Machine Learning Approaches to Predict Chronic Lower Back Pain in People Aged over 50 Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Clinical Data and Outcomes
2.3. Statistical Analyses
2.4. Ethics Statement
3. Results
3.1. Patients’ Characteristics
3.2. Feature Selection
3.3. Model Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Model | Optimal Hyperparameters |
---|---|
LR | nIter = 21 |
KNN | k = 7 |
NB | usekernal, Laplace = 0, Adjust = 1 |
DT | Maximum depth = 5 Criterion = Gini index |
RF | Mtry * = 3 |
GBM | Maximum depth = 3 Number of estimators = 50, Gamma = 0 |
SVM | degree = 3, scale = 0.1 and C = 1.0 |
ANN | Number of hidden layers = 2 Number of nodes in a layer = 20, 10 |
References
- Hartvigsen, J.; Hancock, M.; Kongsted, A.; Louw, Q.; Ferreira, M.L.; Genevay, S.; Hoy, D.; Karppinen, J.; Pransky, G.; Sieper, J.; et al. What low back pain is and why we need to pay attention. Lancet 2018, 391, 2356–2367. [Google Scholar] [CrossRef] [Green Version]
- Ganesan, S.; Acharya, A.S.; Chauhan, R.; Acharya, S. Prevalence and Risk Factors for Low Back Pain in 1355 Young Adults: A Cross-Sectional Study. Asian Spine J. 2017, 11, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Patrick, N.; Emanski, E.; Knaub, M.A. Acute and chronic low back pain. Med. Clin. N. Am. 2014, 98, 777–789. [Google Scholar] [CrossRef]
- Wu, A.; March, L.; Zheng, X.; Huang, J.; Wang, X.; Zhao, J.; Blyth, F.M.; Smith, E.; Buchbinder, R.; Hoy, D. Global low back pain prevalence and years lived with disability from 1990 to 2017: Estimates from the Global Burden of Disease Study 2017. Ann. Transl. Med. 2020, 8, 299. [Google Scholar] [CrossRef] [PubMed]
- Safiri, S.; Kolahi, A.A.; Cross, M.; Carson-Chahhoud, K.; Almasi-Hashiani, A.; Kaufman, J.; Mansournia, M.A.; Sepidarkish, M.; Ashrafi-Asgarabad, A.; Hoy, D.; et al. Global, regional, and national burden of other musculoskeletal disorders 1990–2017: Results from the Global Burden of Disease Study 2017. Rheumatology 2021, 60, 855–865. [Google Scholar] [CrossRef]
- Lambeek, L.C.; Bosmans, J.; Van Royen, B.J.; van Tulder, M.; Van Mechelen, W.; Anema, J.R. Effect of integrated care for sick listed patients with chronic low back pain: Economic evaluation alongside a randomised controlled trial. BMJ 2010, 341, c6414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, R.; Shekelle, P. Will this patient develop persistent disabling low back pain? JAMA 2010, 303, 1295–1302. [Google Scholar] [CrossRef] [PubMed]
- Motwani, M.; Dey, D.; Berman, D.S.; Germano, G.; Achenbach, S.; Al-Mallah, M.; Andreini, D.; Budoff, M.J.; Cademartiri, F.; Callister, T.Q.; et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: A 5-year multicentre prospective registry analysis. Eur. Hear. J. 2016, 38, 500–507. [Google Scholar] [CrossRef]
- Kim, J.; Merrill, R.K.; Arvind, V.; Kaji, D.; Pasik, S.D.; Nwachukwu, C.C.; Vargas, L.; Osman, N.S.; Oermann, E.K.; Caridi, J.M.; et al. Examining the Ability of Artificial Neural Networks Machine Learning Models to Accurately Predict Complications Following Posterior Lumbar Spine Fusion. Spine 2018, 43, 853–860. [Google Scholar] [CrossRef]
