Beta Draft Website. Available online: https://icd.who.int/browse11/l-m/en#/http%3a%2f%2fid.who.int%2ficd%2fentity%2f1448597234 (accessed on 15 July 2017).
- James, R.J.E.; Tunney, R.J. The relationship between gaming disorder and addiction requires a behavioral analysis. J. Behav. Addict. 2017, 6, 306–309. [Google Scholar] [CrossRef] [Green Version]
- Aarseth, E.; Bean, A.M.; Boonen, H.; Colder Carras, M.; Coulson, M.; Das, D.; Deleuze, J.; Dunkels, E.; Edman, J.; Ferguson, C.J.; et al. Scholars’ open debate paper on the World Health Organization ICD-11 Gaming Disorder proposal. J. Behav. Addict. 2017, 6, 267–270. [Google Scholar] [CrossRef]
- Kardefelt-Winther, D.; Heeren, A.; Schimmenti, A.; van Rooij, A. How can we conceptualize behavioural addiction without pathologizing common behaviours? Addiction 2017, 112, 1709–1715. [Google Scholar] [CrossRef] [PubMed]
- Buono, F.D.; Griffiths, M.D.; Sprong, M.E.; Lloyd, D.P.; Sullivan, R.M.; Upton, T.D. Measures of behavioral function predict duration of video game play: Utilization of the Video Game Functional Assessment—Revised. J. Behav. Addict. 2017, 6, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Kuss, D.J. Internet gaming addiction: Current perspectives. Psychol. Res. Behav. Manag. 2013, 6, 125–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baiocco, R. Vecchie e Nuove Dipendenze in Adolescenza; University of Rome “Tor Vergata”: Rome, Italy, 2008. [Google Scholar]
- Festl, R.; Scharkow, M.; Quandt, T. Problematic computer game use among adolescents, younger and older adults. Addiction 2013, 108, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Haagsma, M.C.; Pieterse, M.E.; Peters, O. The prevalence of problematic video gamers in the Netherlands. Cyberpsychol. Behav. Soc. Netw. 2012, 15, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Gentile, D.A.; Choo, H.; Liau, A.; Sim, T.; Li, D.; Fung, D.; Khoo, A. Pathological video game use among youths: A two-year longitudinal study. Pediatrics 2011, 127, e319–e329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittek, C.T.; Finserås, T.R.; Pallesen, S.; Mentzoni, R.A.; Hanss, D.; Griffiths, M.D.; Molde, H. Prevalence and predictors of video game addiction: A study based on a national representative sample of gamers. Int. J. Ment. Health Addict. 2016, 14, 672–686. [Google Scholar] [CrossRef] [Green Version]
- Brunborg, G.S.; Mentzoni, R.A.; Frøyland, L.R. Is video gaming, or video game addiction, associated with depression, academic achievement, heavy episodic drinking, or conduct problems? J. Behav. Addict. 2014, 3, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Donati, M.A.; Chiesi, F.; Ammannato, G.; Primi, C. Versatility and addiction in gaming: The number of video-game genres played is associated with pathological gaming in male adolescents. Cyberpsychol. Behav. Soc. Netw. 2015, 18, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Sprong, M.E.; Griffiths, M.D.; Lloyd, D.P.; Paul, E.; Buono, F.D. Comparison of the video game functional assessment-revised (VGFA-R) and internet gaming disorder test (IGD-20). Front Psychol. 2019, 10, 310. [Google Scholar] [CrossRef]
