Role of a Brief Intensive Observation Area with a Dedicated Team of Doctors in the Management of Acute Heart Failure Patients: A Retrospective Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overall Design
2.2. Study Design
2.3. Statistical Analysis
3. Results
4. Discussion
- (a)
- Red code: immediate entry into the shock room (high-intensity area). It is assigned to patients with severe impairment of vital signs or consciousness.
- (b)
- Yellow code with medium care intensity: immediate, or at least within 40 min, entry to the average intensity care area.
- (c)
- Yellow code with low care intensity: immediate entry, or at least within 40 min, to the low intensity care area.
- (d)
- Green code: assigned to deferred urgency or minor emergencies with a wait of a few hours and entry to the low intensity of care area.
- (e)
- White code: non-urgent cases with a wait of a few hours and entry to the low intensity of care area.
4.1. Evaluation of Our Experience
4.2. Future Perspective
4.3. Limitation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure, The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC), Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [CrossRef] [PubMed]
- Dickstein, K.; Cohen-Solal, A.; Filippatos, G.; McMurray, J.J.V.; Ponikowsk, P.; Poole-Wilson, P.A.; Strömberg, A.; van Veldhuisen, D.J.; Atar, D.; Hoes, A.W.; et al. Linee guida ESC per la diagnosi e il trattamento dello scompenso cardiaco acuto e cronico 2008: Task Force per la Diagnosi e il Trattamento dello Scompenso Cardiaco Acuto e Cronico 2008 della Società Europea di Cardiologia. Linee guida elaborate in collaborazione con la Heart Failure Association dell’ESC (HFA) e approvate dalla European Society of Intensive Care Medicine (ESICM). G Ital. Cardiol. 2009, 10, 141–198. [Google Scholar]
- Adams, K.F.; Fonarow, G.C.; Emerman, C.L.; LeJemtel, T.H.; Costanzo, M.R.; Abraham, W.T.; Berkowitz, R.L.; Galvao, M.; Horton, D.P. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am. Heart J. 2005, 149, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Fonarow, G.C.; Stough, W.G.; Abraham, W.T.; Albert, N.; Gheorghiade, M.; Greenberg, B.H.; O’Connor, C.M.; Sun, J.L.; Yancy, C.W.; Young, J.B.; et al. Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: A report from the OPTIMIZE-HF Registry. J. Am. Coll Cardiol. 2007, 50, 768–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cleland, J.G.; Swedberg, K.; Cohen-Solal, A.; Cosin-Aguilar, J.; Dietz, R.; Follath, F.; Gavazzi, A.; Hobbs, R.; Korewicki, J.; Madeira, H.C.; et al. The Euro Heart Failure Survey of the EUROHEART survey programme. A survey on the quality of care among patients with heart failure in Europe. The Study Group on Diagnosis of the Working Group on Heart Failure of the European Society of Cardiology. The Medicines Evaluation Group Centre for Health Economics University of York. Eur J. Heart Fail. 2000, 2, 123. [Google Scholar]
- Rising, K.L.; White, L.F.; Fernandez, W.G.; Boutwell, A.E. Emergency department visits after hospital discharge: A missing part of the equation. Ann. Emerg. Med. 2013, 62, 145–150. [Google Scholar] [CrossRef]
- Vashi, A.A.; Fox, J.P.; Carr, B.G.; D’Onofrio, G.; Pines, J.M.; Ross, S.J.; Gross, C. P Use of hospital-based acute care among patients recently discharged from the hospital. JAMA 2013, 309, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Jencks, S.F.; Williams, M.V.; Coleman, E.A. Rehospitalizations among patients in the Medicare fee-for-service program. N. Engl. J. Med. 2009, 360, 1418–1428. [Google Scholar] [CrossRef]
- Suter, L.G.; Li, S.X.; Grady, J.N.; Lin, Z.; Wang, Y.; Bhat, K.R.; Turkmani, D.; Spivack, S.; Lindenauer, P.K.; Merrill, A.R.; et al. National patterns of risk-standardized mortality and readmission after hospitalization for acute myocardial infarction, heart failure, and pneumonia: Update on publicly reported outcomes measures based on the 2013 release. J. Gen. Intern. Med. 2014, 29, 1333–1340. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Sadasivam, R.; Blok, A.C.; Ritchie, C.S.; Nagawa, C.; Orvek, E.; Patel, K.; Houston, T.K. The Association Between Patient-reported Clinical Factors and 30-day Acute Care Utilization in Chronic Heart Failure. Med. Care 2020, 58, 336–343. [Google Scholar] [CrossRef] [Green Version]
- Ross, J.S.; Mulvey, G.K.; Stauffer, B.; Patlolla, V.; Bernheim, S.M.; Keenan, P.S.; Krumholz, H.M. Statistical models and patient predictors of readmission for heart failure: a systematic review. Arch. Intern. Med. 2008, 168, 1371–1386. [Google Scholar] [CrossRef] [PubMed]
- Kansagara, D.; Englander, H.; Salanitro, A.; Kagen, D.; Theobald, C.; Freeman, M.; Kripalani, S. Risk prediction models for hospital readmission: A systematic review. JAMA 2011, 306, 1688–1698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, S.; Jin, B.; Shin, A.Y.; Zhao, Y.; Zhu, C.; Li, Z.; Hu, Z.; Fu, C.; Ji, J.; Wang, Y.; et al. Risk prediction of emergency department revisit 30 days post discharge: A prospective study. PLoS ONE 2014, 9, e112944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunbar-Yaffe, R.; Stitt, A.; Lee, J.J.; Mohamed, S.; Lee, D.S. Assessing risk and preventing 30-day readmissions in decompensated heart failure: Opportunity to intervene? Curr. Heart Fail. Rep. 2015, 12, 309–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brennan, J.J.; Chan, T.C.; Killeen, J.P.; Castillo, E.M. Inpatient Readmissions and Emergency Department Visits within 30 Days of a Hospital Admission. West J. Emerg. Med. 2015, 16, 1025–1029. [Google Scholar] [CrossRef] [PubMed]
- Moskop, J.C.; Sklar, D.P.; Geiderman, J.M.; Schears, R.M.; Bookman, K.J. Emergency department crowding, part 1—concepts, causes, and moral consequences. Ann. Emerg. Med. 2009, 53, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Moskop, J.C.; Sklar, D.P.; Geiderman, J.M.; Schears, R.M.; Bookman, K.J. Emergency department crowding, part 2—barriers to reform and strategies to overcome them. Ann. Emerg. Med. 2009, 53, 612–617. [Google Scholar] [CrossRef]
- Cooke, M.; Fisher, J.; Dale, J.; McLeod, E.; Szczepura, A.; Walley, P.; Wilson, S. Reducing Attendances and Waits in Emergency Departments. A Systematic Review of Present Innovations; The National Coordinating Centre for the Service Delivery and Organisation, London School of Hygiene and Tropical Medicine: London, UK, 2004. [Google Scholar]
- Forero, R.; McCarthy, S.; Hillman, K. Access Block and Emergency Department Overcrowding. Available online: http://ccforum.com/content/15/2/216 (accessed on 1 February 2013).
- Chan, S.S.W.; Cheung, N.K.; Graham, C.A.; Rainer, T.H. Strategies and solutions to alleviate access block and overcrowding in emergency departments. Hong Kong Med. J. 2015, 21, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Dunn, R. Reduced access block causes shorter emergency department waiting times: An historical control observational study. Emerg. Med. 2003, 15, 232–238. [Google Scholar] [CrossRef]
- Forero, R.; Hillman, K.M.; McCarthy, S.; Fatovich, D.M.; Joseph, A.P.; Richardson, D.B. Access block and ED overcrowding. Emerg. Med. Australas 2010, 22, 119–135. [Google Scholar] [CrossRef]
- Gilligan, P.; Winder, S.; Ramphul, N.; O’Kelly, P. The referral and complete evaluation time study. Eur. J. Emerg. Med. 2010, 17, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Bullard, M.J.; Villa-Roel, C.; Bond, K.; Vester, M.; Holroyd, B.; Rowe, B. Tracking emergency department overcrowding in a tertiary care academic institution. Healthc. Q. 2009, 12, 99–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, D. 2008—2. Access Blozck Point Prevalence Survey. The Australasian College for Emergency Medicine 2008. Available online: https://www.acem.org.au/getattachment/e6442562-06f7-4629-b7f9-8102236c8b9d/Access-Block-2009-point-prevalence-study.aspx (accessed on 1 February 2013).
- Sun, B.C.; Hsia, R.Y.; Weiss, R.E.; Zingmond, D.; Liang, L.-J.; Han, W.; McCreath, H.; Asch, S.M. Effect of emergency department crowding on outcomes of admitted patients. Ann. Emerg. Med. 2013, 61, 605–611.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Institute of Medicine Committee on the Future of Emergency Care in the United States Health System. Hospital-Based Emergency Care: At the Breaking Point; National Academies Press: Washington, DC, USA, 2006; Available online: http://www.nap.edu/catalog/11621.html (accessed on 15 February 2013).
