Effect of Leg Extension Angle on Knee Flexion Angle during Swing Phase in Post-Stroke Gait
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Gait Measurement
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duncan, P.W.; Sullivan, K.J.; Behrman, A.L.; Azen, S.P.; Wu, S.S.; Nadeau, S.E.; Dobkin, B.H.; Rose, D.K.; Tilson, J.K. Protocol for the locomotor experience applied post-stroke (LEAPS) trial: A randomized controlled trial. BMC Neurol. 2007, 7, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.L.; Chen, H.C.; Tang, S.F.T.; Wu, C.Y.; Cheng, P.T.; Hong, W.H. Gait performance with compensatory adaptations in stroke patients with different degrees of motor recovery. Am. J. Phys. Med. Rehabil. 2003, 82, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.L.; Chang, C.W.; Sung, P.Y.; Hsu, W.N.; Lai, M.W.; Tsai, S.W. The berg balance scale at admission can predict community ambulation at discharge in patients with stroke. Medicina 2021, 57, 556. [Google Scholar] [CrossRef] [PubMed]
- Olney, S.J.; Richardsb, C. Hemiparetic gait following stroke. Part I: Characteristics. Gait Posture 1996, 4, 136–148. [Google Scholar] [CrossRef]
- Wang, Y.; Mukaino, M.; Ohtsuka, K.; Otaka, Y.; Tanikawa, H.; Matsuda, F.; Tsuchiyama, K.; Yamada, J.; Saitoh, E. Gait characteristics of post-stroke hemiparetic patients with different walking speeds. Int. J. Rehabil. Res. 2020, 43, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Bowden, M.G.; Balasubramanian, C.K.; Neptune, R.R.; Kautz, S.A. Anterior-posterior ground reaction forces as a measure of paretic leg contribution in hemiparetic walking. Stroke 2006, 37, 872–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roelker, S.A.; Bowden, M.G.; Kautz, S.A.; Neptune, R.R. Paretic propulsion as a measure of walking performance and functional motor recovery post-stroke: A review. Gait Posture 2019, 68, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, H.Y.; Knarr, B.A.; Higginson, J.S.; Binder-Macleod, S.A. The relative contribution of ankle moment and trailing limb angle to propulsive force during gait. Hum. Mov. Sci. 2015, 39, 212–221. [Google Scholar] [CrossRef] [Green Version]
- Peterson, C.L.; Cheng, J.; Kautz, S.A.; Neptune, R.R. Leg extension is an important predictor of paretic leg propulsion in hemiparetic walking. Gait Posture 2010, 32, 451–456. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, H.Y.; Knarr, B.A.; Higginson, J.S.; Binder-Macleod, S.A. Mechanisms to increase propulsive force for individuals poststroke. J. Neuroeng. Rehabil. 2015, 12, 40. [Google Scholar] [CrossRef]
- Genthe, K.; Schenck, C.; Eicholtz, S.; Zajac-Cox, L.; Wolf, S.; Kesar, T.M. Effects of real-time gait biofeedback on paretic propulsion and gait biomechanics in individuals post-stroke. Top. Stroke Rehabil. 2018, 25, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Kesar, T.M.; Reisman, D.S.; Perumal, R.; Jancosko, A.M.; Higginson, J.S.; Rudolph, K.S.; Binder-Macleod, S.A. Combined effects of fast treadmill walking and functional electrical stimulation on post-stroke gait. Gait Posture 2011, 33, 309–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewek, M.D.; Raiti, C.; Doty, A. The presence of a paretic propulsion reserve during gait in individuals following stroke. Neurorehabil. Neural Repair. 2018, 32, 1011–1019. [Google Scholar] [CrossRef]
- Hsiao, H.Y.; Knarr, B.A.; Pohlig, R.T.; Higginson, J.S.; Binder-Macleod, S.A. Mechanisms used to increase peak propulsive force following 12-weeks of gait training in individuals poststroke. J. Biomech. 2016, 49, 388–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whittington, B.; Silder, A.; Heiderscheit, B.; Thelen, D.G. The contribution of passive-elastic mechanisms to lower extremity joint kinetics during human walking. Gait Posture 2008, 27, 628–634. [Google Scholar] [CrossRef] [Green Version]
- Kerrigan, D.C.; Roth, R.S.; Riley, P.O. The modelling of adult spastic paretic stiff-legged gait swing period based on actual kinematic data. Gait Posture 1998, 7, 117–124. [Google Scholar] [CrossRef]
