A Warning Call for Fertility Preservation Methods for Women Undergoing Gonadotoxic Cancer Treatment
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Effect of Cancer Treatment on Genital Tract
3.2. Ovarian and Follicular Pool Characteristics
3.3. Cellular Apoptosis
3.4. Acute Vascular Toxicity
3.5. Ovarian Burnout
3.6. Oxidative Stress
3.7. Irradiation
3.8. Fertility Preservation Guidelines
3.9. Fertility Preservation before Cancer Treatment
3.10. Fertility Preservation during Cancer Treatment
3.11. Fertility Preservation after Cancer Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Majhail, N.S.; Farnia, S.H.; Carpenter, P.A.; Champlin, R.E.; Crawford, S.; Marks, D.I.; Omel, J.L.; Orchard, P.J.; Palmer, J.; Saber, W.; et al. Indications for Autologous and Allogeneic Hematopoietic Cell Transplantation: Guidelines from the American Society for Blood and Marrow Transplantation. Biol. Blood Marrow Transplant. 2015, 21, 1863–1869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Méndez-Ferrer, S.; Bonnet, D.; Steensma, D.P.; Hasserjian, R.P.; Ghobrial, I.M.; Gribben, J.G.; Andreeff, M.; Krause, D.S. Bone marrow niches in haematological malignancies. Nat. Rev. Cancer 2020, 20, 285–298. [Google Scholar] [CrossRef]
- Mauri, D.; Gazouli, I.; Zarkavelis, G.; Papadaki, A.; Mavroeidis, L.; Gkoura, S.; Ntellas, P.; Amylidi, A.-L.; Tsali, L.; Kampletsas, E. Chemotherapy Associated Ovarian Failure. Front. Endocrinol. 2020, 11, 572388. [Google Scholar] [CrossRef] [PubMed]
- Inamoto, Y.; Lee, S.J. Late effects of blood and marrow transplantation. Haematologica 2017, 102, 614–625. [Google Scholar] [CrossRef]
- Ben-Aharon, I.; Shalgi, R. What lies behind chemotherapy-induced ovarian toxicity? Reproduction 2012, 144, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Kort, J.D.; Eisenberg, M.L.; Millheiser, L.S.; Westphal, L.M. Fertility issues in cancer survivorship. CA Cancer J. Clin. 2013, 64, 118–134. [Google Scholar] [CrossRef]
- Humphreys, M.; Johnstone, E.; Letourneau, J.M. Current Approaches to Fertility Preservation. Clin. Obstet. Gynecol. 2020, 63, 735–751. [Google Scholar] [CrossRef]
- Wallace, W.H.B.; Anderson, R.A.; Irvine, D.S. Fertility preservation for young patients with cancer: Who is at risk and what can be offered? Lancet Oncol. 2005, 6, 209–218. [Google Scholar] [CrossRef]
- Jadoul, P.; on behalf of ISFP Practice Committee; Kim, S.S. Fertility considerations in young women with hematological malignancies. J. Assist. Reprod. Genet. 2012, 29, 479–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonigo, C.; Beau, I.; Binart, N.; Grynberg, M. The Impact of Chemotherapy on the Ovaries: Molecular Aspects and the Prevention of Ovarian Damage. Int. J. Mol. Sci. 2019, 20, 5342. [Google Scholar] [CrossRef] [Green Version]
- Silvestris, E.; Cormio, G.; Skrypets, T.; Dellino, M.; Paradiso, A.V.; Guarini, A.; Minoia, C. Novel aspects on gonadotoxicity and fertility preservation in lymphoproliferative neoplasms. Crit. Rev. Oncol. 2020, 151, 102981. [Google Scholar] [CrossRef]
- Sun, B.; Yeh, J. Onco-fertility and personalized testing for potential for loss of ovarian reserve in patients undergoing chemotherapy: Proposed next steps for development of genetic testing to predict changes in ovarian reserve. Fertil. Res. Pract. 2021, 7, 13. [Google Scholar] [CrossRef] [PubMed]
- Stroud, J.S.; Mutch, D.; Rader, J.; Powell, M.; Thaker, P.H.; Grigsby, P.W. Effects of cancer treatment on ovarian function. Fertil. Steril. 2009, 92, 417–427. [Google Scholar] [CrossRef]
- Szymanska, K.J.; Tan, X.; Oktay, K. Unraveling the mechanisms of chemotherapy-induced damage to human primordial follicle reserve: Road to developing therapeutics for fertility preservation and reversing ovarian aging. Mol. Hum. Reprod. 2020, 26, 553–566. [Google Scholar] [CrossRef]
- Miranda, A.M.; Schnatz, R.H. Ovary Anatomy. Available online: https://emedicine.medscape.com/article/1949171-overview#a5 (accessed on 24 September 2018).
