Critical Flicker Fusion Frequency: A Narrative Review
Abstract
:1. Introduction
2. Arousal as an Indicator of Cognitive Performance
3. Use of the Critical Flicker Fusion Test in Neuropsychology
4. The Diagnostic Values of CFF
5. Diving and Hyperbaric Medicine
6. CFF and Its Connection with Brainwaves
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saint, S.E.; Hammond, B.R., Jr.; Khan, N.A.; Hillman, C.H.; Renzi-Hammond, L.M. Temporal vision is related to cognitive function in preadolescent children. Appl. Neuropsychol. Child 2019, 10, 1–8. [Google Scholar] [CrossRef]
- Umeton, D.; Read, J.C.A.; Rowe, C. Unravelling the illusion of flicker fusion. Biol. Lett. 2017, 13, 20160831. [Google Scholar] [CrossRef] [Green Version]
- Balestra, C.; Machado, M.-L.; Theunissen, S.; Balestra, A.; Cialoni, D.; Clot, C.; Besnard, S.; Kammacher, L.; Delzenne, J.; Germonpré, P.; et al. Critical flicker fusion frequency: A marker of cerebral arousal during modified gravitational conditions related to parabolic flights. Front. Physiol. 2018, 9. [Google Scholar] [CrossRef]
- Hindmarch, I. Critical Flicker Fusion Frequency (CFF): The Effects of Psychotropic Compounds. Pharmacopsychiatry 1982, 15, 44–48. [Google Scholar] [CrossRef]
- Shams, L.; Kamitani, Y.; Shimojo, S. Visual illusion induced by sound. Cogn. Brain Res. 2002, 14, 147–152. [Google Scholar] [CrossRef]
- Walter, W.G.; Dovey, V.J.; Shipton, H. Analysis of the electrical response of the human cortex to photic stimulation. Nature 1946, 158, 540–541. [Google Scholar] [CrossRef]
- Brenton, R.S.; Thompson, H.S.; Maxner, C. Critical flicker frequency: A new look at an old test. In New Methods of Sensory Visual Testing; Springer: New York, NY, USA, 1989; pp. 29–52. [Google Scholar]
- Davis, J.; Hsieh, Y.-H.; Lee, H.-C. Humans perceive flicker artifacts at 500 Hz. Sci. Rep. 2015, 5, srep07861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shure, G.H.; Halstead, W.C. Cerebral localization of intellectual processes. Psychol. Monogr. Gen. Appl. 1958, 72, 1–40. [Google Scholar] [CrossRef]
- Lisney, T.J.; Ekesten, B.; Tauson, R.; Håstad, O.; Ödeen, A. Using electroretinograms to assess flicker fusion frequency in domestic hens Gallus gallus domesticus. Vis. Res. 2012, 62, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Lisney, T.J.; Rubene, D.; Rózsa, J.; Løvlie, H.; Håstad, O.; Ödeen, A. Behavioural assessment of flicker fusion frequency in chicken Gallus gallus domesticus. Vis. Res. 2011, 51, 1324–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kingston, A.C.N.; Chappell, D.R.; Speiser, D.I. A snapping shrimp has the fastest vision of any aquatic animal. Biol. Lett. 2020, 16, 20200298. [Google Scholar] [CrossRef]
- D’Eath, R.B. Can video images imitate real stimuli in animal behaviour experiments? Biol. Rev. 1998, 73, 267–292. [Google Scholar] [CrossRef]
- Railton, R.C.R.; Foster, T.M.; Temple, W. A comparison of two methods for assessing critical flicker fusion frequency in hens. Behav. Process. 2009, 80, 196–200. [Google Scholar] [CrossRef]
- Rubene, D.; Håstad, O.; Tauson, R.; Wall, H.; Ödeen, A. The presence of UV wavelengths improves the temporal resolution of the avian visual system. J. Exp. Biol. 2010, 213, 3357–3363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shipley, T. Auditory flutter-driving of visual flicker. Science 1964, 145, 1328–1330. [Google Scholar] [CrossRef] [PubMed]