- Burpee, J.L.; Lewek, M.D. Biomechanical gait characteristics of naturally occurring unsuccessful foot clearance during swing in individuals with chronic stroke. Clin. Biomech. 2015, 30, 1102–1107. [Google Scholar] [CrossRef] [PubMed]
- Weerdesteyn, V.; De Niet, M.; Van Duijnhoven, H.J.R.; Geurts, A.C.H. Falls in individuals with stroke. J. Rehabil. Res. Dev. 2008, 45, 1195–1214. [Google Scholar] [CrossRef]
- Dean, J.C.; Bowden, M.G.; Kelly, A.L.; Kautz, S.A. Altered post-stroke propulsion is related to paretic swing phase kinematics. Clin. Biomech. 2020, 72, 24–30. [Google Scholar] [CrossRef]
- Akbas, T.; Kim, K.; Doyle, K.; Manella, K.; Lee, R.; Spicer, P.; Knikou, M.; Sulzer, J. Rectus femoris hyperreflexia contributes to Stiff-Knee gait after stroke. J. Neuroeng. Rehabil. 2020, 17, 117. [Google Scholar] [CrossRef]
- Apti, A.; Akalan, N.E.; Kuchimov, S.; Özdinçler, A.R.; Temelli, Y.; Nene, A. Plantar flexor muscle weakness may cause stiff-knee gait. Gait Posture 2016, 46, 201–207. [Google Scholar] [CrossRef]
- Goldberg, S.R.; Anderson, F.C.; Pandy, M.G.; Delp, S.L. Muscles that influence knee flexion velocity in double support: Implications for stiff-knee gait. J. Biomech. 2004, 37, 1189–1196. [Google Scholar] [CrossRef]
- Wang, W.; Li, K.; Yue, S.; Yin, C.; Wei, N. Associations between lower-limb muscle activation and knee flexion in post-stroke individuals: A study on the stance-to-swing phases of gait. PLoS ONE 2017, 12, e0183865. [Google Scholar] [CrossRef] [Green Version]
- Lebel, K.; Boissy, P.; Hamel, M.; Duval, C. Inertial measures of motion for clinical biomechanics: Comparative assessment of accuracy under controlled conditions—Changes in accuracy over time. PLoS ONE 2015, 10, e0118361. [Google Scholar] [CrossRef] [PubMed]
- Kesar, T.M.; Binder-Macleod, S.A.; Hicks, G.E.; Reisman, D.S. Minimal detectable change for gait variables collected during treadmill walking in individuals post-stroke. Gait Posture 2011, 33, 314–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyazaki, T.; Kawada, M.; Nakai, Y.; Kiyama, R.; Yone, K. Validity of measurement for trailing limb angle and propulsion force during gait using a magnetic inertial measurement unit. BioMed Res. Int. 2019, 2019, 8123467. [Google Scholar] [CrossRef]
- Akalan, N.E.; Kuchimov, S.; Apti, A.; Temelli, Y.; Nene, A. Contributors of stiff knee gait pattern for able bodies: Hip and knee velocity reduction and tiptoe gait. Gait Posture 2016, 43, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, S.R.; Õunpuu, S.; Delp, S.L. The importance of swing-phase initial conditions in stiff-knee gait. J. Biomech. 2003, 36, 1111–1116. [Google Scholar] [CrossRef]
- Chen, G.; Patten, C. Joint moment work during the stance-to-swing transition in hemiparetic subjects. J. Biomech. 2008, 41, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Rech, K.D.; Salazar, A.P.; Marchese, R.R.; Schifino, G.; Cimolin, V.; Pagnussat, A.S. Fugl-Meyer Assessment Scores are related with kinematic measures in people with chronic hemiparesis after stroke. J. Stroke Cerebrovasc. Dis. 2020, 29, 104463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piazza, S.J.; Delp, S.L. The influence of muscles on knee flexion during the swing phase of gait. J. Biomech. 1996, 29, 723–733. [Google Scholar] [CrossRef]
- Sulzer, J.S.; Gordon, K.E.; Dhaher, Y.Y.; Peshkin, M.A.; Patton, J.L. Preswing knee flexion assistance is coupled with hip abduction in people with stiff-knee gait after stroke. Stroke 2010, 41, 1709–1714. [Google Scholar] [CrossRef] [PubMed]
- Nadeau, S.; Gravel, D.; Arsenault, A.B.; Bourbonnais, D. Plantarflexor weakness as a limiting factor of gait speed in stroke subjects and the compensating role of hip flexors. Clin. Biomech. 1999, 14, 125–135. [Google Scholar] [CrossRef]
- Turns, L.J.; Neptune, R.R.; Kautz, S.A. Relationships between muscle activity and anteroposterior ground reaction forces in hemiparetic walking. Arch. Phys. Med. Rehabil. 2007, 88, 1127–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatti, M.A.; Freixes, O.; Fernández, S.A.; Rivas, M.E.; Crespo, M.; Waldman, S.V.; Olmos, L.E. Effects of ankle foot orthosis in stiff knee gait in adults with hemiplegia. J. Biomech. 2012, 45, 2658–2661. [Google Scholar] [CrossRef] [PubMed]
- Tyson, S.F.; Sadeghi-Demneh, E.; Nester, C.J. A systematic review and meta-analysis of the effect of an ankle-foot orthosis on gait biomechanics after stroke. Clin. Rehabil. 2013, 27, 879–891. [Google Scholar] [CrossRef] [PubMed]
Variable | Patients (n = 29) |
---|---|
Age (years) | 59.8 ± 14.0 |
Sex (n): male/female | 19/10 |
Height (cm) | 162.7 ± 8.0 |
Weight (kg) | 65.6 ± 11.1 |
Disease (n): hemorrhage/infarction | 17/12 |
Time post-stroke (months) | 22.5 ± 24.1 |
Affected side (n): right/left | 13/16 |
T-cane (n) | 26 |
Ankle foot orthosis (n) | 24 (DF free and PF limitation 17, DF free and PF braking 7) |
BRS (n) | III: 10 IV: 8 V: 7 VI: 4 |
FMA-LL (points) | 23.9 ± 6.4 |
MAS knee flexion muscles (n) | 0: 16 1: 8 1+: 4 2: 1 |
MAS knee extension muscles (n) | 0: 12 1: 11 1+: 5 2: 1 |
MAS ankle PF muscles (n) | 0: 4 1: 5 1+: 11 2: 7 3: 2 |
FIM walk (n) | 5: 4 6: 23 7: 2 |
Variable | Paretic | Non-Paretic | p-Value |
---|---|---|---|
Late stance phase | |||
Leg extension angle (°) | 10.4 ± 7.0 | 14.3 ± 4.8 | 0.006 |
Hip extension (°) | 3.5 ± 8.6 | 8.6 ± 7.2 | 0.007 |
Knee flexion during PSw (°) | 24.5 ± 14.5 | 35.0 ± 11.4 | 0.001 |
Increments of velocity (m/s) | 0.18 ± 0.09 | 0.33 ± 0.11 | <0.001 |
Swing phase | |||
Peak hip flexion (°) | 24.8 ± 9.9 | 29.8 ± 6.5 | 0.003 |
Peak knee flexion (°) | 30.9 ± 15.1 | 55.6 ± 10.0 | <0.001 |
Variable | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Lower limb motor function | |||||||
1. FMA-LL | - | 0.430 * | 0.004 | 0.695 ** | 0.121 | 0.504 ** | 0.695 ** |
Late stance phase | |||||||
2. Leg extension angle | - | 0.629 ** | 0.740 ** | 0.846 ** | 0.343 | 0.721 ** | |
3. Hip extension | - | 0.204 | 0.702 ** | −0.204 | 0.213 | ||
4. Knee flexion (PSw) | - | 0.436 * | 0.533 ** | 0.513 ** | |||
5. Increments of velocity | - | 0.184 | 0.513 ** | ||||
Swing phase | |||||||
6. Hip flexion | - | 0.700 ** | |||||
7. Knee flexion | - |
Variable | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Late stance phase | ||||||
1. Leg extension angle | - | 0.754 ** | 0.655 ** | 0.886 ** | 0.079 | 0.602 ** |
2. Hip extension | - | 0.299 | 0.724 ** | −0.217 | 0.361 | |
3. Knee flexion (PSw) | - | 0.536 ** | 0.300 | 0.840 ** | ||
4. Increments of velocity | - | 0.098 | 0.536 ** | |||
Swing phase | ||||||
5. Hip flexion | - | 0.500 ** | ||||
6. Knee flexion (Sw) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuzawa, Y.; Miyazaki, T.; Takeshita, Y.; Higashi, N.; Hayashi, H.; Araki, S.; Nakatsuji, S.; Fukunaga, S.; Kawada, M.; Kiyama, R. Effect of Leg Extension Angle on Knee Flexion Angle during Swing Phase in Post-Stroke Gait. Medicina 2021, 57, 1222. https://doi.org/10.3390/medicina57111222
Matsuzawa Y, Miyazaki T, Takeshita Y, Higashi N, Hayashi H, Araki S, Nakatsuji S, Fukunaga S, Kawada M, Kiyama R. Effect of Leg Extension Angle on Knee Flexion Angle during Swing Phase in Post-Stroke Gait. Medicina. 2021; 57(11):1222. https://doi.org/10.3390/medicina57111222
Chicago/Turabian StyleMatsuzawa, Yuta, Takasuke Miyazaki, Yasufumi Takeshita, Naoto Higashi, Hiroyuki Hayashi, Sota Araki, Shintaro Nakatsuji, Seiji Fukunaga, Masayuki Kawada, and Ryoji Kiyama. 2021. "Effect of Leg Extension Angle on Knee Flexion Angle during Swing Phase in Post-Stroke Gait" Medicina 57, no. 11: 1222. https://doi.org/10.3390/medicina57111222
APA StyleMatsuzawa, Y., Miyazaki, T., Takeshita, Y., Higashi, N., Hayashi, H., Araki, S., Nakatsuji, S., Fukunaga, S., Kawada, M., & Kiyama, R. (2021). Effect of Leg Extension Angle on Knee Flexion Angle during Swing Phase in Post-Stroke Gait. Medicina, 57(11), 1222. https://doi.org/10.3390/medicina57111222