Measuring Heart Rate Variability in Patients Admitted with ST-Elevation Myocardial Infarction for the Prediction of Subsequent Cardiovascular Events: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Search Strategy
2.2. Eligibility Criteria and Outcomes
2.3. Data Collection
2.4. Quality Assessment
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Cygankiewicz, I.; Zareba, W. Chapter 31—Heart rate variability. In Handbook of Clinical Neurology; Buijs, R.M., Swaab, D.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 117, pp. 379–393. [Google Scholar]
- Kim, H.-G.; Cheon, E.-J.; Bai, D.-S.; Lee, Y.H.; Koo, B.-H. Stress and heart rate variability: A meta-analysis and review of the literature. Psychiatry Investig. 2018, 15, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Chalmers, J.A.; Quintana, D.S.; Abbott, M.J.A.; Kemp, A.H. Anxiety disorders are associated with reduced heart rate variability: A meta-analysis. Front. Psychiatry 2014, 5, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deschodt-Arsac, V.; Lalanne, R.; Spiluttini, B.; Bertin, C.; Arsac, L.M. Effects of heart rate variability biofeedback training in athletes exposed to stress of university examinations. PLoS ONE 2018, 13, e0201388. [Google Scholar] [CrossRef] [PubMed]
- Goessl, V.C.; Curtiss, J.E.; Hofmann, S.G. The effect of heart rate variability biofeedback training on stress and anxiety: A meta-analysis. Psychol. Med. 2017, 47, 2578–2586. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, P.; Kaur, K.; Sharma, A.; Shah, K.; Huseby, R.; Bhavsar, J.; Zhang, Y. Heart rate variability biofeedback improves emotional and physical health and performance: A systematic review and meta analysis. Appl. Psychophysiol. Biofeedback 2020, 45, 109–129. [Google Scholar] [CrossRef]
- Schumann, A.; de la Cruz, F.; Köhler, S.; Brotte, L.; Bär, K.-J. The influence of heart rate variability biofeedback on cardiac regulation and functional brain connectivity. Front. Neurosci. 2021, 15, 775. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An overview of heart rate variability metrics and norms. Front. Public Health 2017, 5, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef] [Green Version]
- Kleiger, R.E.; Miller, J.P.; Bigger, J.T., Jr.; Moss, A.J. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol. 1987, 59, 256–262. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, Y.; Qiao, B.; Wang, Y.; Zhang, L.; Cui, T.; Fu, P. Heart rate variability and prognosis in hemodialysis patients: A meta-analysis. Blood Purif. 2021, 50, 298–308. [Google Scholar] [CrossRef]
- Dekker, J.M.; Crow, R.S.; Folsom, A.R.; Hannan, P.J.; Liao, D.; Swenne, C.A.; Schouten, E.G. Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes: The ARIC Study. Circulation 2000, 102, 1239–1244. [Google Scholar] [CrossRef]
- Fang, S.C.; Wu, Y.L.; Tsai, P.S. Heart rate variability and risk of all-cause death and cardiovascular events in patients with cardiovascular disease: A meta-analysis of cohort studies. Biol. Res. Nurs. 2020, 22, 45–56. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.L.; Wang, Y.Y.; Yang, Z.H.; Huang, D.; Weng, H.; Zeng, X.T. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: What are they and which is better? Mil. Med. Res. 2020, 7, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balanescu, S.; Corlan, A.D.; Dorobantu, M.; Gherasim, L. Prognostic value of heart rate variability after acute myocardial infarction. Med. Sci. Monit. 2004, 10, Cr307–Cr315. [Google Scholar] [PubMed]
- Bošković, A.; Belada, N.; Knežević, B. Prognostic value of heart rate variability in post-infarction patients. Vojnosanit. Pregl. 2014, 71, 925–930. [Google Scholar] [CrossRef] [Green Version]
- Chakrovortty, S.; Khan, M.; Kundu, S.; Barua, S.; Dutta, B.; Uddin, M.; Islam, A.K.M.M.; Ullah, M.; Majumder, A. Correlation of heart rate variability and 24-hour mean heart rate with TIMI risk score in acute ST-segment elevation myocardial infarction. Cardiovasc. J. 2012, 4, 8–12. [Google Scholar] [CrossRef]