- Achinivu, K.; Staufenberg, E.; Cull, C.; Cavanna, A.E.; Ring, H. Cognitive function during vagus nerve stimulation for treatment-refractory epilepsy: A pilot study using the critical flicker fusion test. J. Neurother. 2012, 16, 32–36. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.K.; Srivastava, A.; Srivastava, A.; Thomas, M.A.; Agarwal, J.; Pandey, C.M.; Lal, R.; Yachha, S.K.; Saraswat, V.A.; Gupta, R.K. Encephalopathy assessment in children with extra-hepatic portal vein obstruction with MR, psychometry and critical flicker frequency. J. Hepatol. 2010, 52, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Yerkes, R.M.; Dodson, J.D. The relation of strength of stimulus to rapidity of habit-formation. In Punishment: Issues and Experiments; Appleton-Century-Crofts Division of Meredith Corporation: New York, NY, USA, 1908; pp. 27–41. [Google Scholar]
- Ardestani, S.B.; Balestra, C.; Bouzinova, E.V.; Loennechen, Ø.; Pedersen, M. Evaluation of divers’ neuropsychometric effectiveness and high-pressure neurological syndrome via computerized test battery package and questionnaires in operational setting. Front. Physiol. 2019, 10, 1386. [Google Scholar] [CrossRef] [Green Version]
- Lambourne, K.; Audiffren, M.; Tomporowski, P.D. Effects of Acute Exercise on Sensory and Executive Processing Tasks. Med. Sci. Sports Exerc. 2010, 42, 1396–1402. [Google Scholar] [CrossRef]
- Tomporowski, P.D.; Cureton, K.; Armstrong, L.E.; Kane, G.M.; Sparling, P.B.; Millard-Stafford, M. Short-term effects of aerobic exercise on executive processes and emotional reactivity. Int. J. Sport Exerc. Psychol. 2005, 3, 131–146. [Google Scholar] [CrossRef]
- Casey, B.; Tottenham, N.; Liston, C.; Durston, S. Imaging the developing brain: What have we learned about cognitive development? Trends Cogn. Sci. 2005, 9, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Carmel, D.; Lavie, N.; Rees, G. Conscious awareness of flicker in humans involves frontal and parietal cortex. Curr. Biol. 2006, 16, 907–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Zhou, K.; He, S. Human visual cortex responds to invisible chromatic flicker. Nat. Neurosci. 2007, 10, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Skottun, B.C. On using very high temporal frequencies to isolate magnocellular contributions to psychophysical tasks. Neuropsychologia 2013, 51, 1556–1560. [Google Scholar] [CrossRef]
- Wooten, B.R.; Renzi, L.M.; Moore, R.; Hammond, B.R. A practical method of measuring the human temporal contrast sensitivity function. Biomed. Opt. Express 2010, 1, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Mazur-Mosiewicz, A.; Dean, R.S. Halstead-Reitan neuropsychological test battery. In Encyclopedia of Child Behavior and Development; Springer: Boston, MA, USA, 2011; pp. 727–731. [Google Scholar]
- Reed, J.C.; Reed, H.B.C. Contributions to neuropsychology of reitan and associates: Neuropsychology laboratory, Indiana University Medical Center, 1960s. Arch. Clin. Neuropsychol. 2015, 30, 751–753. [Google Scholar] [CrossRef] [Green Version]
- Córdoba, J. New assessment of hepatic encephalopathy. J. Hepatol. 2011, 54, 1030–1040. [Google Scholar] [CrossRef] [Green Version]
- Gencdal, G.; Gunsar, F.; Meral, C.E.; Salman, E.; Gürsel, B.; Oruc, N.; Karasu, Z.; Ersoz, G.; Akarca, U.S. Diurnal changes of critical flicker frequency in patients with liver cirrhosis and their relationship with sleep disturbances. Dig. Liver Dis. 2014, 46, 1111–1115. [Google Scholar] [CrossRef]
- Torlot, F.J.; McPhail, M.J.W.; Taylor-Robinson, S.D. Meta-analysis: The diagnostic accuracy of critical flicker frequency in minimal hepatic encephalopathy. Aliment. Pharmacol. Ther. 2013, 37, 527–536. [Google Scholar] [CrossRef]
- Wunsch, E.; Post, M.; Gutkowski, K.; Marlicz, W.; Szymanik, B.; Hartleb, M.; Milkiewicz, P. Critical flicker frequency fails to disclose brain dysfunction in patients with primary biliary cirrhosis. Dig. Liver Dis. 2010, 42, 818–821. [Google Scholar] [CrossRef]