- Wiler, J.L.; Ross, M.A.; Ginde, A.A. National study of emergency department observation services. Acad Emerg. Med. 2011, 18, 959–965. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Vaquero, C.; Soler, A.S.; Pastor, A.J.; Mas, J.R.; Rodriguez, J.J.; Virós, X.C. Efficacy of a holding unit to reduce access block and attendance pressure in the emergency department. Emerg. Med. J. 2009, 26, 571–572. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.P.; Schauer, D.P.; Gupta, A.; Brunner, H.; Storrow, A.B.; Eckman, M.H. Cost-effectiveness analysis of ED decision making in patients with non-high-risk heart failure. Am. J. Emerg. Med. 2009, 27, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.; Tu, J.V.; Harindra, C. Wijeysundera, Lifetime Analysis of Hospitalizations and Survival of Patients Newly Admitted with Heart Failure. Circ. Heart Fail 2012, 5, 414–421. [Google Scholar] [CrossRef] [Green Version]
- Schull, M.J.; Vermeulen, M.J.; Stukel, T.A.; Guttmann, A.; Leaver, C.A.; Rowe, B.H.; Sales, A. Evaluating the effect of clinical decision units on patient flow in seven Canadian emergency departments. Acad. Emerg. Med. 2012, 19, 828–836. [Google Scholar] [CrossRef]
- Ho, E.C.; Schull, M.J.; Lee, D.S. The Challenge of Heart Failure Discharge from the Emergency Department. Curr. Heart Fail. Rep. 2012, 9, 252–259. [Google Scholar] [CrossRef] [Green Version]
- Diercks, D.B.; Peacock, W.F.; Kirk, J.D.; Weber, J.E. ED patients with heart failure: identification of an observational unit-appropriate cohort. Am. J. Emerg. Med. 2006, 24, 319–324. [Google Scholar] [CrossRef]
- Storrow, A.B.; Collins, S.P.; Lyons, M.S.; Wagoner, L.E.; Gibler, W.B.; Lindsell, C.J. Emergency department observation of heart failure: preliminary analysis of safety and cost. Congest Heart Fail 2005, 11, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, J.; Peacock, W.F.; Emerman, C.L. Predictors of emergency department observation unit outcomes. Acad. Emerg. Med. 2005, 12, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, A.K.; Geisler, B.P.; Gibson Chambers, J.J.; Baugh, C.W.; Bohan, J.S.; Schuur, J.D. Use of observation care in US emergency departments, 2001 to 2008. PLoS ONE 2011, 6, e24326. [Google Scholar] [CrossRef] [PubMed]
- Peacock, W.F.; Young, J.; Collins, S.; Diercks, D.; Emerman, C. Heart failure observation units: optimizing care. Ann. Emerg. Med. 2006, 47, 22–33. [Google Scholar] [CrossRef]
OBI N (%) | Mean (95% IC) | Non-OBI N (%) | Mean (95% CI) | p | |
---|---|---|---|---|---|
Sex | |||||
Men | 283 (50.4%) | - | 178 (49.7%) | - | |
Women | 279 (49.6%) | - | 180 (50.3%) | - | 0.851 a |
Age (years) | |||||
Men | 283 (50.4%) | 79.2 (78.0–80.4) | 178 (49.7%) | 77.0 (75.1–78.9) | 0.046 b |
Women | 279 (49.6%) | 81.8 (80.7–83.0) | 180 (50.3%) | 82.2 (80.8–83.5) | 0.719 b |
All | 562 (100%) | 80.5 (79.7–81.4) | 358 (100%) | 79.6 (78.4–80.8) | 0.214 b |
Arrhythmia | |||||
Yes | 32 (5.7%) | - | 17 (4.8%) | - | |
No | 530 (94.3%) | - | 341 (95.2%) | - | |
All | 562 (100%) | - | 358 (100%) | - | 0.534 a |
HR (bpm) | |||||
Men | 283 (50.4%) | 88.6 (86.1–91.1) | 178 (49.7%) | 84.4 (81.1–87.6) | 0.041 b |
Women | 279 (49.6%) | 88.7 (85.7–91.6) | 180 (50.3%) | 88.6 (85.3–91.9) | 0.992 b |
All | 562 (100%) | 88.6 (86.7–90.5) | 358 (100%) | 86.6 (84.2–88.9) | 0.180 b |
SBP (mmHg) | |||||
Men | 283 (50.4%) | 141.1 (137.9–144.4) | 178 (49.7%) | 137.5 (133.4–141.6) | 0.173 b |
Women | 279 (49.6%) | 143.0 (139.9–146.1) | 180 (50.3%) | 141.8 (137.9–145.7) | 0.644 b |
All | 562 (100%) | 142.1 (139.8–144.3) | 358 (100%) | 139.7 (136.8–142.5) | 0.197 b |
SBP > 180 mmHg | |||||
Men | 21 (7.4%) | 199.9 (191.4–208.5) | 9 (5.1%) | 198.7 (186.3–211.1) | 0.865 b |
Women | 21 (7.5%) | 195.1 (191.4–198.7 | 11 (6.1%) | 197.9 (187.8–208.0) | 0.484 b |
All | 42 (7.5%) | 197.5 (193.0–202.0) | 20 (5.6%) | 198.3 (191.2–205.3) | 0.847 b |
DBP (mmHg) | |||||
Men | 283 (50.4%) | 79.7 (77.8–81.6) | 178 (49.7%) | 78.5 (76.2–80.9) | 0.447 b |
Women | 279 (49.6%) | 79.4 (77.4–81.5) | 180 (50.3%) | 77.2 (74.7–79.7) | 0.185 b |
All | 562 (100%) | 79.5 (78.2–80.9) | 358 (100%) | 77.8 (76.1–79.6) | 0.134 b |
DBP > 110 mmHg | |||||
Men | 6 (2.1%) | 125.8 (114.6–137.1) | 6 (3.4%) | 120.0 (114.3–125.8) | 0.262 b |
Women | 9 (3.2%) | 119.7 (116.2–123.2) | 6 (3.3%) | 119.3 (112.6–126.0) | 0.907 b |
All | 15 (2.7%) | 122.1 (117.8–126.5) | 12 (3.4%) | 119.7 (116.1–123.3) | 0.372 b |
SatO2 | |||||
Men | 283 (50.4%) | 94.4 (93.8–95.0) | 178 (49.7%) | 94.2 (93.2–95.2) | 0.741 b |
Women | 279 (49.6%) | 94.0 (93.3–94.7) | 180 (50.3%) | 94.3 (93.3–95.2) | 0.670 b |
All | 562 (100%) | 94.2 (93.7–94.7) | 358 (100%) | 94.2 (93.6–94.9) | 0.943 b |
SatO2 < 85% | |||||
Men | 14 (4.9%) | 78.8 (75.0–82.5) | 8 (4.5%) | 72.6 (65.6–79.6) | 0.068 b |
Women | 18 (6.5%) | 77.9 (75.0–80.8) | 9 (5.0%) | 75.8 (70.2–81.4) | 0.421 b |
All | 32 (5.7%) | 78.3 (76.1–80.5) | 17 (4.8%) | 74.3 (70.3–78.3) | 0.052 b |
Priority Code–Access | |||||
Green | 109 (19.4%) | - | 103 (28.8%) | - | |
Yellow | 387 (68.9%) | - | 212 (59.2%) | - | |
Red | 66 (11.7%) | - | 43 (12.0%) | - | 0.004 a |
Priority Code–Discharge | |||||
Green | 221 (39.3%) | - | 121 (33.8%) | - | |
Yellow | 332 (59.1%) | - | 217 (60.6%) | - | |
Red | 9 (1.6%) | - | 20 (5.6%) | - | 0.001 a |
Wait time (min) | |||||
Men | 283 (50.4%) | 50.6 (43.8–57.3) | 178 (49.7%) | 60.5 (49.5–71.6) | 0.108 b |
Women | 279 (49.6%) | 50.6 (44.1–57.0) | 180 (50.3%) | 58.8 (49.5–68.0) | 0.141 b |
All | 562 (100%) | 50.6 (45.9–55.2) | 358 (100%) | 59.6 (52.5–66.8) | 0.029 b |
Process time (min) | |||||
Men | 283 (50.4%) | 578.5 (533.3–623.6) | 178 (49.7%) | 306.1 (265.9–346.3) | <0.001 b |
Women | 279 (49.6%) | 634.2 (587.2–681.1) | 180 (50.3%) | 348.8 (304.6–392.9) | <0.001 b |
All | 562 (100%) | 606.1 (573.6–638.7) | 358 (100%) | 327.6 (297.7–357.4) | <0.001 b |
Total time (min) | |||||
Men | 283 (50.4%) | 607.9 (560.3–655.4) | 178 (49.7%) | 350.9 (312.0–389.8) | <0.001 b |
Women | 279 (49.6%) | 642.9 (593.5–692.3) | 180 (50.3%) | 402.9 (358.7–447.0) | <0.001 b |
All | 562 (100%) | 625.3 (591.1–659.5) | 358 (100%) | 377.0 (347.6–406.5) | <0.001 b |
OBI | Non-OBI | p | |||
---|---|---|---|---|---|
N | % | N | % | ||
Death | |||||
Yes | 3 | 0.53% | 3 | 0.84% | |
No | 559 | 99.47% | 355 | 99.16% | 0.683 b |
Hospitalization | |||||
Yes | 333 | 59.25% | 245 | 68.44% | |
No | 229 | 40.75% | 113 | 31.56% | 0.005 a |
Transfer * | |||||
Yes | 91 | 16.19% | 23 | 6.42% | |
No | 471 | 83.81% | 335 | 93.58% | <0.001 a |
Outcomes | |||||
Hospitalization | 333 | 59.25% | 245 | 68.44% | |
Discharge | 129 | 22.95% | 83 | 23.18% | |
Transfer * | 91 | 16.19% | 23 | 6.42% | |
Voluntary leaving | 5 | 0.89% | 4 | 1.12% | |
Hospitalization refuse | 1 | 0.18% | - | - | |
Death | 3 | 0.53% | 3 | 0.84% | <0.001 b |
Readmission | |||||
Yes | 64 | 11.4% | 35 | 9.8% | |
No | 498 | 88.6% | 323 | 90.2% | 0.591 a |
Readmission at 7 days | |||||
Yes | 13 | 2.31% | 12 | 3.35% | |
No | 549 | 97.69% | 346 | 96.65% | 0.345 a |
Readmission at 14 days | |||||
Yes | 32 | 5.69% | 21 | 5.87% | |
No | 530 | 94.31% | 337 | 94.13% | 0.913 a |
Readmission at 30 days | |||||
Yes | 66 | 11.74% | 40 | 11.17% | |
No | 496 | 88.26% | 318 | 88.83% | 0.792 a |
OR | 95% CI | p | |
---|---|---|---|
Univariate analysis | |||
Non-OBI | 1 (reference) | - | |
OBI | 0.275 | 0.124–0.611 | 0.002 |
Multivariate analysis | |||
OBI (yes vs. no) | 0.347 | 0.130–0.928 | 0.035 |
Age (year) | 0.971 | 0.936–1.008 | 0.122 |
Sex (male vs. female) | 1.332 | 0.518–3.426 | 0.626 |
Arrhythmia (yes vs. no) | 1.234 | 0.246–6.189 | 0.798 |
HR (bmp) | 1.031 | 1.012–1.049 | 0.001 |
SatO2 (%) | 0.986 | 0.931–1.044 | 0.626 |
SBP (mmHg) | 1.010 | 0.990–1.030 | 0.349 |
DBP (mmHg) | 0.984 | 0.951–1.017 | 0.330 |
Wait time (min) | 0.981 | 0.964–0.999 | 0.041 |
Process time (min) | 0.999 | 0.995–1.004 | 0.761 |
Total time (min) | 0.999 | 0.995–1.003 | 0.581 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savioli, G.; Ceresa, I.F.; Manzoni, F.; Ricevuti, G.; Bressan, M.A.; Oddone, E. Role of a Brief Intensive Observation Area with a Dedicated Team of Doctors in the Management of Acute Heart Failure Patients: A Retrospective Observational Study. Medicina 2020, 56, 251. https://doi.org/10.3390/medicina56050251
Savioli G, Ceresa IF, Manzoni F, Ricevuti G, Bressan MA, Oddone E. Role of a Brief Intensive Observation Area with a Dedicated Team of Doctors in the Management of Acute Heart Failure Patients: A Retrospective Observational Study. Medicina. 2020; 56(5):251. https://doi.org/10.3390/medicina56050251
Chicago/Turabian StyleSavioli, Gabriele, Iride Francesca Ceresa, Federica Manzoni, Giovanni Ricevuti, Maria Antonietta Bressan, and Enrico Oddone. 2020. "Role of a Brief Intensive Observation Area with a Dedicated Team of Doctors in the Management of Acute Heart Failure Patients: A Retrospective Observational Study" Medicina 56, no. 5: 251. https://doi.org/10.3390/medicina56050251
APA StyleSavioli, G., Ceresa, I. F., Manzoni, F., Ricevuti, G., Bressan, M. A., & Oddone, E. (2020). Role of a Brief Intensive Observation Area with a Dedicated Team of Doctors in the Management of Acute Heart Failure Patients: A Retrospective Observational Study. Medicina, 56(5), 251. https://doi.org/10.3390/medicina56050251