- Gaetan, S.; Bonnet, A.; Bréjard, V.; Cury, F. French validation of the 7-item game addiction scale for adolescents. Eur. Rev. Appl. Psychol. 2014, 64, 161–168. [Google Scholar] [CrossRef]
- Ho, R.C.; Zhang, M.W.; Tsang, T.Y.; Toh, A.H.; Pan, F.; Lu, Y.; Cheng, C.; Yip, P.S.; Lam, L.T.; Lai, C.M.; et al. The association between internet addiction and psychiatric co-morbidity: A meta-analysis. BMC Psychiatry 2014, 14, 183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ream, G.L.; Elliott, L.C.; Dunlap, E. Playing video games while using or feeling the effects of substances: Associations with substance use problems. Int. J. Environ. Res. Public Health 2011, 8, 3979–3998. [Google Scholar] [CrossRef] [PubMed]
- Dalbudak, E.; Evren, C. The relationship of Internet addiction severity with Attention Deficit Hyperactivity Disorder symptoms in Turkish University students; impact of personality traits, depression and anxiety. Compr. Psychiatry 2014, 55, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Skoric, M.M.; Teo, L.L.C.; Neo, R.L. Children and video games: Addiction, engagement, and scholastic achievement. Cyberpsychol. Behav. 2009, 12, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, M.; Wood, R.T. Risk factors in adolescence: The case of gambling, video game playing, and the Internet. J. Gambl. Stud. 2000, 16, 199–225. [Google Scholar] [CrossRef]
- Brunborg, G.S.; Hanss, D.; Mentzoni, R.A.; Pallesen, S. Core and peripheral criteria of video game addiction in the game addiction scale for adolescents. Cyberpsychol. Behav. Soc. Netw. 2015, 18, 280–285. [Google Scholar] [CrossRef] [Green Version]
- Wood, R.T.; Gupta, R.; Derevensky, J.L.; Griffiths, M. Video game playing and gambling in adolescents: Common risk factors. J. Child Adolesc. Subst. Abuse 2004, 14, 77–100. [Google Scholar] [CrossRef]
- King, D.L.; Haagsma, M.C.; Delfabbro, P.H.; Gradisar, M.; Griffiths, M.D. Toward a consensus definition of pathological video-gaming: A systematic review of psychometric assessment tools. Clin. Psychol. Rev. 2013, 33, 331–342. [Google Scholar] [CrossRef] [Green Version]
- WHO. Process of Translation and Adaptation of Instruments. Available online: https://www.who.int/substance_abuse/research_tools/translation/en/ (accessed on 5 May 2016).
- Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures, 3rd ed.; Chapman & Hall: London, UK, 2003. [Google Scholar]
- Ferguson, C.J.; Coulson, M.; Barnett, J. A meta-analysis of pathological gaming prevalence and comorbidity with mental health, academic and social problems. J. Psychiatr. Res. 2011, 45, 1573–1578. [Google Scholar] [CrossRef]
- Van Rooij, A.J.; Schoenmakers, T.M.; Vermulst, A.A.; Van Den Eijnden, R.J.; Van De Mheen, D. Online video game addiction: Identification of addicted adolescent gamers. Addiction 2011, 106, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Triberti, S.; Milani, L.; Villani, D.; Grumi, S.; Peracchia, S.; Curcio, G.; Riva, G. What matters is when you play: Investigating the relationship between online video games addiction and time spent playing over specific day phases. Addict. Behav. Rep. 2018, 8, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, M.D. The role of context in online gaming excess and addiction: Some case study evidence. Int. J. Ment. Health Addict. 2010, 8, 119–125. [Google Scholar] [CrossRef]