- Williams, C.J.; Erickson, G.F. Morphology and Physiology of the Ovary; Endotext [Internet]; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W.W., Dhatariya, K., Dungan, K., Hershman, J.M., Hofland, J., Kalra, S., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 30 January 2012. [Google Scholar] [PubMed]
- Erickson, G.F. Follicle Growth and Development. Glob. Libr. Women’s Med. 2008. [Google Scholar] [CrossRef]
- Pelosi, E.; Forabosco, A.; Schlessinger, D. Genetics of the ovarian reserve. Front. Genet. 2015, 6, 308. [Google Scholar] [CrossRef]
- Holesh, J.E.; Bass, A.N.; Lord, M. Physiology, Ovulation; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Richards, J.S.; Pangas, S.A. The ovary: Basic biology and clinical implications. J. Clin. Investig. 2010, 120, 963–972. [Google Scholar] [CrossRef]
- Ouni, E.; Bouzin, C.; Dolmans, M.M.; Marbaix, E.; Pyr Dit Ruys, S.; Vertommen, D.; Amorim, C.A. Spatiotemporal changes in mechanical matrisome components of the human ovary from prepuberty to menopause. Hum Reprod. 2020, 35, 1391–1410. [Google Scholar] [CrossRef] [PubMed]
- Gougeon, A. Human ovarian follicular development: From activation of resting follicles to preovulatory maturation. Ann. Endocrinol. 2010, 71, 132–143. [Google Scholar] [CrossRef] [PubMed]
- De Felici, M.; Klinger, F.G. PI3K/PTEN/AKT Signaling Pathways in Germ Cell Development and Their Involvement in Germ Cell Tumors and Ovarian Dysfunctions. Int. J. Mol. Sci. 2021, 22, 9838. [Google Scholar] [CrossRef]
- Zeleznik, A.J. The physiology of follicle selection. Reprod. Biol. Endocrinol. 2004, 2, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, C.E.; Yanushpolsky, E. Anti-Müllerian Hormone: Current Understanding and Clinical Use. Curr. Obstet. Gynecol. Rep. 2021, 1–10. [Google Scholar] [CrossRef]
- Yang, D.Z.; Yang, W.; Li, Y.; He, Z. Progress in understanding human ovarian folliculogenesis and its implications in assisted reproduction. J. Assist. Reprod. Genet. 2013, 30, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Richards, J.S.; Russell, D.L.; Ochsner, S.; Hsieh, M.; Doyle, K.H.; Falender, A.E.; Lo, Y.K.; Sharma, S.C. Novel signaling pathways that control ovarian follicular development, ovulation, and luteinization. Recent Prog. Horm. Res. 2002, 57, 195–220. [Google Scholar] [CrossRef]
- Luan, Y.; Edmonds, M.E.; Woodruff, T.K.; Kim, S.-Y. Inhibitors of apoptosis protect the ovarian reserve from cyclophosphamide. J. Endocrinol. 2019, 240, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Terren, C.; Nisolle, M.; Munaut, C. Pharmacological inhibition of the PI3K/PTEN/Akt and mTOR signalling pathways limits follicle activation induced by ovarian cryopreservation and in vitro culture. J. Ovarian Res. 2021, 14, 95. [Google Scholar] [CrossRef]
- Vallet, N.; Boissel, N.; Elefant, E.; Chevillon, F.; Pasquer, H.; Calvo, C.; Dhedin, N.; Poirot, C. Can Some Anticancer Treatments Preserve the Ovarian Reserve? Oncologist 2021, 26, 492–503. [Google Scholar] [CrossRef]