- Germonpré, P.; Balestra, C.; Hemelryck, W.; Buzzacott, P.; Lafère, P. Objective vs. subjective evaluation of cognitive performance during 0.4-MPa dives breathing air or nitrox. Aerosp. Med. Hum. Perform. 2017, 88, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Hemelryck, W.; Rozloznik, M.; Germonpré, P.; Balestra, C.; Lafère, P. Functional comparison between critical flicker fusion frequency and simple cognitive tests in subjects breathing air or oxygen in normobaria. Diving Hyperb. Med. J. 2013, 43, 138–142. [Google Scholar]
- Lafère, P.; Balestra, C.; Hemelryck, W.; Guerrero, F.; Germonpré, P. Do environmental conditions contribute to narcosis onset and symptom severity? Int. J. Sports Med. 2016, 37, 1124–1128. [Google Scholar] [CrossRef] [PubMed]
- Saint, S.E.; Hammond, B.R.; O’Brien, K.J.; Frick, J.E. Developmental trends in infant temporal processing speed. Vis. Res. 2017, 138, 71–77. [Google Scholar] [CrossRef]
- Rasengane, T.A.; Allen, D.; Manny, R.E. Development of temporal contrast sensitivity in human infants. Vis. Res. 1997, 37, 1747–1754. [Google Scholar] [CrossRef] [Green Version]
- Ryan, C.; Vega, A.; Longstreet, C.; Drash, A. Neuropsychological changes in adolescents with insulin-dependent diabetes. J. Consult. Clin. Psychol. 1984, 52, 335–342. [Google Scholar] [CrossRef]
- Edwards, V.T.; Giaschi, D.E.; Dougherty, R.F.; Edgell, D.; Bjornson, B.H.; Lyons, C.; Douglas, R.M. Psychophysical indexes of temporal processing abnormalities in children with developmental Dyslexia. Dev. Neuropsychol. 2004, 25, 321–354. [Google Scholar] [CrossRef]
- Bovier, E.R.; Hammond, B.R. A randomized placebo-controlled study on the effects of lutein and zeaxanthin on visual processing speed in young healthy subjects. Arch. Biochem. Biophys. 2015, 572, 54–57. [Google Scholar] [CrossRef] [Green Version]
- Bovier, E.R.; Renzi, L.M.; Hammond, B.R. A Double-Blind, Placebo-Controlled Study on the Effects of Lutein and Zeaxanthin on Neural Processing Speed and Efficiency. PLoS ONE 2014, 9, e108178. [Google Scholar] [CrossRef]
- Mewborn, C.; Renzi, L.M.; Hammond, B.R.; Miller, L.S. Critical flicker fusion predicts executive function in younger and older adults. Arch. Clin. Neuropsychol. 2015, 30, 605–610. [Google Scholar] [CrossRef] [Green Version]
- Hammond, B.R.; Wooten, B.R. CFF thresholds: Relation to macular pigment optical density. Ophthalmic Physiol. Opt. 2005, 25, 315–319. [Google Scholar] [CrossRef]
- Renzi, L.M.; Bovier, E.R.; Hammond, B.R. A role for the macular carotenoids in visual motor response. Nutr. Neurosci. 2013, 16, 262–268. [Google Scholar] [CrossRef]
- Dixon, R.; Hughes, A.; Nairn, K.; Sellers, M.; Kemp, J.; Yates, R. Effects of the antimigraine compound zolmitriptan (‘Zomig’) on psychomotor performance alone and in combination with diazepam in healthy volunteers. Cephalalgia 1998, 18, 468–475. [Google Scholar] [CrossRef]
- Lauridsen, M.M.; Jepsen, P.; Vilstrup, H. Critical flicker frequency and continuous reaction times for the diagnosis of minimal hepatic encephalopathy. A comparative study of 154 patients with liver disease. Metab. Brain Dis. 2011, 26, 135–139. [Google Scholar] [CrossRef]
- Merrill, C.A.; Jonsson, M.A.G.; Minthon, L.; Ejnell, H.; Silander, H.C.-S.; Blennow, K.; Karlsson, M.; Nordlund, A.; Rolstad, S.; Warkentin, S.; et al. Vagus nerve stimulation in patients with Alzheimer’s disease. J. Clin. Psychiatry 2006, 67, 1171–1178. [Google Scholar] [CrossRef]
- Curran, S.; Wattis, J. Critical flicker fusion threshold: A potentially useful measure for the early detection of Alzheimer’s disease. Hum. Psychopharmacol. 2000, 15, 103–112. [Google Scholar] [CrossRef]