- Lee, H.-C.; Yoon, H.-K.; Nam, K.; Cho, Y.J.; Kim, T.K.; Kim, W.H.; Bahk, J.-H. Derivation and Validation of Machine Learning Approaches to Predict Acute Kidney Injury after Cardiac Surgery. J. Clin. Med. 2018, 7, 322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.-C.; Bin Yoon, S.; Yang, S.-M.; Kim, W.H.; Ryu, H.-G.; Jung, C.-W.; Suh, K.-S.; Lee, K.H. Prediction of Acute Kidney Injury after Liver Transplantation: Machine Learning Approaches vs. Logistic Regression Model. J. Clin. Med. 2018, 7, 428. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lei, L.; Ji, M.; Tong, J.; Zhou, C.-M.; Yang, J.-J. Predicting postoperative delirium after microvascular decompression surgery with machine learning. J. Clin. Anesth. 2020, 66, 109896. [Google Scholar] [CrossRef] [PubMed]
- Han, S.S.; Azad, T.D.; Suarez, P.A.; Ratliff, J.K. A machine learning approach for predictive models of adverse events following spine surgery. Spine J. 2019, 19, 1772–1781. [Google Scholar] [CrossRef] [Green Version]
- Mukasa, D.; Sung, J. A prediction model of low back pain risk: A population based cohort study in Korea. Korean J. Pain 2020, 33, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Kweon, S.; Kim, Y.; Jang, M.-J.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.-H.; Oh, K. Data Resource Profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.M.; Kim, H.J.; Jang, S.; Kim, H.; Chang, B.S.; Lee, C.K.; Yeom, J.S. Depression is Closely Associated with Chronic Low Back Pain in Patients Over 50 Years of Age: A Cross-sectional Study Using the Sixth Korea National Health and Nutrition Examination Survey (KNHANES VI-2). Spine 2018, 43, 1281–1288. [Google Scholar] [CrossRef]
- Beretta, L.; Santaniello, A. Nearest neighbor imputation algorithms: A critical evaluation. BMC Med. Inform. Decis. Mak. 2016, 16, 197–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Luo, Z.; Huang, J.; Feng, Y.; Liu, Z. A Novel Ensemble Method for Imbalanced Data Learning: Bagging of Extrapola-tion-SMOTE SVM. Comput. Intell. Neurosci. 2017, 2017, 1827016. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-C.; Hsu, W.-D.; Islam, M.; Poly, T.N.; Yang, H.-C.; Nguyen, P.-A.; Wang, Y.-C.; Li, Y.-C. An artificial intelligence approach to early predict non-ST-elevation myocardial infarction patients with chest pain. Comput. Methods Programs Biomed. 2019, 173, 109–117. [Google Scholar] [CrossRef]
- Wu, C.-C.; Yeh, W.-C.; Hsu, W.-D.; Islam, M.; Nguyen, P.A.; Poly, T.N.; Wang, Y.-C.; Yang, H.-C.; Li, Y.-C. Prediction of fatty liver disease using machine learning algorithms. Comput. Methods Programs Biomed. 2019, 170, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Buda, M.; Maki, A.; Mazurowski, M.A. A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 2018, 106, 249–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehmood, A.; Maqsood, M.; Bashir, M.; Shuyuan, Y. A Deep Siamese Convolution Neural Network for Multi-Class Classification of Alzheimer Disease. Brain Sci. 2020, 10, 84. [Google Scholar] [CrossRef] [Green Version]
