Use of Glycated Hemoglobin (A1c) as a Biomarker for Vascular Risk in Type 2 Diabetes: Its Relationship with Matrix Metalloproteinases-2, -9 and the Metabolism of Collagen IV and Elastin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Immunological and Biochemical Assays
2.2.1. Determination of MMP-2
2.2.2. Determination of MMP-9
2.2.3. Determination of AEAbs (IgM, IgG, and IgA)
2.2.4. Determination of ACIVAbs IgM
2.2.5. Determination of CIV-DP
2.2.6. Biochemical Assays
2.3. Blood Pressure Measurements
2.4. Clinical Tests and Procedures
2.5. Statistical Analysis
3. Results
3.1. Comparison of the Tested Markers between the T2D and Control Groups
3.2. Comparison of the Tested Markers between T2D Subgroups at Cut-Off Values of HbA1c from 6.0 to 8.0%
3.3. Correlations of Investigated Immunological Markers
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kostov, K. Effects of Magnesium Deficiency on Mechanisms of Insulin Resistance in Type 2 Diabetes: Focusing on the Processes of Insulin Secretion and Signaling. Int. J. Mol. Sci. 2019, 20, 1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowak, C.; Carlsson, A.C.; Östgren, C.J.; Nyström, F.H.; Alam, M.; Feldreich, T.; Sundström, J.; Carrero, J.J.; Leppert, J.; Hedberg, P.; et al. Multiplex proteomics for prediction of major cardiovascular events in type 2 diabetes. Diabetologia 2018, 61, 1748–1757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohnert, K.D.; Heinke, P.; Zander, E.; Vogt, L.; Salzsieder, E. Glycemic Key Metrics and the Risk of Diabetes-Associated Complications. Rom. J. Diabetes Nutr. Metab. Dis. 2016, 23, 403–413. [Google Scholar] [CrossRef]
- Lyons, T.J.; Basu, A. Biomarkers in diabetes: Hemoglobin A1c, vascular and tissue markers. Transl. Res. 2012, 159, 303–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keating, S.T.; Van Diepen, J.A.; Riksen, N.P.; El-Osta, A. Epigenetics in diabetic nephropathy, immunity and metabolism. Diabetologia 2018, 61, 6–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qaseem, A.; Wilt, T.J.; Kansagara, D.; Horwitch, C.; Barry, M.J.; Forciea, M.A. Hemoglobin A1c targets for glycemic control with pharmacologic therapy for nonpregnant adults with type 2 diabetes mellitus: A guidance statement update from the American College of Physicians. Ann. Intern. Med. 2018, 168, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Little, R.R.; Rohlfing, C.L.; Sacks, D.B. Status of hemoglobin A1c measurement and goals for improvement: From chaos to order for improving diabetes care. Clin. Chem. 2011, 57, 205–214. [Google Scholar] [CrossRef]
- Juraschek, S.P.; Steffes, M.W.; Miller, E.R.; Selvin, E. Alternative markers of hyperglycemia and risk of diabetes. Diabetes Care 2012, 35, 2265–2270. [Google Scholar] [CrossRef] [Green Version]
- Makris, K.; Spanou, L. Is there a relationship between mean blood glucose and glycated hemoglobin? J. Diabetes Sci. Technol. 2011, 5, 1572–1583. [Google Scholar] [CrossRef] [Green Version]
- Khaw, K.T.; Wareham, N. Glycated hemoglobin as a marker of cardiovascular risk. Curr. Opin. Lipidol. 2006, 17, 637–643. [Google Scholar] [CrossRef]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2020. Diabetes Care 2020, 43, S14–S31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. 6. Glycemic Targets: Standards of Medical Care in Diabetes—2020. Diabetes Care 2020, 43, S66–S76. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, K.N.; Wang, T.J. Biomarkers of cardiovascular disease: Contributions to risk prediction in individuals with diabetes. Diabetologia 2018, 61, 987–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostov, K.; Blazhev, A.; Atanasova, M.; Dimitrova, A. Serum concentrations of endothelin-1 and matrix metalloproteinases-2,-9 in pre-hypertensive and hypertensive patients with type 2 diabetes. Int. J. Mol. Sci. 2016, 17, 1182. [Google Scholar] [CrossRef]
- Singh, V.P.; Bali, A.; Singh, N.; Jaggi, A.S. Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol. 2014, 18, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Herouy, Y. The role of matrix metalloproteinases (MMPs) and their inhibitors in venous leg ulcer healing. Phlebolymphology 2004, 44, 231–243. [Google Scholar]
- Thrailkill, K.M.; Bunn, R.C.; Moreau, C.S.; Cockrell, G.E.; Simpson, P.M.; Coleman, H.N.; Frindik, J.P.; Kemp, S.F.; Fowlkes, J.L. Matrix metalloproteinase-2 dysregulation in type 1 diabetes. Diabetes Care 2007, 30, 2321–2326. [Google Scholar] [CrossRef] [Green Version]
- Kridel, S.J.; Chen, E.; Kotra, L.P.; Howard, E.W.; Mobashery, S.; Smith, J.W. Substrate hydrolysis by matrix metalloproteinase-9. J. Biol. Chem. 2001, 276, 20572–20578. [Google Scholar] [CrossRef] [Green Version]
- Nikolov, A.G.; Nicoloff, G.; Tsinlikov, I.; Tsinlikova, I. Anti-collagen type IV antibodies and the development of microvascular complications in diabetic patients with arterial hypertension. J. IMAB 2012, 18, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Gatseva, A.; Sin, Y.Y.; Brezzo, G.; Van Agtmael, T. Basement membrane collagens and disease mechanisms. Essays Biochem. 2019, 63, 297–312. [Google Scholar]
- Nikolov, A.; Nicoloff, G.; Tsinlikov, I.; Tsinlikova, I.; Blazhev, A.; Angelova, M.; Garev, A. Relationship between anti-elastin IgA and development of microvascular complications: A study in diabetic patients with arterial hypertension. Diabetol. Croat. 2013, 41, 103–111. [Google Scholar]
- Nikolov, A.; Tsinlikov, I.; Tsinlikova, I.; Nicoloff, G.; Blazhev, A.; Garev, A. Levels of anti-elastin IgA antibodies are associated with high risk of atherosclerosis in diabetics with essential hypertension. Atherosclerosis 2017, 263, e124–e125. [Google Scholar] [CrossRef]
- Baydanoff, S.; Nicoloff, G.; Alexiev, C. Age-related changes in the level of circulating elastin-derived peptides in serum from normal and atherosclerotic subjects. Atherosclerosis 1987, 66, 163–168. [Google Scholar] [CrossRef]
- Care, D. 6. Glycemic Targets: Standards of Medical Care in Diabetes—2019. Diabetes Care 2019, 42, S61–S70. [Google Scholar]
- Sandler, C.N.; McDonnell, M.E. The role of hemoglobin A1c in the assessment of diabetes and cardiovascular risk. Cleve. Clin. J. Med. 2016, 83, S4–S10. [Google Scholar] [CrossRef] [PubMed]
- Cavero-Redondo, I.; Peleteiro, B.; Álvarez-Bueno, C.; Rodriguez-Artalejo, F.; Martínez-Vizcaíno, V. Glycated haemoglobin A1c as a risk factor of cardiovascular outcomes and all-cause mortality in diabetic and non-diabetic populations: A systematic review and meta-analysis. BMJ Open 2017, 7, e015949. [Google Scholar] [CrossRef] [Green Version]
- UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998, 352, 854–865. [Google Scholar] [CrossRef]
- UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998, 352, 837–853. [Google Scholar] [CrossRef]
- Ohkubo, Y.; Kishikawa, H.; Araki, E.; Miyata, T.; Isami, S.; Motoyoshi, S.; Kojima, Y.; Furuyoshi, N.; Shichiri, M. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: A randomized prospective 6-year study. Diabetes Res. Clin. Pract. 1995, 28, 103–117. [Google Scholar] [CrossRef]
- Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1993, 329, 977–986. [Google Scholar] [CrossRef]
- Zoungas, S.; Chalmers, J.; Ninomiya, T.; Li, Q.; Cooper, M.E.; Colagiuri, S.; Fulcher, G.; de Galan, B.E.; Harrap, S.; Hamet, P.; et al. Association of HbA 1c levels with vascular complications and death in patients with type 2 diabetes: Evidence of glycaemic thresholds. Diabetologia 2012, 55, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Currie, C.J.; Peters, J.R.; Tynan, A.; Evans, M.; Heine, R.J.; Bracco, O.L.; Zagar, T.; Poole, C.D. Survival as a function of HbA1c in people with type 2 diabetes: A retrospective cohort study. Lancet 2010, 375, 481–489. [Google Scholar] [CrossRef]
- Derosa, G.; D’angelo, A.; Tinelli, C.; Devangelio, E.; Consoli, A.; Miccoli, R.; Penno, G.; Del Prato, S.; Paniga, S.; Cicero, A.F.G. Evaluation of metalloproteinase 2 and 9 levels and their inhibitors in diabetic and healthy subjects. Diabetes Metab. 2007, 33, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Signorelli, S.S.; Malaponte, G.; Libra, M.; Di Pino, L.; Celotta, G.; Bevelacqua, V.; Petrina, M.; Nicotra, G.S.; Indelicato, M.; Navolanic, P.M.; et al. Plasma levels and zymographic activities of matrix metalloproteinases 2 and 9 in type II diabetics with peripheral arterial disease. Vasc. Med. 2005, 10, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derosa, G.; Avanzini, M.A.; Geroldi, D.; Fogari, R.; Lorini, R.; De Silvestri, A.; Tinelli, C.; d’Annunzio, G. Matrix metalloproteinase 2 may be a marker of microangiopathy in children and adolescents with type 1 diabetes. Diabetes Care 2004, 27, 273–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammad, G.; Siddiquei, M.M. Role of matrix metalloproteinase-2 and-9 in the development of diabetic retinopathy. J. Ocul. Biol. Dis. Inform. 2012, 5, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Giebel, S.J.; Menicucci, G.; McGuire, P.G.; Das, A. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood–retinal barrier. Lab. Investig. 2005, 85, 597–607. [Google Scholar] [CrossRef]
- Kowluru, R.A.; Zhong, Q.; Santos, J.M. Matrix metalloproteinases in diabetic retinopathy: Potential role of MMP-9. Expert Opin. Investig. Drugs 2012, 21, 797–805. [Google Scholar] [CrossRef] [Green Version]
- Kłysik, A.B.; Naduk-Kik, J.; Hrabec, Z.; Goś, R.; Hrabec, E. Intraocular matrix metalloproteinase 2 and 9 in patients with diabetes mellitus with and without diabetic retinopathy. Arch. Med. Sci. 2010, 6, 375–381. [Google Scholar] [CrossRef]
- Kwon, J.W.; Choi, J.A.; Jee, D. Matrix metalloproteinase-1 and matrix metalloproteinase-9 in the aqueous humor of diabetic macular edema patients. PLoS ONE 2016, 11, e0159720. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; McGuire, P.G.; Rangasamy, S. Diabetic macular edema: Pathophysiology and novel therapeutic targets. Ophthalmology 2015, 122, 1375–1394. [Google Scholar] [CrossRef] [PubMed]
- Noda, K.; Ishida, S.; Inoue, M.; Obata, K.I.; Oguchi, Y.; Okada, Y.; Ikeda, E. Production and activation of matrix metalloproteinase-2 in proliferative diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 2003, 44, 2163–2170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thrailkill, K.M.; Bunn, R.C.; Fowlkes, J.L. Matrix metalloproteinases: Their potential role in the pathogenesis of diabetic nephropathy. Endocrine 2009, 35, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogowicz, A.; Zozulińska, D.; Wierusz-Wysocka, B. The role of matrix metalloproteinases in the development of vascular complications of diabetes mellitus-clinical implications. Pol. Arch. Med. Wewn. 2007, 117, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Limbu, M.; Wang, Z.; Liu, J.; Liu, L.; Zhang, X.; Chen, P.; Liu, B. MMP-2 and 9 in chronic kidney disease. Int. J. Mol. Sci. 2017, 18, 776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newby, A.C. Metalloproteinases and vulnerable atherosclerotic plaques. Trends Cardiovasc. Med. 2007, 17, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Pasterkamp, G.; Schoneveld, A.H.; Hijnen, D.J.; De Kleijn, D.P.; Teepen, H.; Van Der Wal, A.C.; Borst, C. Atherosclerotic arterial remodeling and the localization of macrophages and matrix metalloproteases 1, 2 and 9 in the human coronary artery. Atherosclerosis 2000, 150, 245–253. [Google Scholar] [CrossRef]
- Heo, S.H.; Cho, C.H.; Kim, H.O.; Jo, Y.H.; Yoon, K.S.; Lee, J.H.; Park, J.C.; Park, K.C.; Ahn, T.B.; Chung, K.C.; et al. Plaque rupture is a determinant of vascular events in carotid artery atherosclerotic disease: Involvement of matrix metalloproteinases 2 and 9. J. Clin. Neurol. 2011, 7, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Briones, A.M.; Arribas, S.M.; Salaices, M. Role of extracellular matrix in vascular remodeling of hypertension. Curr. Opin. Nephrol. Hypertens. 2010, 19, 187–194. [Google Scholar] [CrossRef]
- Duca, L.; Blaise, S.; Romier, B.; Laffargue, M.; Gayral, S.; El Btaouri, H.; Kawecki, C.; Guillot, A.; Martiny, L.; Debelle, L.; et al. Matrix ageing and vascular impacts: Focus on elastin fragmentation. Cardiovasc. Res. 2016, 110, 298–308. [Google Scholar] [CrossRef] [Green Version]
- Blaise, S.; Romier, B.; Kawecki, C.; Ghirardi, M.; Rabenoelina, F.; Baud, S.; Duca, L.; Maurice, P.; Heinz, A.; Schmelzer, C.E.; et al. Elastin-derived peptides are new regulators of insulin resistance development in mice. Diabetes 2013, 62, 3807–3816. [Google Scholar] [CrossRef] [PubMed]
- Uemura, S.; Matsushita, H.; Li, W.; Glassford, A.J.; Asagami, T.; Lee, K.H.; Harrison, D.G.; Tsao, P.S. Diabetes mellitus enhances vascular matrix metalloproteinase activity: Role of oxidative stress. Circ. Res. 2001, 88, 1291–1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fülöp, J.T.; Wei, S.M.; Robert, L.; Jacob, M.P. Determination of elastin peptides in normal and arteriosclerotic human sera by ELISA. Clin. Physiol. Biochem. 1990, 8, 273–282. [Google Scholar] [PubMed]
- Peterszegi, G.; Mandet, C.; Texier, S.; Robert, L.; Bruneval, P. Lymphocytes in human atherosclerotic plaque exhibit the elastin-laminin receptor: Potential role in atherogenesis. Atherosclerosis 1997, 135, 103–107. [Google Scholar] [CrossRef]
- Péterszegi, G.; Texier, S.; Robert, L. Human helper and memory lymphocytes exhibit an inducible elastin-laminin receptor. Int. Arch. Allergy Immunol. 1997, 114, 218–223. [Google Scholar] [CrossRef]
- Rodriguez-Segade, S.; Camina, M.F.; Carnero, A.; Lorenzo, M.J.; Alban, A.; Quinteiro, C.; Lojo, S. High serum IgA concentrations in patients with diabetes mellitus: Agewise distribution and relation to chronic complications. Clin. Chem. 1996, 42, 1064–1067. [Google Scholar] [CrossRef]
- Ohmuro, H.; Tomino, Y.; Tsushima, Y.; Shimizu, M.; Kuramoto, T.; Koide, H. Elevation of serum IgA1 levels in patients with diabetic nephropathy. Nephron 1993, 63, 355. [Google Scholar] [CrossRef]
- Vavuli, S.; Salonurmi, T.; Loukovaara, S.; Nissinen, A.E.; Savolainen, M.J.; Liinamaa, M.J. Elevated levels of plasma IgA autoantibodies against oxidized LDL found in proliferative diabetic retinopathy but not in nonproliferative retinopathy. J. Diabetes Res. 2016, 2016, 2614153. [Google Scholar] [CrossRef]
- Guo, X.; Meng, G.; Liu, F.; Zhang, Q.; Liu, L.; Wu, H.; Du, H.; Shi, H.; Xia, Y.; Liu, X.; et al. Serum levels of immunoglobulins in an adult population and their relationship with type 2 diabetes. Diabetes Res. Clin. Pract. 2016, 115, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Awartani, F. Serum immunoglobulin levels in type 2 diabetes patients with chronic periodontitis. J. Contemp. Dent. Pract. 2010, 11, 1–8. [Google Scholar] [CrossRef]
- Kalluri, R. Basement membranes: Structure, assembly and role in tumour angiogenesis. Nat. Rev. Cancer 2003, 3, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Hayden, M.R.; Sowers, J.R.; Tyagi, S.C. The central role of vascular extracellular matrix and basement membrane remodeling in metabolic syndrome and type 2 diabetes: The matrix preloaded. Cardiovasc. Diabetol. 2005, 4, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monaco, S.; Sparano, V.; Gioia, M.; Sbardella, D.; Di Pierro, D.; Marini, S.; Coletta, M. Enzymatic processing of collagen IV by MMP-2 (gelatinase A) affects neutrophil migration and it is modulated by extracatalytic domains. Protein Sci. 2006, 15, 2805–2815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLeod, O.; Dunér, P.; Samnegård, A.; Tornvall, P.; Nilsson, J.; Hamsten, A.; Bengtsson, E. Autoantibodies against basement membrane collagen type IV are associated with myocardial infarction. Int. J. Cardiol. Heart Vasc. 2015, 6, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Borza, D.B.; Chedid, M.F.; Colon, S.; Lager, D.J.; Leung, N.; Fervenza, F.C. Recurrent Goodpasture’s disease secondary to a monoclonal IgA1-κ antibody autoreactive with the α1/α2 chains of type IV collagen. Am. J. Kidney Dis. 2005, 45, 397–406. [Google Scholar] [CrossRef]
- Nicoloff, G.; Baydanoff, S.; Petrova, C.; Christova, P. Serum antibodies to collagen type IV and development of diabetic vascular complications in children with type 1 (insulin-dependent) diabetes mellitus: A longitudinal study. Vascul. Pharmacol. 2002, 38, 143–147. [Google Scholar] [CrossRef]
- Nicoloff, G.; Baydanoff, S.; Stanimirova, N.; Petrova, C.; Christova, P. Detection of serum collagen type IV in children with type 1 (insulin-dependent) diabetes mellitus–a longitudinal study. Pediatr. Diabetes 2001, 2, 184–190. [Google Scholar] [CrossRef]
- Ban, C.R.; Twigg, S.M. Fibrosis in diabetes complications: Pathogenic mechanisms and circulating and urinary markers. Vasc. Health Risk Manag. 2008, 4, 575–596. [Google Scholar]
- Roy, S.; Ha, J.; Trudeau, K.; Beglova, E. Vascular basement membrane thickening in diabetic retinopathy. Curr. Eye Res. 2010, 35, 1045–1056. [Google Scholar] [CrossRef]
- Cherian, S.; Roy, S.; Pinheiro, A.; Roy, S. Tight glycemic control regulates fibronectin expression and basement membrane thickening in retinal and glomerular capillaries of diabetic rats. Investig. Ophthalmol. Vis. Sci. 2009, 50, 943–949. [Google Scholar] [CrossRef] [Green Version]
Variables | Healthy Control Subjects | Patients with T2D |
---|---|---|
(n = 20) | (n = 59) | |
Men, n (%) | 10 (50.0) | 25 (42.0) |
Women, n (%) | 10 (50.0) | 34 (58.0) |
Age, years 1 | 61.5 ± 2.9 | 60.7 ± 1.9 |
Duration of T2D 1 | N/A 2 | 10.1 ± 1.0 |
HbA1c (%) 1 | N/A 2 | 7.5 ± 0.2 |
BMI, kg/m2 1 | 24.9 ± 0.5 | 28.4 ± 0.5 *** |
TC, mmol/L 1 | 4.2 ± 0.2 | 5.2 ± 0.2 * |
LDL-C, mmol/L 1 | 2.8 ± 0.2 | 3.0 ± 0.1 |
HDL-C, mmol/L 1 | 1.2 ± 0.04 | 1.0 ± 0.03 *** |
TG, mmol/L 1 | 1.4 ± 0.1 | 2.7 ± 0.4 |
CRP, mg/L 1 | 1.1 ± 0.2 | 8.4 ± 1.02 *** |
Hypertension, n (%) | 0 (0) | 43 (73.0) |
SBP, mmHg 1 | 121.5 ± 1.9 | 149.2 ± 1.7 *** |
DBP, mmHg 1 | 78.2 ± 1.7 | 83.0 ± 1.5 |
Microangiopathy, n (%) | N/A 2 | 50 (85.0) |
Macroangiopathy, n (%) | N/A 2 | 18 (31.0) |
Neuropathy, n (%) | N/A 2 | 8 (14.0) |
HbA1c Subgroups | ≤6.0% vs. >6.0% | ≤6.5% vs. >6.5% | ≤7.0% vs. >7.0% | ≤7.5% vs. >7.5% | ≤8.0% vs. >8.0% |
---|---|---|---|---|---|
MMP-2 | NS | NS | NS | S * | NS |
MMP-9 | S ** | S ** | S * | S * | NS |
AEAbs IgM | NS | NS | NS | NS | NS |
AEAbs IgG | NS | NS | NS | NS | NS |
AEAbs IgA | NS | NS | S * | S * | NS |
ACIVAbs IgM | NS | NS | NS | NS | NS |
CIV-DP | NS | NS | NS | NS | NS |
Correlations | Correlation Coefficient | Statistical Significance |
---|---|---|
r | p | |
MMP-2 vs. AEAbs IgG | 0.273 * | 0.036 |
MMP-2 vs. ACIVAbs IgM | 0.343 ** | 0.008 |
AEAbs IgA vs. AEAbs IgM | 0.327 * | 0.012 |
AEAbs IgA vs. AEAbs IgG | 0.500 *** | <0.001 |
AEAbs IgA vs. ACIVAbs IgM | 0.365 ** | 0.005 |
AEAbs IgM vs. ACIVAbs IgM | 0.679 *** | <0.001 |
AEAbs IgG vs. AEAbs IgM | 0.308 * | 0.017 |
AEAbs IgA vs. Systolic BP | −0.292 * | 0.026 |
AEAbs IgA vs. Diastolic BP | −0.419 ** | 0.001 |
AEAbs IgM vs. Systolic BP | −0.306 * | 0.019 |
AEAbs IgM vs. Diastolic BP | −0.263 * | 0.045 |
AEAbs IgG vs. Systolic BP | −0.277 * | 0.034 |
AEAbs IgG vs. Diastolic BP | −0.320 * | 0.013 |
AEAbs IgA vs. CIV-DP | 0.362 ** | 0.005 |
AEAbs IgA vs. BMI | −0.273 * | 0.038 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostov, K.; Blazhev, A. Use of Glycated Hemoglobin (A1c) as a Biomarker for Vascular Risk in Type 2 Diabetes: Its Relationship with Matrix Metalloproteinases-2, -9 and the Metabolism of Collagen IV and Elastin. Medicina 2020, 56, 231. https://doi.org/10.3390/medicina56050231
Kostov K, Blazhev A. Use of Glycated Hemoglobin (A1c) as a Biomarker for Vascular Risk in Type 2 Diabetes: Its Relationship with Matrix Metalloproteinases-2, -9 and the Metabolism of Collagen IV and Elastin. Medicina. 2020; 56(5):231. https://doi.org/10.3390/medicina56050231
Chicago/Turabian StyleKostov, Krasimir, and Alexander Blazhev. 2020. "Use of Glycated Hemoglobin (A1c) as a Biomarker for Vascular Risk in Type 2 Diabetes: Its Relationship with Matrix Metalloproteinases-2, -9 and the Metabolism of Collagen IV and Elastin" Medicina 56, no. 5: 231. https://doi.org/10.3390/medicina56050231