A Comparison of the Epidemiology, Clinical Features, and Treatment of Acute Osteomyelitis in Hospitalized Children in Latvia and Norway
Abstract
:1. Introduction
2. Materials and Methods
- M86.0 Acute Haematogenous Osteomyelitis
- M86.1 Other acute osteomyelitis
- M86.2 Subacute Osteomyelitis
- M86.8 Other Specified Osteomyelitis, Brodie abscess
- M86.9 Unspecified Osteomyelitis
- M86.0 Acute haematogenous Osteomyelitis
- M86.1 Other Acute Osteomyelitis
- M86.5 Other Haematogenous Osteomyelitis*
- Patients older than 18 years or younger than 7 days;
- Patients with comorbidities that may impair the immune response and are related to an increased infection risk: acquired or congenital immunodeficiency, use of immunosuppressants, patients undergoing chemotherapy, chronic illnesses; cystic fibrosis, diabetes mellitus, malignancies, myopathies, chronic kidney or liver insufficiency, or multiple genetic abnormalities;
- Secondary osteomyelitis after open fractures or surgery.
- The following data were collected and analysed in both hospitals [35]:
- Demographic data of patients;
- Causative microorganisms and their antibacterial susceptibility;
- Clinical presentation, including general and location-specific symptoms;
- Performed investigations and their results;
- Management strategy—duration of hospitalization, antibacterial treatment applied in the hospital and route of administration; antibacterial treatment and duration recommended after discharge; surgical interventions;
- Treatment outcomes and complications.
3. Results
3.1. Description of the Study Site (Sørlandet Sykehus Kristiansand)
3.2. Study Population, Clinical Data, and Location of Inflammation
3.3. Laboratory and Imaging Diagnostics
3.4. Microbiology Investigations
3.5. Management and Therapy
3.6. Complications
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cooper, A.M.; Shope, A.J.; Javid, M.; Parsa, A.; Chinoy, M.A.; Parvizi, J. Musculoskeletal Infection in Pediatrics: Assessment of the 2018 International Consensus Meeting on Musculoskeletal Infection. JBJS 2019, 101, e133. [Google Scholar] [CrossRef] [PubMed]
- Copley, L.A.B.; Kinsler, M.A.; Gheen, T.; Shar, A.; Sun, D.; Browne, R. The impact of evidence-based clinical practice guidelines applied by a multidisciplinary team for the care of children with osteomyelitis. JBJS 2013, 95, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Saavedra-Lozano, J.; Falup-Pecurariu, O.; Faust, S.N.; Girschick, H.; Hartwig, N.; Kaplan, S.; Lorrot, M.; Mantadakis, E.; Peltola, H.; Rojo, P.; et al. Bone and Joint Infections. Pediatr. Infect. Dis. J. 2017, 36, 788–799. [Google Scholar] [CrossRef] [PubMed]
- Whyte, N.S.B.; Bielski, R.J. Acute hematogenous osteomyelitis in children. Pediatr. Ann. 2016, 45, e204–e208. [Google Scholar] [CrossRef] [PubMed]