- Compostella, L.; Lakusic, N.; Compostella, C.; Truong, L.V.S.; Iliceto, S.; Bellotto, F. Does heart rate variability correlate with long-term prognosis in myocardial infarction patients treated by early revascularization? World J. Cardiol 2017, 9, 27–38. [Google Scholar] [CrossRef]
- Coviello, I.; Pinnacchio, G.; Laurito, M.; Stazi, A.; Battipaglia, I.; Barone, L.; Mollo, R.; Russo, G.; Villano, A.; Sestito, A.; et al. Prognostic role of heart rate variability in patients with ST-segment elevation acute myocardial infarction treated by primary angioplasty. Cardiology 2013, 124, 63–70. [Google Scholar] [CrossRef]
- Ablonskytė-Dūdonienė, R.; Bakšytė, G.; Čeponienė, I.; Kriščiukaitis, A.; Drėgūnas, K.; Ereminienė, E. Impedance cardiography and heart rate variability for long-term cardiovascular outcome prediction after myocardial infarction. Medicina 2012, 48, 350–358. [Google Scholar] [CrossRef]
- Erdogan, A.; Coch, M.; Bilgin, M.; Parahuleva, M.; Tillmanns, H.; Waldecker, B.; Soydan, N. Prognostic value of heart rate variability after acute myocardial infarction in the era of immediate reperfusion. Herzschrittmachertherapie Elektrophysiologie 2008, 19, 161–168. [Google Scholar] [CrossRef]
- Karp, E.; Shiyovich, A.; Zahger, D.; Gilutz, H.; Grosbard, A.; Katz, A. Ultra-short-term heart rate variability for early risk stratification following acute ST-elevation myocardial infarction. Cardiology 2009, 114, 275–283. [Google Scholar] [CrossRef]
- Katz, A.; Liberty, I.F.; Porath, A.; Ovsyshcher, I.; Prystowsky, E.N. A simple bedside test of 1-minute heart rate variability during deep breathing as a prognostic index after myocardial infarction. Am. Heart J. 1999, 138, 32–38. [Google Scholar] [CrossRef]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Gara, P.T.; Kushner, F.G.; Ascheim, D.D.; Casey, D.E., Jr.; Chung, M.K.; de Lemos, J.A.; Ettinger, S.M.; Fang, J.C.; Fesmire, F.M.; Franklin, B.A.; et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: A report of the american college of cardiology foundation/american heart association task force on practice guidelines. Circulation 2013, 127, e362–e425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collet, J.P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef] [PubMed]
- Amsterdam, E.A.; Wenger, N.K.; Brindis, R.G.; Casey, D.E., Jr.; Ganiats, T.G.; Holmes, D.R., Jr.; Jaffe, A.S.; Jneid, H.; Kelly, R.F.; Kontos, M.C.; et al. 2014 AHA/ACC guideline for the management of patients with non-st-elevation acute coronary syndromes: A report of the american college of cardiology/american heart association task force on practice guidelines. J. Am. Coll. Cardiol. 2014, 64, e139–e228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef]
- Bakhtiyari, K.; Beckmann, N.; Ziegler, J. Contactless heart rate variability measurement by IR and 3D depth sensors with respiratory sinus arrhythmia. Procedia Comput. Sci. 2017, 109, 498–505. [Google Scholar] [CrossRef]
- Schuurmans, A.A.T.; de Looff, P.; Nijhof, K.S.; Rosada, C.; Scholte, R.H.J.; Popma, A.; Otten, R. Validity of the empatica E4 wristband to measure heart rate variability (HRV) parameters: A Comparison to Electrocardiography (ECG). J. Med. Syst. 2020, 44, 190. [Google Scholar] [CrossRef]
- Hochstadt, A.; Chorin, E.; Viskin, S.; Schwartz, A.L.; Lubman, N.; Rosso, R. Continuous heart rate monitoring for automatic detection of atrial fibrillation with novel bio-sensing technology. J. Electrocardiol. 2019, 52, 23–27. [Google Scholar] [CrossRef]
- Nowbar, A.N.; Gitto, M.; Howard, J.P.; Francis, D.P.; Al-Lamee, R. Mortality from ischemic heart disease. Circulation Cardiovasc. Qual. Outcomes 2019, 12, e005375. [Google Scholar] [CrossRef]