- Nho, R.S.; Hergert, P. FoxO3a and disease progression. World J. Biol. Chem. 2014, 5, 346–354. [Google Scholar] [CrossRef]
- Maidarti, M.; Anderson, R.A.; Telfer, E.E. Crosstalk between PTEN/PI3K/Akt Signalling and DNA Damage in the Oocyte: Implications for Primordial Follicle Activation, Oocyte Quality and Ageing. Cells 2020, 9, 200. [Google Scholar] [CrossRef] [Green Version]
- Titus, S.; Szymanska, K.J.; Musul, B.; Turan, V.; Taylan, E.; Milian, R.G.; Mehta, S.; Oktay, K. Individual-oocyte transcriptomic analysis shows that genotoxic chemotherapy depletes human primordial follicle reserve in vivo by triggering proapoptotic pathways without growth activation. Sci. Rep. 2021, 11, 407. [Google Scholar] [CrossRef] [PubMed]
- Georgescu, M.M. PTEN Tumor Suppressor Network in PI3K-Akt Pathway Control. Genes Cancer 2010, 1, 1170–1177. [Google Scholar] [CrossRef]
- Kano, M.; Sosulski, A.E.; Zhang, L.; Saatcioglu, H.D.; Wang, D.; Nagykery, N.; Sabatini, M.E.; Gao, G.; Donahoe, P.K.; Pépin, D. AMH/MIS as a contraceptive that protects the ovarian reserve during chemotherapy. Proc. Natl. Acad. Sci. USA 2017, 114, E1688–E1697. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, Q.N.; Zerafa, N.; Liew, S.H.; Findlay, J.K.; Hickey, M.; Hutt, K.J. Cisplatin- and cyclophosphamide-induced primordial follicle depletion is caused by direct damage to oocytes. Mol. Hum. Reprod. 2019, 25, 433–444. [Google Scholar] [CrossRef]
- Roness, H.; Gavish, Z.; Cohen, Y.; Meirow, D. Ovarian follicle burnout: A universal phenomenon? Cell Cycle 2013, 12, 3245–3246. [Google Scholar] [CrossRef] [Green Version]
- Bedoschi, G.M.; Navarro, P.A.; Oktay, K.H. Novel insights into the pathophysiology of chemotherapy-induced damage to the ovary. Panminerva Med. 2019, 61, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Bedoschi, G.; Navarro, P.A.; Oktay, K. Chemotherapy-induced damage to ovary: Mechanisms and clinical impact. Future Oncol. 2016, 12, 2333–2344. [Google Scholar] [CrossRef] [Green Version]
- Spears, N.; Lopes, F.; Stefansdottir, A.; Rossi, V.; De Felici, M.; Anderson, R.A.; Klinger, F.G. Ovarian damage from chemotherapy and current approaches to its protection. Hum. Reprod. Update 2019, 25, 673–693. [Google Scholar] [CrossRef]
- Campia, U. Vascular effects of cancer treatments. Vasc. Med. 2020, 25, 226–234. [Google Scholar] [CrossRef]
- Oktay, K.; Sönmezer, M. Chemotherapy and amenorrhea: Risks and treatment options. Curr. Opin. Obstet. Gynecol. 2008, 20, 408–415. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.-W.; Han, S.-J.; Lee, S.; Park, H.-T.; Song, J.-Y.; Kim, T. Molecular Mechanism and Prevention Strategy of Chemotherapy- and Radiotherapy-Induced Ovarian Damage. Int. J. Mol. Sci. 2021, 22, 7484. [Google Scholar] [CrossRef]
- Cho, H.-W.; