Combination Preemptive Peripheral Nerve Block in Limb Surgery. A Prospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anesthetic Protocol
2.2. Interleukin-6 (IL-6) Concentration Measurement
2.3. Outcome Measures
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Friesgaard, K.D.; Gromov, K.; Knudsen, L.F.; Brix, M.; Troelsen, A.; Nikolajsen, L. Persistent pain is common 1 year after ankle and wrist fracture surgery: A register-based questionnaire study. Br. J. Anaesth. 2016, 116, 655–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjornholdt, K.T.; Brandsborg, B.; Soballe, K.; Nikolajsen, L. Persistent pain is common 1–2 years after shoulder replacement. Acta. Orthop. 2015, 86, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Althaus, A.; Hinrichs-Rocker, A.; Chapman, R.; Arranz Becker, O.; Lefering, R.; Simanski, C.; Weber, F.; Moser, K.H.; Joppich, R.; Trojan, S.; et al. Development of a risk index for the prediction of chronic post-surgical pain. Eur. J. Pain. 2012, 16, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Niraj, G.; Kelkar, A.; Kaushik, V.; Tang, Y.; Fleet, D.; Tait, F.; McMillan, T.; Rathinam, S. Audit of postoperative pain management after open thoracotomy and the incidence of chronic postthoracotomy pain in more than 500 patients at a tertiary center. J. Clin. Anesth. 2017, 36, 174–177. [Google Scholar] [CrossRef]
- Bugada, D.; Lavand’homme, P.; Ambrosoli, A.L.; Cappelleri, G.; Saccani Jotti, G.M.; Meschi, T.; Fanelli, G.; Allegri, M. Effect of Preoperative Inflammatory Status and Comorbidities on Pain Resolution and Persistent Postsurgical Pain after Inguinal Hernia Repair. Mediat. Inflamm. 2016, 2016, 5830347. [Google Scholar] [CrossRef] [Green Version]
- Dubljanin-Raspopovic, E.; Markovic-Denic, L.; Ivkovic, K.; Nedeljkovic, U.; Tomanovic, S.; Kadija, M.; Tulic, G.; Bumbasirevic, M. The impact of postoperative pain on early ambulation after hip fracture. Acta. Chir. Iugosl. 2013, 60, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Carmichael, N.M.; Katz, J.; Clarke, H.; Kennedy, D.; Kreder, H.J.; Gollish, J.; McCartney, C.J. An intensive perioperative regimen of pregabalin and celecoxib reduces pain and improves physical function scores six weeks after total hip arthroplasty: A prospective randomized controlled trial. Pain Res. Manag. 2013, 18, 127–132. [Google Scholar] [CrossRef]
- Joshi, G.P.; Ogunnaike, B.O. Consequences of inadequate postoperative pain relief and chronic persistent postoperative pain. Anesthesiol. Clin. North. Am. 2005, 23, 21–36. [Google Scholar] [CrossRef]
- Baratta, J.L.; Schwenk, E.S.; Viscusi, E.R. Clinical consequences of inadequate pain relief: Barriers to optimal pain management. Plast. Reconstr. Surg. 2014, 134, 15S–21S. [Google Scholar] [CrossRef]
- Johnson, S.P.; Chung, K.C.; Zhong, L.; Shauver, M.J.; Engelsbe, M.J.; Brummett, C.; Waljee, J.F. Risk of Prolonged Opioid Use Among Opioid-Naive Patients Following Common Hand Surgery Procedures. J. Hand Surg. Am. 2016, 41, 947–957 e943. [Google Scholar] [CrossRef]
- Richebe, P.; Capdevila, X.; Rivat, C. Persistent Postsurgical Pain: Pathophysiology and Preventative Pharmacologic Considerations. Anesthesiology 2018, 129, 590–607. [Google Scholar] [CrossRef] [PubMed]
- Koehler, R.M.; Okoroafor, U.C.; Cannada, L.K. A systematic review of opioid use after extremity trauma in orthopedic surgery. Injury 2018, 49, 1003–1007. [Google Scholar] [CrossRef] [PubMed]
- Baigrie, R.J.; Lamont, P.M.; Kwiatkowski, D.; Dallman, M.J.; Morris, P.J. Systemic cytokine response after major surgery. Br. J. Surg. 1992, 79, 757–760. [Google Scholar] [CrossRef] [PubMed]
- Prabhakar, A.; Mancuso, K.F.; Owen, C.P.; Lissauer, J.; Merritt, C.K.; Urman, R.D.; Kaye, A.D. Perioperative analgesia outcomes and strategies. Best Pract. Res. Clin. Anaesthesiol. 2014, 28, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Lin, E.; Calvano, S.E.; Lowry, S.F. Inflammatory cytokines and cell response in surgery. Surgery 2000, 127, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Hranjec, T.; Swenson, B.R.; Dossett, L.A.; Metzger, R.; Flohr, T.R.; Popovsky, K.A.; Bonatti, H.J.; May, A.K.; Sawyer, R.G. Diagnosis-dependent relationships between cytokine levels and survival in patients admitted for surgical critical care. J. Am. Coll. Surg. 2010, 210, 833–844, 845–836. [Google Scholar] [CrossRef] [Green Version]
- Reikeras, O.; Borgen, P.; Reseland, J.E.; Lyngstadaas, S.P. Changes in serum cytokines in response to musculoskeletal surgical trauma. BMC Res. Notes 2014, 7, 128. [Google Scholar] [CrossRef] [Green Version]
- Desborough, J.P. The stress response to trauma and surgery. Br. J. Anaesth. 2000, 85, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Pruksapong, C.; Yingtaweesittikul, S.; Burusapat, C. Efficacy of Botulinum Toxin A in Preventing Recurrence Keloids: Double Blinded Randomized Controlled Trial Study: Intraindividual Subject. J. Med. Assoc. Thai. 2017, 100, 280–286. [Google Scholar]
- Vadivelu, N.; Mitra, S.; Schermer, E.; Kodumudi, V.; Kaye, A.D.; Urman, R.D. Preventive analgesia for postoperative pain control: A broader concept. Local Reg. Anesth. 2014, 7, 17–22. [Google Scholar]
- Ong, C.K.; Lirk, P.; Seymour, R.A.; Jenkins, B.J. The efficacy of preemptive analgesia for acute postoperative pain management: A meta-analysis. Anesth. Analg. 2005, 100, 757–773, table of contents. [Google Scholar] [CrossRef] [PubMed]
- Bian, Y.Y.; Wang, L.C.; Qian, W.W.; Lin, J.; Jin, J.; Peng, H.M.; Weng, X.S. Role of Parecoxib Sodium in the Multimodal Analgesia after Total Knee Arthroplasty: A Randomized Double-blinded Controlled Trial. Orthop. Surg. 2018, 10, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.M.; Wang, L.C.; Wang, W.; Tang, Q.H.; Qian, W.W.; Lin, J.; Jin, J.; Feng, B.; Yin, X.H.; Weng, X.S.; et al. Preemptive Analgesia with Parecoxib in Total Hip Arthroplasty: A Randomized, Double-Blind, Placebo-Controlled Trial. Pain Phys. 2018, 21, 483–488. [Google Scholar]
- Kashefi, P.; Honarmand, A.; Safavi, M. Effects of preemptive analgesia with celecoxib or acetaminophen on postoperative pain relief following lower extremity orthopedic surgery. Adv. Biomed. Res. 2012, 1, 66. [Google Scholar]
- Lee, J.K.; Chung, K.S.; Choi, C.H. The effect of a single dose of preemptive pregabalin administered with COX-2 inhibitor: A trial in total knee arthroplasty. J. Arthroplast. 2015, 30, 38–42. [Google Scholar] [CrossRef]
- Heydari, S.M.; Hashemi, S.J.; Pourali, S. The Comparison of Preventive Analgesic Effects of Ketamine, Paracetamol and Magnesium Sulfate on Postoperative Pain Control in Patients Undergoing Lower Limb Surgery: A Randomized Clinical Trial. Adv. Biomed. Res. 2017, 6, 134. [Google Scholar]
- Haines, L.; Dickman, E.; Ayvazyan, S.; Pearl, M.; Wu, S.; Rosenblum, D.; Likourezos, A. Ultrasound-guided fascia iliaca compartment block for hip fractures in the emergency department. J. Emerg. Med. 2012, 43, 692–697. [Google Scholar] [CrossRef]
- Beaudoin, F.L.; Haran, J.P.; Liebmann, O. A comparison of ultrasound-guided three-in-one femoral nerve block versus parenteral opioids alone for analgesia in emergency department patients with hip fractures: A randomized controlled trial. Acad. Emerg. Med. 2013, 20, 584–591. [Google Scholar] [CrossRef]
- Lin, E.; Choi, J.; Hadzic, A. Peripheral nerve blocks for outpatient surgery: Evidence-based indications. Curr. Opin. Anaesthesiol. 2013, 26, 467–474. [Google Scholar] [CrossRef]
- Liu, Q.; Chelly, J.E.; Williams, J.P.; Gold, M.S. Impact of peripheral nerve block with low dose local anesthetics on analgesia and functional outcomes following total knee arthroplasty: A retrospective study. Pain Med. 2015, 16, 998–1006. [Google Scholar] [CrossRef] [Green Version]
- Aldrete, J.A. The post-anesthesia recovery score revisited. J. Clin. Anesth. 1995, 7, 89–91. [Google Scholar] [CrossRef]
- Jensen, M.P.; Karoly, P.; Braver, S. The measurement of clinical pain intensity: A comparison of six methods. Pain 1986, 27, 117–126. [Google Scholar] [CrossRef]
- Hight, D.F.; Dadok, V.M.; Szeri, A.J.; Garcia, P.S.; Voss, L.; Sleigh, J.W. Emergence from general anesthesia and the sleep-manifold. Front. Syst. Neurosci. 2014, 8, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paqueron, X.; Gentili, M.E.; Willer, J.C.; Coriat, P.; Riou, B. Time sequence of sensory changes after upper extremity block: Swelling sensation is an early and accurate predictor of success. Anesthesiology 2004, 101, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Benyamin, R.; Trescot, A.M.; Datta, S.; Buenaventura, R.; Adlaka, R.; Sehgal, N.; Glaser, S.E.; Vallejo, R. Opioid complications and side effects. Pain Phys. 2008, 11, S105–S120. [Google Scholar]
- McIsaac, D.I.; McCartney, C.J.; Walraven, C.V. Peripheral Nerve Blockade for Primary Total Knee Arthroplasty: A Population-based Cohort Study of Outcomes and Resource Utilization. Anesthesiology 2017, 126, 312–320. [Google Scholar] [CrossRef]
- Novello-Siegenthaler, A.; Hamdani, M.; Iselin-Chaves, I.; Fournier, R. Ultrasound-guided continuous femoral nerve block: A randomized trial on the influence of femoral nerve catheter orifice configuration (six-hole versus end-hole) on post-operative analgesia after total knee arthroplasty. BMC Anesthesiol. 2018, 18, 191. [Google Scholar] [CrossRef] [Green Version]
- Misamore, G.; Webb, B.; McMurray, S.; Sallay, P. A prospective analysis of interscalene brachial plexus blocks performed under general anesthesia. J. Shoulder Elb. Surg. 2011, 20, 308–314. [Google Scholar] [CrossRef]
- Erdogan, M.A.; Ozgul, U.; Ucar, M.; Yalin, M.R.; Colak, Y.Z.; Colak, C.; Toprak, H.I. Effect of transversus abdominis plane block in combination with general anesthesia on perioperative opioid consumption, hemodynamics, and recovery in living liver donors: The prospective, double-blinded, randomized study. Clin. Transplant. 2017. [Google Scholar] [CrossRef]
- Kessler, P.; Steinfeldt, T.; Gogarten, W.; Schwemmer, U.; Buttner, J.; Graf, B.M.; Volk, T. [Peripheral regional anesthesia in patients under general anesthesia: Risk assessment with respect to parasthesia, injection pain and nerve damage]. Anaesthesist 2013, 62, 483–488. [Google Scholar] [CrossRef]
- Karaman, T.; Ozsoy, A.Z.; Karaman, S.; Dogru, S.; Tapar, H.; Sahin, A.; Dogru, H.; Suren, M. [The effects of transversus abdominis plane block on analgesic and anesthetic consumption during total abdominal hysterectomy: A randomized controlled study]. Rev..Bras. Anestesiol. 2018, 68, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Masaracchia, M.M.; Herrick, M.D.; Seiffert, E.A.; Sites, B.D. Nerve Blocks Under General Anesthesia: Time to Liberalize Indications? Reg. Anesth. Pain Med. 2017, 42, 299–301. [Google Scholar] [CrossRef] [PubMed]
- Finnerty, C.C.; Mabvuure, N.T.; Ali, A.; Kozar, R.A.; Herndon, D.N. The surgically induced stress response. J. Parenter. Enter. Nutr. 2013, 37, 21S–29S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varon, J.; Marik, P.E. Perioperative hypertension management. Vasc. Health Risk Manag. 2008, 4, 615–627. [Google Scholar] [CrossRef] [Green Version]
- Neukirchen, M.; Kienbaum, P. Sympathetic nervous system: Evaluation and importance for clinical general anesthesia. Anesthesiology 2008, 109, 1113–1131. [Google Scholar] [CrossRef] [Green Version]
- Erkilic, E.; Kesimci, E.; Sahin, D.; Bektaser, B.; Yalcin, N.; Ellik, S.; Sepici-Dincel, A. Does preemptive gabapentin modulate cytokine response in total knee arthroplasty? A placebo controlled study. Adv. Clin. Exp. Med. 2018, 27, 487–491. [Google Scholar] [CrossRef]
- Mari, G.; Costanzi, A.; Crippa, J.; Falbo, R.; Miranda, A.; Rossi, M.; Berardi, V.; Maggioni, D. Surgical Stress Reduction in Elderly Patients Undergoing Elective Colorectal Laparoscopic Surgery within an ERAS Protocol. Chirurgia (Bucur) 2016, 111, 476–480. [Google Scholar] [CrossRef]
- Ping, C.; Lin, Q.S.; Lin, X.Z. Optimal concentration of the transversus abdominis plane block in enhanced recovery after surgery protocols for patients of advanced age undergoing laparoscopic rectal cancer surgery. J. In.t Med. Res. 2018, 46, 4437–4446. [Google Scholar]
- Jang, J.S.; Lee, Y.H.; Kandahar, H.K.; Shrestha, S.K.; Lee, J.S.; Lee, J.K.; Park, S.J.; Lee, N.R.; Lee, J.J.; Lee, S.S. [Changes in the tumor necrosis factor-alpha level after an ultrasound-guided femoral nerve block in elderly patients with a hip fracture]. Rev. Bras. Anestesiol. 2018, 68, 558–563. [Google Scholar] [CrossRef]
- Jin, F.; Li, Z.; Tan, W.F.; Ma, H.; Li, X.Q.; Lu, H.W. Preoperative versus postoperative ultrasound-guided rectus sheath block for improving pain, sleep quality and cytokine levels in patients with open midline incisions undergoing transabdominal gynecological surgery: A randomized-controlled trial. BMC Anesthesiol. 2018, 18, 19. [Google Scholar] [CrossRef] [Green Version]
- Kahn, R.L.; Ellis, S.J.; Cheng, J.; Curren, J.; Fields, K.G.; Roberts, M.M.; YaDeau, J.T. The Incidence of Complications Is Low Following Foot and Ankle Surgery for Which Peripheral Nerve Blocks Are Used for Postoperative Pain Management. HSS J. Musculoskelet. J. Hosp. Spec. Surg. 2018, 14, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Jeng, C.L.; Torrillo, T.M.; Rosenblatt, M.A. Complications of peripheral nerve blocks. Br. J. Anaesth. 2010, 105 (Suppl. 1), i97–i107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.U.; Cho, J.H.; Lee, D.H.; Choi, W.S.; Lee, H.D.; Kim, K.S. Complications After Multiple-Site Peripheral Nerve Blocks for Foot and Ankle Surgery Compared With Popliteal Sciatic Nerve Block Alone. Foot Ankle Int. 2018, 39, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.G.; Bohay, D.R.; Maskill, J.D.; Gadkari, K.P.; Hearty, T.M.; Braaksma, W.; Padley, M.A.; Weaver, K.T. Complications After Popliteal Block for Foot and Ankle Surgery. Foot Ankle Int. 2015, 36, 1138–1143. [Google Scholar] [CrossRef] [PubMed]
- Watts, S.A.; Sharma, D.J. Long-term neurological complications associated with surgery and peripheral nerve blockade: Outcomes after 1065 consecutive blocks. Anaesth. Intensive Care 2007, 35, 24–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casati, A.; Danelli, G.; Baciarello, M.; Corradi, M.; Leone, S.; Di Cianni, S.; Fanelli, G. A prospective, randomized comparison between ultrasound and nerve stimulation guidance for multiple injection axillary brachial plexus block. Anesthesiology 2007, 106, 992–996. [Google Scholar] [CrossRef] [Green Version]
- Perlas, A.; Brull, R.; Chan, V.W.; McCartney, C.J.; Nuica, A.; Abbas, S. Ultrasound guidance improves the success of sciatic nerve block at the popliteal fossa. Reg. Anesth. Pain Med. 2008, 33, 259–265. [Google Scholar] [CrossRef]
- Ode, K.; Selvaraj, S.; Smith, A.F. Monitoring regional blockade. Anaesthesia 2017, 72 (Suppl. 1), 70–75. [Google Scholar] [CrossRef] [Green Version]
Group N (n = 27) | Group C (n = 25) | p value | |
---|---|---|---|
Age (year) | 60.23 ± 14.37 | 51.56 ± 14.46 | 0.053 |
Gender (Male/Female) (n) | 8/19 | 12/13 | 0.256 |
Weight (kg) | 67.59 ± 12.25 | 66.70 ± 13.30 | 0.758 |
Height (cm) | 158.33 ± 9.37 | 160.70 ± 10.64 | 0.550 |
ASA 1 class I/II/III (n) | 0/9/18 | 0/11/14 | 0.321 |
Surgical procedures Fracture(n)/Arthroplasty(n) | 18/9 | 16/9 | 0.84 |
Surgical sites | 0.629 | ||
Upper limb, n (%) Lower limb, n (%) | 7 (25.9%) 20 (70.1%) | 8 (32.0%) 17 (68.0%) | |
Propofol dose (mg) | 1124.85 ± 471.31 | 1093.48 ± 410.56 | 0.819 |
Operation period (min) | 127.33 ± 48.33 | 116.00 ± 44.21 | 0.373 |
Group N (n = 27) | Group C (n = 25) | p value | |
---|---|---|---|
Peak verbal NRS 1 pain score (0-10) | 1.15 ± 1.81 | 5.40 ± 2.48 | 0.001 * |
Morphine consumption (mg) | 1.85 ± 2.04 | 6.44 ± 3.22 | 0.001 * |
Rescue analgesics 2,n(%) | 3 (11.1%) | 14 (56.0%) | 0.003 * |
Wake-up time (min) | 17.04 ± 10.49 | 26.60 ± 15.32 | 0.025 * |
Group N (n = 27) | Group C (n = 25) | p-value | |
---|---|---|---|
Pre-incision (pg/mL) | 6.04 ± 4.92 | 5.97 ± 5.44 | 0.684 |
Incision 1 h (pg/mL) | 3.79 ± 4. 21 | 5.19 ± 5.93 | 0.437 |
Incision 2 h (pg/mL) | 5.36 ± 5.01 | 12.95 ± 15.32 | 0.027 * |
Group N (n = 27) | Group C (n = 25) | p value | |
---|---|---|---|
Adverse events | |||
Dizziness, n(/%) | 2 (7.4%) | 8 (32%) | 0.024 * |
PONV 1, n(/%) | 0 (0%) | 3 (12%) | 0.141 |
Pruritus, n(/%) | 0 (0%) | 0 (0%) | 1 |
Respiratory episode 2, n(/%) | 0 (0%) | 3 (12%) | 0.064 |
Sensory blockade 3 (0/1/2) (n) | 26/1/0 | 25/0/0 | 0.130 |
Motor blockade 4 (0/1/2) (n) | 23/4/0 | 23/2/0 | 0.187 |
Satisfaction (1/2/3/4) 5 (n) | 4/21/2/0 | 0/22/3/0 | 0.365 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, I.-C.; Huang, S.-H.; Lu, D.V.; Hsu, C.D.; Wu, S.H. Combination Preemptive Peripheral Nerve Block in Limb Surgery. A Prospective Study. Medicina 2020, 56, 388. https://doi.org/10.3390/medicina56080388
Lu I-C, Huang S-H, Lu DV, Hsu CD, Wu SH. Combination Preemptive Peripheral Nerve Block in Limb Surgery. A Prospective Study. Medicina. 2020; 56(8):388. https://doi.org/10.3390/medicina56080388
Chicago/Turabian StyleLu, I-Cheng, Shu-Hung Huang, David Vi Lu, Chun Dan Hsu, and Sheng Hua Wu. 2020. "Combination Preemptive Peripheral Nerve Block in Limb Surgery. A Prospective Study" Medicina 56, no. 8: 388. https://doi.org/10.3390/medicina56080388
APA StyleLu, I. -C., Huang, S. -H., Lu, D. V., Hsu, C. D., & Wu, S. H. (2020). Combination Preemptive Peripheral Nerve Block in Limb Surgery. A Prospective Study. Medicina, 56(8), 388. https://doi.org/10.3390/medicina56080388