- Vuoti, A.O.; Tulppo, M.P.; Ukkola, O.H.; Junttila, M.J.; Huikuri, H.V.; Kiviniemi, A.M.; Perkiömäki, J.S. Prognostic value of heart rate variability in patients with coronary artery disease in the current treatment era. PLoS ONE 2021, 16, e0254107. [Google Scholar] [CrossRef]
- Hillebrand, S.; Gast, K.B.; de Mutsert, R.; Swenne, C.A.; Jukema, J.W.; Middeldorp, S.; Rosendaal, F.R.; Dekkers, O.M. Heart rate variability and first cardiovascular event in populations without known cardiovascular disease: Meta-analysis and dose–response meta-regression. EP Eur. 2013, 15, 742–749. [Google Scholar] [CrossRef]
- Doost Hosseiny, A.; Moloi, S.; Chandrasekhar, J.; Farshid, A. Mortality pattern and cause of death in a long-term follow-up of patients with STEMI treated with primary PCI. Open Heart 2016, 3, e000405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kao, Y.-T.; Hsieh, Y.-C.; Hsu, C.-Y.; Huang, C.-Y.; Hsieh, M.-H.; Lin, Y.-K.; Yeh, J.-S. Comparison of the TIMI, GRACE, PAMI and CADILLAC risk scores for prediction of long-term cardiovascular outcomes in Taiwanese diabetic patients with ST-segment elevation myocardial infarction: From the registry of the Taiwan Society of Cardiology. PLoS ONE 2020, 15, e0229186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.-H.; Huang, S.-S.; Lin, S.-J. TIMI and GRACE risk scores predict both short-term and long-term outcomes in Chinese patients with acute myocardial infarction. Acta Cardiol. Sin. 2018, 34, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Fatisson, J.; Oswald, V.; Lalonde, F. Influence diagram of physiological and environmental factors affecting heart rate variability: An extended literature overview. Heart Int. 2016, 11, e32–e40. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Furukawa, Y.; Ogasawara, H.; Yuda, E.; Hayano, J. Longer lying position causes lower LF/HF of heart rate variability during ambulatory monitoring. In Proceedings of the 2016 IEEE 5th Global Conference on Consumer Electronics, Kyoto, Japan, 11–14 October 2016; pp. 1–2. [Google Scholar]
- Aronson, D.; Burger, A.J. Effect of beta-blockade on heart rate variability in decompensated heart failure. Int. J. Cardiol. 2001, 79, 31–39. [Google Scholar] [CrossRef]
- Brembilla-Perrot, B.; Houriez, P.; Claudon, O.; Beurrier, D.; Preiss, J.P. Different action of beta-blockers on daytime and nighttime heart rate variability. Ann. Noninvasive Electrocardiol. 2000, 5, 158–165. [Google Scholar] [CrossRef]
Author, Year | Outcomes | Parameters | Results | |
---|---|---|---|---|
Balanescu et al., 2004 | 1-year total mortality | Nonsurvivors vs. survivors | ||
RMSSD, ms | 9.6 ± 3.1 vs. 32.6 ± 10.9 | p < 0.001 | ||
SDNN, ms | 37 ± 10.3 vs. 144 ± 41 | p < 0.001 | ||
LF, ms2 | 1409 ± 143 vs. 1241 ± 131 | p < 0.001 | ||
HF, ms2 | 443 ± 105 vs. 883 ± 184 | p < 0.001 | ||
LF/HF > 2 | 80.9% of patients who died vs. 8.1% patients who survived | p < 0.0001 | ||
Sudden cardiac death at 1-year follow-up | Nonsurvivors vs. survivors | |||
RMSSD, ms | 9.3 ± 2.5 vs. 30.2 ± 2.5 | p < 0.001 | ||
SDNN, ms | 36.7 ± 10 vs. 133 ± 51 | p < 0.001 | ||
LF, ms2 | 1382 ± 152 vs. 1260 ± 142 | p < 0.001 | ||
HF, ms2 | 451 ± 112 vs. 836 ± 223 | p < 0.001 | ||
LF/HF > 2 | 81% of deceased patients vs. 15.6% survivors | p < 0.0001 | ||
Boskovic et al., 2014 | All-cause mortality at 1 year | Nonsurvivors vs. survivors | ||
SDNN, ms | 60.55 ± 12.84 vs. 98.38 ± 28.21 | p < 0.001 | ||
Mean RR interval, ms | 695.82 ± 65.87 vs. 840.07 ± 93.97 | p < 0.001 | ||
RRmax–RRmin, ms | 454.36 ± 111.00 vs. 600.99 ± 168.72 | p = 0.006 | ||
Chakrovortty et al., 2011 | Correlation between HRV and TIMI risk score | Low-risk group (TIMI 0–2) vs. intermediate-risk group (TIMI 3–7) vs. high-risk group (TIMI ≥ 8) | ||
SDNN, ms | 120.0 ± 19.8 vs. 71.0 ± 20.5 vs. 40.9 ± 6.4 | p < 0.001 | ||
Mean RR interval, ms | 836.8 ± 121.0 vs. 776.7 ± 130.3 vs. 649.7 ± 75.5 | p < 0.001 | ||
Compostella et al., 2017 | Major clinical events | SDNN, ms | 10 events from 52 patients in the lowest SDNN quartile vs. 21 events from 150 patients in the other quartiles (X2 = 0.813) | p = 0.367 |
All-cause death | SDNN, ms | 3 of 4 deaths occurred in the lowest SDNN quartile | p = 0.010 | |
Cardiac mortality | SDNN, ms | 2 of 3 deaths occurred in the lowest SDNN quartile | p = 0.055 | |
Coviello et al., 2013 | Major clinical events | Predischarge HRV parameters, univariate analysis | ||
Mean RR, ms | HR 0.99 (95% CI, 0.98–1.00) | p = 0.06 | ||
SDNN, ms | HR 0.97 (95% CI, 0.95–0.99) | p = 0.009 | ||
SDNNi, ms | HR 0.97 (95% CI, 0.93–1.00) | p = 0.08 | ||
VLF, ms | HR 0.94 (95% CI, 0.89–0.98) | p = 0.007 | ||
LF, ms | HR 0.88 (95% CI, 0.80–0.96) | p = 0.006 | ||
HF, ms | HR 0.88 (95% CI, 0.77–1.00) | p = 0.05 | ||
HRV parameters at 6 months (no MCE vs. MCE) | ||||
Mean RR, ms | 916.4 ± 122.6 vs. 867.6 ± 68.6 | p = 0.29 | ||
SDNN, ms | 139.1 ± 38.2 vs. 141.4 ± 41.4 | p = 0.88 | ||
SDNNi, ms | 58.6 ± 21.6 vs. 52.7 ± 16.5 | p = 0.48 | ||
VLF, ms | 53.8 ± 39.9 vs. 43.9 ± 12.1 | p = 0.11 | ||
LF, ms | 26.1 ± 10.5 vs. 21.9 ± 7.0 | p = 0.30 | ||
HF, ms | 18.2 ± 12.1 vs. 14.2 ± 5.8 | p = 0.18 | ||
Predischarge HRV parameters, multivariate analysis | ||||
SDNN, ms | HR 0.97 (95% CI, 0.952–0.996) | p = 0.02 | ||
LF, ms | HR 0.90 (95% CI, 0.819–0.994) | p = 0.04 | ||
Reinfarction | Predischarge HRV parameters, multivariate analysis | |||
SDNN, ms | HR 0.96 (95% CI, 0.936–0.991) | p = 0.009 | ||
LF, ms | HR 0.90 (95% CI, 0.81–1.009) | p = 0.07 | ||
Ablonskyte-Dudoniene et al., 2012 | 1-year mortality | RMSSD (≤20.9 ms) | HR 9.69 (95% CI, 1.88–49.95) | p = 0.007 |
5-year all-cause mortality | SDNN (≤100.42 ms) | HR 4.36 (95% CI, 1.68–11.35) | p = 0.003 | |
5-year cardiac mortality | SDANN (≤85.41 ms) | HR 9.65 (95% CI, 1.27–73.4) | p = 0.029 | |
Recurrent nonfatal MI | SDNN (≤123.43 ms) | HR 4.1 (95% CI, 1.54–11.32) | p = 0.005 | |
Erdogan et al., 2008 | All-cause mortality | SDNN, ms | 102 ± 39 (survivors) vs. 81 ± 33 (nonsurvivors) | p = 0.02 |
OR 0.95 (95% CI, 0.95–1)–multivariate analysis | p = 0.1 | |||
4-year survival | SDNN, ms | 80% (SDNN < 50) vs. 92% (SDNN > 50) | p < 0.001 | |
Karp et al., 2009 | 2-year mortality | SDNN, ms (admission) | OR 2.9 (95% CI, 1.12–7.56) | p = 0.028 |
Reinfarction | SDNN, ms (admission) | 3.1 ± 0.9 (reinfarction) vs. 3.0 ± 0.9 (no reinfarction) | p = 0.7 | |
Katz et al., 1999 | All-cause mortality | RRmax–RRmin, beats/min | OR 1.38 (95% CI, 1.13–1.63) | p = 0.028 |
SDANN, ms | All patients who died (n = 10) had SDANN < 50 ms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brinza, C.; Floria, M.; Covic, A.; Burlacu, A. Measuring Heart Rate Variability in Patients Admitted with ST-Elevation Myocardial Infarction for the Prediction of Subsequent Cardiovascular Events: A Systematic Review. Medicina 2021, 57, 1021. https://doi.org/10.3390/medicina57101021
Brinza C, Floria M, Covic A, Burlacu A. Measuring Heart Rate Variability in Patients Admitted with ST-Elevation Myocardial Infarction for the Prediction of Subsequent Cardiovascular Events: A Systematic Review. Medicina. 2021; 57(10):1021. https://doi.org/10.3390/medicina57101021
Chicago/Turabian StyleBrinza, Crischentian, Mariana Floria, Adrian Covic, and Alexandru Burlacu. 2021. "Measuring Heart Rate Variability in Patients Admitted with ST-Elevation Myocardial Infarction for the Prediction of Subsequent Cardiovascular Events: A Systematic Review" Medicina 57, no. 10: 1021. https://doi.org/10.3390/medicina57101021
APA StyleBrinza, C., Floria, M., Covic, A., & Burlacu, A. (2021). Measuring Heart Rate Variability in Patients Admitted with ST-Elevation Myocardial Infarction for the Prediction of Subsequent Cardiovascular Events: A Systematic Review. Medicina, 57(10), 1021. https://doi.org/10.3390/medicina57101021