- McIntosh, G.; Steenstra, I.; Hogg-Johnson, S.; Carter, T.; Hall, H. Lack of Prognostic Model Validation in Low Back Pain Prediction Studies: A Systematic Review. Clin. J. Pain. 2018, 34, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Hancock, M.J.; Maher, C.M.; Petocz, P.; Lin, C.-W.C.; Steffens, D.; Luque-Suarez, A.; Magnussen, J.S. Risk factors for a recurrence of low back pain. Spine J. 2015, 15, 2360–2368. [Google Scholar] [CrossRef] [PubMed]
- Traeger, A.C.; Henschke, N.; Hübscher, M.; Williams, C.M.; Kamper, S.J.; Maher, C.G.; Moseley, G.L.; McAuley, J.H. Estimating the Risk of Chronic Pain: Development and Validation of a Prognostic Model (PICKUP) for Patients with Acute Low Back Pain. PLoS Med. 2016, 13, e1002019. [Google Scholar] [CrossRef] [PubMed]
- Izonin, I.; Tkachenko, R.; Shakhovska, N.; Lotoshynska, N. The Additive Input-Doubling Method Based on the SVR with Nonlinear Kernels: Small Data Approach. Symmetry 2021, 13, 612. [Google Scholar] [CrossRef]
- Salazar, A.; Vergara, L.; Safont, G. Generative Adversarial Networks and Markov Random Fields for oversampling very small training sets. Expert Syst. Appl. 2021, 163, 113819. [Google Scholar] [CrossRef]
Variables | All Cases (n = 6119) | No Lower Back Pain (n = 4725) | Lower Back Pain (n = 1394) | p-Value |
---|---|---|---|---|
Age (years) | 64 (56–72) | 62 (56–70) | 69 (60–76) | <0.001 |
Sex (female) | 3511 (57.4%) | 2464 (52.1%) | 1047 (75.1%) | <0.001 |
BMI (kg/cm2) | 23.9 (22.0–26.0) | 23.9 (22.0–25.9) | 24.1 (21.9–26.4) | 0.001 |
Comorbidities (n) | ||||
Hypertension | 3006 (49.1%) | 2249 (47.6%) | 757 (54.3%) | <0.001 |
Diabetes mellitus | 1020 (16.7%) | 747 (15.8%) | 273 (19.6%) | <0.001 |
Hyperlipidemia | 1449 (23.7%) | 1027 (21.7%) | 422 (30.3%) | <0.001 |
Ischemic heart disease | 280 (4.6%) | 182 (3.8%) | 98 (7.0%) | <0.001 |
Cerebrovascular accident | 253 (4.1%) | 161 (3.4%) | 92 (6.6%) | <0.001 |
Osteoarthritis | 1294 (21.1%) | 736 (15.6%) | 558 (40.0%) | <0.001 |
Rheumatoid arthritis | 163 (2.7%) | 106 (2.2%) | 57 (4.1%) | <0.001 |
Education (n) | 878 (14.3%) | 773 (16.4%) | 105 (7.5%) | <0.001 |
Marital status (n) | 6045 (98.8%) | 4666 (98.8%) | 1379 (98.9%) | 0.70 |
Household income (n) | 2636 (43.1%) | 2238 (47.4%) | 398 (28.6%) | <0.001 |
Occupation (n) | <0.001 | |||
Managers, experts | 330 (5.4%) | 295 (6.2%) | 35 (2.5%) | |
Office work | 213 (3.5%) | 185 (3.9%) | 28 (2.0%) | |
Sales and services | 599 (9.8%) | 490 (10.4%) | 109 (7.8%) | |
Agriculture, forestry, and fishery | 493 (8.1%) | 370 (7.8%) | 123 (8.8%) | |
Machine fitting | 509 (8.3%) | 448 (9.5%) | 61 (4.4%) | |
Simple labor | 672 (11.0%) | 531 (11.2%) | 141 (10.1%) | |
Unemployed (student, housewife, etc.) | 3303 (54.0%) | 2406 (50.9%) | 897 (64.3%) | |
Sitting time (n) | 2845 (46.5%) | 2110 (44.7%) | 735 (52.7%) | <0.001 |