- Funk, S.S.; Copley, L.A. Acute Hematogenous Osteomyelitis in Children: Pathogenesis, Diagnosis, and Treatment. Orthop. Clin. N. Am. 2017, 48, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Riise, Ø.R.; Kirkhus, E.; Handeland, K.S.; Flatø, B.; Reiseter, T.; Cvancarova, M.; Nakstad, B.; Wathne, K.-O. Childhood osteomyelitis-incidence and differentiation from other acute onset musculoskeletal features in a population-based study. BMC Pediatr. 2008, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gafur, O.A.; Copley, L.A.B.; Hollmig, S.T.; Browne, R.H.; Thornton, L.A.; Crawford, S.E. The Impact of the Current Epidemiology of Pediatric Musculoskeletal Infection on Evaluation and Treatment Guidelines. J. Pediatr. Orthop. 2008, 28, 777–785. [Google Scholar] [CrossRef]
- Cohen, E.; Lifshitz, K.; Fruchtman, Y.; Eidelman, M.; Leibovitz, E. Current data on acute haematogenous osteomyelitis in children in Southern Israel: Epidemiology, microbiology, clinics and therapeutic consequences. Int. Orthop. 2016, 40, 1987–1994. [Google Scholar] [CrossRef]
- Rossaak, M.; Pitto, R.P. Osteomyelitis in Polynesian children. Int. Orthop. 2005, 29, 55–58. [Google Scholar] [CrossRef] [Green Version]
- Dartnell, J.; Ramachandran, M.; Katchburian, M. Haematogenous acute and subacute paediatric osteomyelitis: A systematic review of the literature. J. Bone Joint Surg. Br. 2012, 94, 584–595. [Google Scholar] [CrossRef]
- Lavy, C.B.D.; Peek, A.C.; Manjolo, G. The incidence of septic arthritis in Malawian children. Int. Orthop. 2005, 29, 195–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutierrez, K. Bone and joint infections in children. Pediatr. Clin. N. Am. 2005, 52, 779–794. [Google Scholar] [CrossRef] [PubMed]
- Grammatico-Guillon, L.; Maakaroun Vermesse, Z.; Baron, S.; Gettner, S.; Rusch, E.; Bernard, L. Paediatric bone and joint infections are more common in boys and toddlers: A national epidemiology study. Acta Paediatr. 2013, 102, e120–e125. [Google Scholar] [CrossRef]
- Parsch, K.; Nade, S. Infections in bones and joints. In Children’s Orthopaedics and Fractures, 3rd ed.; Benson, M., Fixsen, J., Macnicol, M., Parsch, K., Eds.; Springer Science & Business Media: London, UK, 2010; pp. 135–161. [Google Scholar]
- Peltola, H.; Pääkkönen, M. Acute osteomyelitis in children. N. Engl. J. Med. 2014, 370, 352–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakolkaran, N.; Shetty, A.K. Acute hematogenous osteomyelitis in children. Ochsner. J. 2019, 19, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Chiappini, E.; Camposampiero, C.; Lazzeri, S.; Indolfi, G.; De Martino, M.; Galli, L. Epidemiology and management of acute haematogenous osteomyelitis in a tertiary paediatric center. Int. J. Environ. Res. Public Health 2017, 14, 477. [Google Scholar] [CrossRef] [Green Version]
- Moumile, K.; Merckx, J.; Glorion, C.; Pouliquen, J.C.; Berche, P.; Ferroni, A. Bacterial aetiology of acute osteoarticular infections in children. Acta Paediatr. 2005, 94, 419–422. [Google Scholar] [CrossRef]
- Syrogiannopoulos, G.; Nelson, J. Duration of antimicrobial therapy for acute suppurative osteoarticular infections. Lancet 1988, 331, 37–40. [Google Scholar] [CrossRef]
- Chometon, S.; Benito, Y.; Chaker, M.; Boisset, S.; Ploton, C.; Berard, J.; Vandenesch, F.; Freydiere, A.M. Specific real-time polymerase chain reaction places Kingella kingae as the most common cause of osteoarticular infections in young children. Pediatr. Infect. Dis. J. 2007, 26, 377–381. [Google Scholar] [CrossRef]
- Arnold, J.C.; Bradley, J.S. Osteoarticular infections in children. Infect. Dis. Clin. N. Am. 2015, 29, 557–574. [Google Scholar] [CrossRef]
- Lorrot, M.; Gillet, Y.; Le Guen, C.G.; Launay, E.; Cohen, R.; Grimprel, E. Antibiotic therapy of bone and joint infections in children: Proposals of the French Pediatric Infectious Disease Group. Arch. Pediatr. 2017, 24, S36–S41. [Google Scholar] [CrossRef]
- Calvo, C.; Núñez, E.; Camacho, M.; Clemente, D.; Fernández-Cooke, E.; Alcobendas, R.; Mayol, L.; Soler-Palacin, P.; Oscoz, M.; Saavedra-Lozano, J. Epidemiology and management of acute, uncomplicated septic arthritis and osteomyelitis. Pediatr. Infect. Dis. J. 2016, 35, 1288–1293. [Google Scholar] [CrossRef] [PubMed]
- Gerber, J.S.; Coffin, S.E.; Smathers, S.A.; Zaoutis, T.E. Trends in the Incidence of Methicillin-Resistant Staphylococcus aureus Infection in Children’s Hospitals in the United States. Clin. Infect. Dis. 2009, 49, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Aguilar, G.; Avalos-Mishaan, A.; Hulten, K.; Hammerman, W.; Mason, E.O.; Kaplan, S.L. Community-acquired, methicillin-resistant and methicillin-susceptible Staphylococcus aureus musculoskeletal infections in children. Pediatr. Infect. Dis. J. 2004, 23, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Arnold, S.R.; Elias, D.; Buckingham, S.C.; Thomas, E.D.; Novais, E.; Arkader, A.; Howard, C. Changing patterns of acute hematogenous osteomyelitis and septic arthritis: Emergence of community-associated methicillin-resistant Staphylococcus aureus. J. Pediatr. Orthop. 2006, 26, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Dohin, B.; Gillet, Y.; Kohler, R.; Lina, G.; Vandenesch, F.; Vanhems, P.; Floret, D.; Etienne, J. Pediatric bone and joint infections caused by Panton-Valentine leukocidin-positive Staphylococcus aureus. Pediatr. Infect. Dis. J. 2007, 26, 1042–1048. [Google Scholar] [CrossRef] [PubMed]
- Gijón, M.; Bellusci, M.; Petraitiene, B.; Noguera-Julian, A.; Glikman, D.; Saavedra-Lozano, J.; Neth, O.; Daskalaki, M.; Zilinskaite, V.; Kaiser-Labusch, P. Pediatric Community-Acquired Bone and Joint Staphylococcus Aureus Infections In Europe: Severe Infections are Associated to Panton-Valentine Leucocidin Presence. Pediatr. Infect. Dis. J. 2020, 39, e73–e76. [Google Scholar] [CrossRef] [PubMed]
- Fritz, J.M.; McDonald, J.R. Osteomyelitis: Approach to diagnosis and treatment. Phys. Sportsmed. 2008, 36, 50–54. [Google Scholar] [CrossRef] [Green Version]
- Peltola, H.; Pääkkönen, M.; Kallio, P.; Kallio, M.J.T. Osteomyelitis-Septic Arthritis Study Group. Short-versus long-term antimicrobial treatment for acute hematogenous osteomyelitis of childhood: Prospective, randomized trial on 131 culture-positive cases. Pediatr. Infect. Dis. J. 2010, 29, 1123–1128. [Google Scholar] [CrossRef] [Green Version]
- Keren, R.; Shah, S.S.; Srivastava, R.; Rangel, S.; Bendel-Stenzel, M.; Harik, N.; Hartley, J.; Lopez, M.; Seguias, L.; Tieder, J. Comparative effectiveness of intravenous vs. oral antibiotics for postdischarge treatment of acute osteomyelitis in children. JAMA Pediatr. 2015, 169, 120–128. [Google Scholar] [CrossRef] [Green Version]
- Chiappini, E.; Serrano, E.; Galli, L.; Villani, A.; Krzysztofiak, A. Italian Paediatric Collaborative Osteomyelitis Study Group. Practical Issues in Early Switching from Intravenous to Oral Antibiotic Therapy in Children with Uncomplicated Acute Hematogenous Osteomyelitis: Results from an Italian Survey. Int. J. Environ. Res. Public Health 2019, 16, 3557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodwell, E.R. Osteomyelitis and septic arthritis in children: Current concepts. Curr. Opin. Pediatr. 2013, 25, 58–63. [Google Scholar] [CrossRef] [PubMed]
- White, M.; Dennison, W.M. Acute haematogenous osteitis in childhood: A review of 212 cases. J. Bone Joint Surg. Br. 1952, 34, 608–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petruhina, J.; Urbane, U.N.; Petersons, A.; Pavare, J. Epidemiology and Antibacterial Treatment of Acute Hematogenous Osteomyelitis in Patients Hospitalized at Children’s Clinical University Hospital in Riga, Latvia. Acta Chir. Latv. 2017, 17, 29–34. [Google Scholar] [CrossRef]
- Castellazi, L.; Mantero, M.; Esposito, S. Update on the Management of Pediatric Acute Osteomyelitis and Septic Arthritis. Int. J. Mol. Sci. 2016, 17, 855. [Google Scholar] [CrossRef] [Green Version]
- Faust, S.N.; Clark, J.; Pallett, A.; Clarke, N.M.P. Managing bone and joint infection in children. Arch. Dis. Child. 2012, 97, 545–553. [Google Scholar] [CrossRef]
- van Schuppen, J.; van Doorn, M.M.A.C.; van Rijn, R.R. Childhood osteomyelitis: Imaging characteristics. Insights Imaging 2012, 3, 519–533. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Aggarwal, A.N. Bone and Joint Infections in Children: Acute Hematogenous Osteomyelitis. Indian J. Pediatr. 2016, 83, 817–824. [Google Scholar] [CrossRef]
- Pääkkönen, M.; Kallio, M.J.T.; Kallio, P.E.; Peltola, H. Sensitivity of erythrocyte sedimentation rate and C-reactive protein in childhood bone and joint infections. Clin. Orthop. Relat. Res. 2010, 468, 861–866. [Google Scholar] [CrossRef] [Green Version]
- Jaramillo, D.; Dormans, J.P.; Delgado, J.; Laor, T.; St Geme Iii, J.W. Hematogenous osteomyelitis in infants and children: Imaging of a changing disease. Radiology 2017, 283, 629–643. [Google Scholar] [CrossRef]
- Llewellyn, A.; Jones-Diette, J.; Kraft, J.; Holton, C.; Harden, M.; Simmonds, M. Imaging tests for the detection of osteomyelitis: A systematic review. Health Technol. Assess 2019, 1–128. [Google Scholar] [CrossRef] [PubMed]
- Pineda, C.; Espinosa, R.; Pena, A. Radiographic imaging in osteomyelitis: The role of plain radiography, computed tomography, ultrasonography, magnetic resonance imaging, and scintigraphy. Semin. Plast. Surg. 2009, 23, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blickman, J.G.; van Die, C.E.; de Rooy, J.W.J. Current imaging concepts in pediatric osteomyelitis. Eur. Radiol. 2004, 14, L55–L64. [Google Scholar] [CrossRef] [PubMed]
- Connolly, L.P.; Connolly, S.A.; Drubach, L.A.; Jaramillo, D.; Treves, S.T. Acute hematogenous osteomyelitis of children: Assessment of skeletal scintigraphy–based diagnosis in the era of MRI. J. Nucl. Med. 2002, 43, 1310–1316. [Google Scholar]
- Manz, N.; Krieg, A.H.; Heininger, U.; Ritz, N. Evaluation of the current use of imaging modalities and pathogen detection in children with acute osteomyelitis and septic arthritis. Eur. J. Paediatr. 2018, 177, 1071–1080. [Google Scholar] [CrossRef]
- Math, K.R.; Berkowitz, J.L.; Paget, S.A.; Endo, Y. Imaging of Musculoskeletal Infection. Rheum. Dis. Clin. N. Am. 2016, 42, 769–784. [Google Scholar] [CrossRef]
- McNeil, J.C.; Forbes, A.R.; Vallejo, J.G.; Flores, A.R.; Hultén, K.G.; Mason, E.O.; Kaplan, S.L. Role of operative or interventional radiology-guided cultures for osteomyelitis. Pediatrics 2016, 137, e20154616. [Google Scholar] [CrossRef] [Green Version]
- Cupane, L.; Pugacova, N.; Berzina, D.; Cauce, V.; Gardovska, D.; Miklaševics, E. Patients with Panton-Valentine leukocidin positive Staphylococcus aureus infections run an increased risk of longer hospitalisation. Int. J. Mol. Epidemiol. Genet. 2012, 3, 48. [Google Scholar]
- Hetem, D.J.; Derde, L.P.G.; Empel, J.; Mroczkowska, A.; Orczykowska-Kotyna, M.; Kozińska, A.; Hryniewicz, W.; Goossens, H.; Bonten, M.J.M. Molecular epidemiology of MRSA in 13 ICUs from eight European countries. J. Antimicrob. Chemother. 2016, 71, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Balode, A.; Punda-Polić, V.; Dowzicky, M.J. Antimicrobial susceptibility of gram-negative and gram-positive bacteria collected from countries in Eastern Europe: Results from the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.) 2004–2010. Int. J. Antimicrob. Agents 2013, 41, 527–535. [Google Scholar] [CrossRef]
- Di Ruscio, F.; Bjørnholt, J.V.; Larssen, K.W.; Leegaard, T.M.; Moen, A.E.; de Blasio, B.F. Epidemiology and spa-type diversity of meticillin-resistant Staphylococcus aureus in community and healthcare settings in Norway. J. Hosp. Infect. 2018, 100, 316–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elstrøm, P.; Astrup, E.; Hegstad, K.; Samuelsen, Ø.; Enger, H.; Kacelnik, O. The fight to keep resistance at bay, epidemiology of carbapenemase producing organisms (CPOs), vancomycin resistant enterococci (VRE) and methicillin resistant Staphylococcus aureus (MRSA) in Norway, 2006–2017. PLoS ONE 2019, 14, e0211741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Congedi, S.; Minotti, C.; Giaquinto, C.; Da Dalt, L.; Donà, D. Acute infectious osteomyelitis in children: New treatment strategies for an old enemy. World J. Pediatr. 2020, 16, 446–455. [Google Scholar] [CrossRef] [PubMed]
Year | Total No. of Patients | Male | Female |
---|---|---|---|
2012 | 1 | 1 | 0 |
2013 | 6 | 4 | 2 |
2014 | 8 | 4 | 4 |
2015 | 1 | 1 | 0 |
2016 | 2 | 1 | 1 |
2017 | 4 | 2 | 2 |
2018 | 4 | 4 | 0 |
2019 | 3 | 2 | 1 |
Age Group | CCUH | SSK |
---|---|---|
<3 months | 8.5% (n = 8) | 3.4% (n = 1) |
3 months to 5 years | 25.5% (n = 24) | 41.3% (n = 12) |
5 to18 years | 66% (n = 62) | 55.5% (n = 16) |
Symptoms | n (%) |
---|---|
Systemic symptoms | |
Fatigue, drowsiness | 18 (62.1%) |
Appears ill to health care professional | 18 (62.1%) |
Tachypnoea | 11 (37.9%) |
Refusal of food | 11 (37.9%) |
Tachycardia | 2 (6.9%) |
Irritability | 9 (31.0%) |
Poor weight gain | 2 (6.9%) |
Grunting, moaning | 1 (3.4%) |
Localized symptoms | |
Pain | 28 (96.6%) |
Limited range of motion | 13 (44.8%) |
Swelling | 10 (34.5%) |
Hyperaemia, redness | 6 (20.7%) |
Affected Bone | CCUH n (%) [35] | SSK n (%) |
---|---|---|
Femur | 27 (28.7%) | 2 (6.9%) |
Tibia | 19 (20.2%) | 11 (37.9%) |
Metatarsal bones, wrist bones, ulna, metacarpal bones, spine | 13 (13.8%) | 2 (6.9%) |
Pelvis | 12 (12.7%) | 5 (17.2%) |
Humerus | 9 (9.6%) | 1 (3.4%) |
Calcaneus | 7 (7.4%) | 5 (17.2%) |
Mandibula, sternum, ribs, skull, maxilla, scapula, patella, talus | 6 (6.4%) | 4 (13.8%) |
Fibula | 5 (5.3%) | 4 (13.8%) |
Clavicle | 3 (3.2%) | 0 (0%) |
Radius | 1 (1.1%) | 0 (0%) |
Affected Joint | CCUH n (%) [35] | SSK n (%) |
---|---|---|
Hip | 11 (11.7%) | 0 (0%) |
Knee | 3 (3.2%) | 2 (6.9%) |
Foot | 3 (3.2%) | 2 (6.9%) |
Shoulder | 2 (2.1%) | 0 (0%) |
Elbow | 0 (0%) | 0 (0%) |
Bacteria | CCUH n (%) [35] | SSK n (%) |
---|---|---|
Positive tests | 28 (45%) | 7 (26.8%) |
Staphylococcus aureus, methicillin sensitive | 24 (40%) | 5 (71.4%) |
Staphylococcus hominis | 2 (3.3%) | 0 |
Streptococcus pyogenes | 1 (1.6%) | 1 (14.3%) |
Hemophilus parainfluenzae, beta-lactamase negative | 1(1.6%) | 0 |
Kingella kingae | 0 | 1 (14.3%) |
Negative tests | 33 (55%) | 19 (73.2%) |
Bacteria Isolated | n (%) |
---|---|
Staphylococcus aureus (MSSA) | 57 (79%) |
Streptococcus pyogenes | 2 (2.8%) |
Streptococcus viridans | 1 (1.4%) |
Gram-negative cocci | 1 (1.4%) |
Staphylococcus aureus (MRSA) | 1 (1.4%) |
Negative | 11 (15%) |
Bacteria Isolated | n (%) |
---|---|
Staphylococcus aureus | 4 (66.6%) |
Staphylococcus epidermidis | 1 (16.7%) |
Kingella kingae | 1 (16.7%) |
Negative | 7 (53.9%) |
Age | Number of Patients (% of Boys) | Isolated Microorganisms |
---|---|---|
<3 months | 1 (100.0%) | Unknown |
3 months to 5 years | 12 (75.0%) | Staphylococcus aureus Streptococcus pyogenes Kingella kingae |
5 to 11 years | 12 (58.3%) | Staphylococcus aureus Staphylococcus epidermidis |
12 to 18 years | 4 (50.0%) | Staphylococcus aureus |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thingsaker, E.E.; Urbane, U.N.; Pavare, J. A Comparison of the Epidemiology, Clinical Features, and Treatment of Acute Osteomyelitis in Hospitalized Children in Latvia and Norway. Medicina 2021, 57, 36. https://doi.org/10.3390/medicina57010036
Thingsaker EE, Urbane UN, Pavare J. A Comparison of the Epidemiology, Clinical Features, and Treatment of Acute Osteomyelitis in Hospitalized Children in Latvia and Norway. Medicina. 2021; 57(1):36. https://doi.org/10.3390/medicina57010036
Chicago/Turabian StyleThingsaker, Elise Evja, Urzula Nora Urbane, and Jana Pavare. 2021. "A Comparison of the Epidemiology, Clinical Features, and Treatment of Acute Osteomyelitis in Hospitalized Children in Latvia and Norway" Medicina 57, no. 1: 36. https://doi.org/10.3390/medicina57010036
APA StyleThingsaker, E. E., Urbane, U. N., & Pavare, J. (2021). A Comparison of the Epidemiology, Clinical Features, and Treatment of Acute Osteomyelitis in Hospitalized Children in Latvia and Norway. Medicina, 57(1), 36. https://doi.org/10.3390/medicina57010036