- Khazaal, Y.; Breivik, K.; Billieux, J.; Zullino, D.; Thorens, G.; Achab, S.; Gmel, G.; Chatton, A. Game addiction scale assessment through a nationally representative sample of young adult men: Item response theory graded-response modeling. J. Med. Internet Res. 2018, 20, e10058. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Imani, V.; Broström, A.; Årestedt, K.; Pakpour, A.H.; Griffiths, M.D. Evaluating the psychometric properties of the 7-item Persian Game Addiction Scale for Iranian adolescents. Front. Psychol. 2019, 10, 149. [Google Scholar] [CrossRef] [PubMed]
- King, D.L.; Delfabbro, P.H.; Griffiths, M.D. The role of structural characteristics in problematic video game play: An empirical study. Int. J. Ment. Health Addict. 2011, 9, 320–333. [Google Scholar] [CrossRef]
Parameters | Percentage/Mean ± SD | Statistical Analysis |
---|---|---|
Age | 11.50 ± 1.128 | — |
Gender | ||
Male | 52.89% (329/622) | 52.89% > 47.11%, p = 0.161 (B) |
Female | 47.11% (293/622) | |
Education level | ||
Elementary school | 34.89% (217/622) | 34.89% < 65.11%, p < 0.0001 * (B) |
Secondary School | 65.11% (405/622) | |
Day gaming time (hours) | p < 0.0001 * (C) | |
One | 12.38% (77/622) | Two hours, p < 0.0001 ** (Z) |
Two | 37.62% (234/622) | Three hours, p < 0.0001 ** (Z) |
Three | 37.78% (235/622) | One hours, p < 0.0001 *** (Z) |
Four | 12.54% (70/622) | Four hours, p < 0.0001 *** (Z) |
≥Five | 1.29% (8/622) | ≥Five hours, p < 0.0001 *** (Z) |
Day gaming frequency | ||
One | 32.15% (200/622) | One hours, p < 0.0001 ** (Z) |
Two | 34.24% (213/622) | Two hours, p < 0.0001 ** (Z) |
Three | 32.48% (202/622) | Three hours, p < 0.0001 ** (Z) |
≥Four | 0.96% (6/622) | ≥Four hours, p < 0.0001 *** (Z) |
Interview (pathologic) + | p < 0.001 * (Q) | |
Salience = Item 1 | 41.96% (261/622) | Item 2, p < 0.0001 ** (MRD) |
Tolerance = Item 2 | 64.15% (399/622) | Item 4, p < 0.0001 ** (MRD) |
Mood modification = Item 3 | 20.26% (126/622) | Item 3, p < 0.0001 *** (MRD) |
Withdrawal = Item 4 | 60.13% (374/622) | Item 7, p < 0.0001 *** (MRD) |
Relapse = Item 5 | 53.22% (331/622) | |
Conflict = Item 6 | 32.96% (205/622) | |
Problems = Item 7 | 23.47% (146/622) | |
Interview GAS (pathologic) ++ | ||
Monothetic GAS | 1.93% (12/622) | |
Polythetic Global GAS | 37.46% (233/622) | |
Polythetic Partial GAS | 4.50% (28/622) |
Interview + | Item 1 | Item 2 | Item 3 | Item 4 | Item 5 | Item 6 | Item 7 |
---|---|---|---|---|---|---|---|
Score 1 | 41.96% (261/622) | 16.72% (104/622) | 69.77% (434/622) | 23.31% (145/622) | 29.74% (185/622) | 50.32% (313/622) | 61.90% (385/622) |
Score 2 | 16.08% (100/622) | 19.13% (119/622) | 9.97% (62/622) | 16.56% (103/622) | 17.04% (106/622) | 16.72% (104/622) | 14.63% (91/622) |