- Renzi, L.M.; Hammond, B.R. The relation between the macular carotenoids, lutein and zeaxanthin, and temporal vision. Ophthalmic Physiol. Opt. 2010, 30, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.; Ramaswamy, D.; Oulhaj, A. 10 Hz flicker improves recognition memory in older people. BMC Neurosci. 2006, 7, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locatelli, T.; Cursi, M.; Liberati, D.; Franceschi, M.; Comi, G. EEG coherence in Alzheimer’s disease. Electroencephalogr. Clin. Neurophysiol. 1998, 106, 229–237. [Google Scholar] [CrossRef]
- Miyauchi, T.; Hagimoto, H.; Ishii, M.; Endo, S.; Tanaka, K.; Kajiwara, S.; Endo, K.; Kosaka, K. Quantitative EEG in patients with presenile and senile dementia of the Alzheimer type. Acta Neurol. Scand. 1994, 89, 56–64. [Google Scholar] [CrossRef]
- Niedermeyer, E. Alpha rhythms as physiological and abnormal phenomena. Int. J. Psychophysiol. 1997, 26, 31–49. [Google Scholar] [CrossRef]
- Balkan, S.; Yaraş, N.; Mihçi, E.; Dora, B.; Ağar, A.; Yargiçoğlu, P. Effect of donepezil on eeg spectral analysis in Alzheimer’s disease. Acta Neurol. Belg. 2003, 103, 164–169. [Google Scholar] [PubMed]
- Watabe, A.M.; O’Dell, T.J. Age-related changes in theta frequency stimulation-induced long-term potentiation. Neurobiol. Aging 2003, 24, 267–272. [Google Scholar] [CrossRef]
- Perlstein, W.M.; Cole, M.A.; Larson, M.; Kelly, K.; Seignourel, P.; Keil, A. Steady-state visual evoked potentials reveal frontally-mediated working memory activity in humans. Neurosci. Lett. 2003, 342, 191–195. [Google Scholar] [CrossRef]
- Silberstein, R.B.; Nunez, P.L.; Pipingas, A.; Harris, P.; Danieli, F. Steady state visually evoked potential (SSVEP) topography in a graded working memory task. Int. J. Psychophysiol. 2001, 42, 219–232. [Google Scholar] [CrossRef]
- Caporale, M.; Palmeri, R.; Corallo, F.; Muscarà, N.; Romeo, L.; Bramanti, A.; Marino, S.; Buono, V.L. Cognitive impairment in obstructive sleep apnea syndrome: A descriptive review. Sleep Breath. 2020, 25, 29–40. [Google Scholar] [CrossRef]
- Guzel, A.; Gunbey, E.; Koksal, N. The performance of critical flicker frequency on determining of neurocognitive function loss in severe obstructive sleep apnea syndrome. J. Sleep Res. 2017, 26, 651–656. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.; Fulda, S.; Schulz, H. Daytime variation in performance and tiredness/sleepiness ratings in patients with insomnia, narcolepsy, sleep apnea and normal controls. J. Sleep Res. 2004, 13, 373–383. [Google Scholar] [CrossRef]
- Lafère, P.; Balestra, C.; Hemelryck, W.; Donda, N.; Sakr, A.; Taher, A.; Marroni, S.; Germonpré, P. Evaluation of critical flicker fusion frequency and perceived fatigue in divers after air and enriched air nitrox diving. Diving Hyperb. Med. J. 2010, 40, 114–118. [Google Scholar]
- Lafère, P.; Hemelryck, W.; Germonpré, P.; Matity, L.; Guerrero, F.; Balestra, C. Early detection of diving-related cognitive impairment of different nitrogen-oxygen gas mixtures using critical flicker fusion frequency. Diving Hyperb. Med. J. 2019, 49, 119–126. [Google Scholar] [CrossRef]
- Grasby, P.M.; Frith, C.D.; Paulesu, E.; Friston, K.; Frackowiak, R.; Dolan, R. The effect of the muscarinic antagonist scopolamine on regional cerebral blood flow during the performance of a memory task. Exp. Brain Res. 1995, 104, 337–348. [Google Scholar] [CrossRef] [Green Version]
- Kot, J.; Winklewski, P.; Sicko, Z.; Tkachenko, Y. Effect of oxygen on neuronal excitability measured by critical flicker fusion frequency is dose dependent. J. Clin. Exp. Neuropsychol. 2015, 37, 276–284. [Google Scholar] [CrossRef]