Duration of sleep (n) | 3210 (52.5%) | 2548 (53.9%) | 662 (47.5%) | <0.001 |
Smoking (n) | 2402 (39.3%) | 2022 (42.8%) | 380 (27.3%) | <0.001 |
Alcohol intake (n) | 4940 (80.7%) | 3928 (83.1%) | 1012 (72.6%) | <0.001 |
Depressive symptom (n) | 364 (6.0%) | 206 (4.4%) | 158 (11.3%) | <0.001 |
Stress (n) | 4633 (75.7%) | 3515 (74.4%) | 1118 (80.2%) | <0.001 |
Physical activity (n) | 437 (7.1%) | 297 (6.3%) | 140 (10.0%) | <0.001 |
Fasting blood glucose (mg/dL) | 99 (92–110) | 99 (92–110) | 99 (92–109) | 0.69 |
Model | AUROC (95% CI) | Accuracy (95% CI) | Sensitivity (95% CI) | Specificity (95% CI) |
---|---|---|---|---|
LR | 0.656 (0.634–0.678) | 0.608 (0.582–0.634) | 0.82 (0.79–0.84) | 0.36 (0.32–0.40) |
KNN | 0.656 (0.628–0.685) | 0.631 (0.608–0.653) | 0.83 (0.81–0.85) | 0.35 (0.32–0.39) |
NB | 0.712 (0.685–0.740) | 0.713 (0.692–0.733) | 0.84 (0.82–0.86) | 0.43 (0.39–0.47) |
DT | 0.671 (0.643–0.698) | 0.665 (0.643–0.687) | 0.85 (0.83–0.87) | 0.39 (0.35–0.42) |
RF | 0.699 (0.671–0.728) | 0.701 (0.680–0.722) | 0.84 (0.81–0.86) | 0.42 (0.38–0.46) |
GBM | 0.660 (0.631–0.690) | 0.689 (0.667- 0.710) | 0.82 (0.80–0.84) | 0.39 (0.35–0.43) |
SVM | 0.707 (0.678–0.735) | 0.677 (0.656–0.699) | 0.85 (0.83–0.87) | 0.40 (0.36–0.44) |
ANN | 0.716 (0.689–0.744) | 0.717 (0.696–0.734) | 0.84 (0.82–0.86) | 0.44 (0.40–0.48) |
Model | AUROC (k = 1) | AUROC (k = 2) | AUROC (k = 3) | AUROC (k = 4) | AUROC (k = 5) | AUROC (mean + SD) |
---|---|---|---|---|---|---|
LR | 0.690 | 0.607 | 0.679 | 0.637 | 0.651 | 0.653 ± 0.033 |
KNN | 0.612 | 0.676 | 0.604 | 0.626 | 0.579 | 0.619 ± 0.036 |
NB | 0.610 | 0.649 | 0.602 | 0.671 | 0.671 | 0.641 ± 0.033 |
DT | 0.636 | 0.710 | 0.579 | 0.669 | 0.597 | 0.638 ± 0.053 |
RF | 0.654 | 0.714 | 0.677 | 0.633 | 0.636 | 0.663 ± 0.034 |
GBM | 0.538 | 0.612 | 0.661 | 0.637 | 0.628 | 0.615 ± 0.047 |
SVM | 0.700 | 0.665 | 0.674 | 0.726 | 0.691 | 0.691 ± 0.024 |
ANN | 0.728 | 0.718 | 0.739 | 0.662 | 0.724 | 0.714 ± 0.030 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shim, J.-G.; Ryu, K.-H.; Cho, E.-A.; Ahn, J.H.; Kim, H.K.; Lee, Y.-J.; Lee, S.H. Machine Learning Approaches to Predict Chronic Lower Back Pain in People Aged over 50 Years. Medicina 2021, 57, 1230. https://doi.org/10.3390/medicina57111230
Shim J-G, Ryu K-H, Cho E-A, Ahn JH, Kim HK, Lee Y-J, Lee SH. Machine Learning Approaches to Predict Chronic Lower Back Pain in People Aged over 50 Years. Medicina. 2021; 57(11):1230. https://doi.org/10.3390/medicina57111230
Chicago/Turabian StyleShim, Jae-Geum, Kyoung-Ho Ryu, Eun-Ah Cho, Jin Hee Ahn, Hong Kyoon Kim, Yoon-Ju Lee, and Sung Hyun Lee. 2021. "Machine Learning Approaches to Predict Chronic Lower Back Pain in People Aged over 50 Years" Medicina 57, no. 11: 1230. https://doi.org/10.3390/medicina57111230
APA StyleShim, J.-G., Ryu, K.-H., Cho, E.-A., Ahn, J. H., Kim, H. K., Lee, Y.-J., & Lee, S. H. (2021). Machine Learning Approaches to Predict Chronic Lower Back Pain in People Aged over 50 Years. Medicina, 57(11), 1230. https://doi.org/10.3390/medicina57111230