Score 3 | 28.94% (180/622) | 40.84% (254/622) | 10.78% (67/622) | 31.20% (194/622) | 31.20% (194/622) | 19.29% (120/622) | 14.47% (90/622) |
Score 4 | 5.95% (37/622) | 16.72% (104/622) | 5.14% (32/622) | 19.61% (122/622) | 11.09% (69/622) | 8.36% (52/622) | 5.30% (33/622) |
Score 5 | 7.07% (44/622) | 6.59% (41/622) | 4.34% (27/622) | 9.32% (58/622) | 10.93% (68/622) | 5.31% (33/622) | 3.70% (23/622) |
Linear Correlation Analysis | Univariate Analysis R (p-Value) | Multivariate Analysis (Rpartial; p-Value) |
---|---|---|
Multiple linear correlation coefficient = 0.476 | ||
Salience = Item 1/Age | −0.10 (0.0258) * | Rpartial = −0.03; p = 0.476 |
Item 1/Gender | −0.25 (< 0.0001) * | Rpartial = −0.15.; p = 0.0002 * |
Item 1/Education level | −0.16 (0.0001) * | Rpartial = −0.10; p = 0.0178 * |
Item 1/Daily gaming time (hours) | 0.42 (<0.0001) * | R partial = 0.276; p < 0.0001 * |
Item 1/Daily gaming frequency | 0.31 (<0.0001) * | Rpartial = 0.166; p < 0.0001 * |
Multiple linear correlation coefficient = 0.434 | ||
Tolerance =Item 2/Age | 0.03 (0.047) | Rpartial = 0.01; p = 0.843 |
Item 2/Gender | −0.22 (< 0.0001) * | Rpartial = −0.11; p = 0.0056 * |
Item 2/Education level | 0.01 (0.77) | Rpartial = 0.04; p = 0.318 |
Item 2/Daily gaming time (hours) | 0.42 (< 0.0001) * | Rpartial = 0.32; p < 0.0001 * |
Item 2/Daily gaming frequency | 0.22 (< 0.0001) * | Rpartial = 0.07; p = 0.071 |
Multiple linear correlation coefficient = 0.155 | ||
Mood modification = Item 3/Age | 0.35 (0.39) | Rpartial = 0.04; p = 0.372 |
Item 3/Gender | 0.05 (0.19) | Rpartial= 0.09; p = 0.0302 * |
Item 3/Education level | 0.01 (0.79) | Rpartial= −0.01; p = 0.88 |
Item 3/Daily gaming time (hours) | 0.11 (0.007) * | Rpartial= 0.10; p = 0.0132 * |
Item 3/Daily gaming frequency | 0.09 (0.0257) * | Rpartial = 0.05; p = 0.219 |
Multiple linear correlation coefficient = 0.093 | ||
Withdrawal =Item 4/Age | 0.003 (0.93) | Rpartial = −0.03; p = 0.53 |
Item 4/Gender | −0.07 (0.09) | Rpartial = −0.05; p = 0.21 |
Item 4/Education level | 0.03 (0.51) | Rpartial = 0.04; p = 0.30 |
Item 4/Daily gaming time (hours) | 0.07 (0.10) | Rpartial= 0.04; p = 0.32 |
Item 4/Daily gaming frequency | 0.03 (0.41) | R partial = 0.01; p = 0.72 |
Multiple linear correlation coefficient = 0.381 | ||
Relapse = Item 5/Age | −0.11 (0.007) * | Rpartial = −0.05; p = 0.22 |
Item 5/Gender | −0.11 (0.005) * | Rpartial = −0.01; p = 0.72 |
Item 5/Education level | −0.12 (0.003) * | Rpartial = −0.01; p = 0.77 |
Item 5/Daily gaming time (hours) | 0.34 (< 0.0001) * | Rpartial = 0.25; p < 0.0001 * |
Item 5/Daily gaming frequency | 0.28 (< 0.0001) * | Rpartial = 0.14; p = 0.0005 * |
Multiple linear correlation coefficient = 0.32 | ||
Conflict = Item 6/Age | 0.02 (0.59) | Rpartial = 0.06; p = 0.17 |
Item 6/Gender | −0.02 (0.61) | Rpartial = 0.07; p = 0.07 |
Item 6/Education level | −0.03 (0.39) | Rpartial = −0.04; p = 0.34 |
Item 6/Daily gaming time (hours) | 0.29 (< 0.0001) * | Rpartial = 0.25; p < 0.0001 * |
Item 6/Daily gaming frequency | 0.19 (< 0.0001) * | Rpartial = 0.07; p = 0.072 |
Multiple linear correlation coefficient = 0.336 | ||
Problems = Item 7/Age | 0.09 (0.0491) * | Rpartial = 0.11; p = 0.005 * |
Item 7/Gender | −0.09 (0.033) * | Rpartial = −0.001; p = 0.98 |
Item 7/Education level | −0.002 (0.95) | Rpartial = −0.05; p = 0.22 |
Item 7/Daily gaming time (hours) | 0.30 (< 0.0001) * | Rpartial = 0.21; p < 0.0001 * |
Item 7/Daily gaming frequency | 0.22 (< 0.0001) * | Rpartial = 0.12; p = 0.002 * |
Logistic Regression | Coefficient | Standard Error | OR | 95% CI | p-Value |
---|---|---|---|---|---|
Null model vs. full model | 0.0071 (C) | ||||
Monothetic Global GAS/Age | 0.07 | 0.34 | 1.07 | 0.56–2.08 | 0.83 |
Monothetic Global GAS/Gender | −0.01 | 0.64 | 0.99 | 0.28–3.48 | 0.99 |
Monothetic Global GAS/Education level | −0.02 | 0.94 | 0.98 | 0.16–6.16 | 0.98 |
Monothetic Global GAS/Daily gaming time (hours) | 1.31 | 0.47 | 3.70 | 1.46–9.36 | 0.0057 * |
Monothetic Global GAS/Daily gaming frequency | 0.44 | 0.45 | 1.56 | 0.64–3.78 | 0.33 |
Constant | –9.66 | 3.40 | 0.0046 * | ||
Null model vs. full model | <0.0001 (C) | ||||
Polythetic Global GAS/Age | 0.16 | 0.11 | 1.18 | 0.95–1.45 | 0.13 |
Polythetic Global GAS/Gender | 0.18 | 0.19 | 0.84 | 0.57–1.22 | 0.35 |
Polythetic Global GAS/Education level | −0.42 | 0.29 | 2.64 | 2.03–3.42 | <0.0001 * |
Polythetic Global GAS/Daily gaming time (hours) | 0.97 | 0.13 | 0.66 | 0.38–1.16 | 0.15 |
Polythetic Global GAS/Daily gaming frequency | 0.34 | 0.12 | 1.40 | 1.10–1.78 | 0.0063 * |
Constant | −4.82 | 1.03 | — | — | <0.0001 * |
Null model vs. full model | 0.0011 (C) | ||||
Polythetic Partial GAS/Age | 0.08 | 0.23 | 1.08 | 0.69–1.70 | 0.73 |
Polythetic Partial GAS/Gender | 0.40 | 0.41 | 1.49 | 0.66–3.34 | 0.33 |
Polythetic Partial GAS/Education level | −0.18 | 0.63 | 0.83 | 0.24–2.84 | 0.77 |
Polythetic Partial GAS/Daily gaming time (hours) | 0.77 | 0.28 | 2.16 | 1.25–3.72 | 0.0059 * |
Polythetic Partial GAS/Daily gaming frequency | 0.55 | 0.29 | 1.74 | 0.98–3.10 | 0.06 |
Constant | −7.26 | 2.25 | 0.0012 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito, M.R.; Serra, N.; Guillari, A.; Simeone, S.; Sarracino, F.; Continisio, G.I.; Rea, T. An Investigation into Video Game Addiction in Pre-Adolescents and Adolescents: A Cross-Sectional Study. Medicina 2020, 56, 221. https://doi.org/10.3390/medicina56050221
Esposito MR, Serra N, Guillari A, Simeone S, Sarracino F, Continisio GI, Rea T. An Investigation into Video Game Addiction in Pre-Adolescents and Adolescents: A Cross-Sectional Study. Medicina. 2020; 56(5):221. https://doi.org/10.3390/medicina56050221
Chicago/Turabian StyleEsposito, Maria Rosaria, Nicola Serra, Assunta Guillari, Silvio Simeone, Franca Sarracino, Grazia Isabella Continisio, and Teresa Rea. 2020. "An Investigation into Video Game Addiction in Pre-Adolescents and Adolescents: A Cross-Sectional Study" Medicina 56, no. 5: 221. https://doi.org/10.3390/medicina56050221
APA StyleEsposito, M. R., Serra, N., Guillari, A., Simeone, S., Sarracino, F., Continisio, G. I., & Rea, T. (2020). An Investigation into Video Game Addiction in Pre-Adolescents and Adolescents: A Cross-Sectional Study. Medicina, 56(5), 221. https://doi.org/10.3390/medicina56050221