- Jammes, Y.; Arbogast, S.; Faucher, M.; Montmayeur, A.; Tagliarini, F.; Meliet, J.L.; Robinet, C. Hyperbaric hyperoxia induces a neuromuscular hyperexcitability: Assessment of a reduced response in elite oxygen divers. Clin. Physiol. Funct. Imaging 2003, 23, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Balestra, C.; Lafère, P.; Germonpré, P. Persistence of critical flicker fusion frequency impairment after a 33 mfw SCUBA dive: Evidence of prolonged nitrogen narcosis. Eur. J. Appl. Physiol. 2012, 112, 4063–4068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conference for National Cooperation in Aquatics. The New Science of Skin and Scuba Diving: A Revision of the Widely Used Science of Skin and Scuba Diving; Chairman, B.E.E., Lanphier, E.H., Young, J.E., Goff, L.G., Eds.; Association Press: New York, NY, USA, 1962. [Google Scholar]
- Tonner, P.H.; Scholz, J.; Koch, C.; am Esch, J.S. The anesthetic effect of dexmedetomidine does not adhere to the Meyer-Overton rule but is reversed by hydrostatic pressure. Anesth. Analg. 1997, 84, 618–622. [Google Scholar] [PubMed]
- Levett, D.Z.H.; Millar, I.L. Bubble trouble: A review of diving physiology and disease. Postgrad. Med. J. 2008, 84, 571–578. [Google Scholar] [CrossRef]
- Ozgok-Kangal, M.K.; Murphy-Lavoie, H.M. High Pressure Diving Nervous Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Kot, J. Extremely deep recreational dives: The risk for carbon dioxide (CO2) retention and high pressure neurological syndrome (HPNS). Int. Marit. Health 2012, 63, 49–55. [Google Scholar]
- Seki, K.; Hugon, M. Critical flicker frequency (CFF) and subjective fatigue during an oxyhelium saturation dive at 62 ATA. Undersea Biomed. Res. 1976, 3, 235–247. [Google Scholar]
- Truszczyński, O.; Wojtkowiak, M.; Biernacki, M.; Kowalczuk, K. The effect of hypoxia on the critical flicker fusion threshold in pilots. Int. J. Occup. Med. Environ. Health 2009, 22, 13–18. [Google Scholar] [CrossRef]
- Adrian, E.D.; Matthews, B.H.C. The Berger rhythm: Potential changes from the occipital lobes in man. Brain 1934, 57, 355–385. [Google Scholar] [CrossRef]
- Herrmann, C.; Strüber, D.; Helfrich, R.F.; Engel, A.K. EEG oscillations: From correlation to causality. Int. J. Psychophysiol. 2016, 103, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Silberstein, R.B. Steady-state visually evoked potentials, brain resonance, and cognitive processes. In Neocortical Dynamics and EEG Rhythms; Oxford University Press: Oxford, England, 1995; pp. 272–303. [Google Scholar]
- Williams, J. Frequency-specific effects of flicker on recognition memory. Neuroscience 2001, 104, 283–286. [Google Scholar] [CrossRef]
- Herrmann, C.S. Human EEG responses to 1–100 Hz flicker: Resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp. Brain Res. 2001, 137, 346–353. [Google Scholar] [CrossRef]
- Sauseng, P.; Klimesch, W.; Heise, K.-F.; Gruber, W.R.; Holz, E.; Karim, A.; Glennon, M.; Gerloff, C.; Birbaumer, N.; Hummel, F.C. Brain oscillatory substrates of visual short-term memory capacity. Curr. Biol. 2009, 19, 1846–1852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mankowska, N.D.; Marcinkowska, A.B.; Waskow, M.; Sharma, R.I.; Kot, J.; Winklewski, P.J. Critical Flicker Fusion Frequency: A Narrative Review. Medicina 2021, 57, 1096. https://doi.org/10.3390/medicina57101096
Mankowska ND, Marcinkowska AB, Waskow M, Sharma RI, Kot J, Winklewski PJ. Critical Flicker Fusion Frequency: A Narrative Review. Medicina. 2021; 57(10):1096. https://doi.org/10.3390/medicina57101096
Chicago/Turabian StyleMankowska, Natalia D., Anna B. Marcinkowska, Monika Waskow, Rita I. Sharma, Jacek Kot, and Pawel J. Winklewski. 2021. "Critical Flicker Fusion Frequency: A Narrative Review" Medicina 57, no. 10: 1096. https://doi.org/10.3390/medicina57101096
APA StyleMankowska, N. D., Marcinkowska, A. B., Waskow, M., Sharma, R. I., Kot, J., & Winklewski, P. J. (2021). Critical Flicker Fusion Frequency: A Narrative Review. Medicina, 57(10), 1096. https://doi.org/10.3390/medicina57101096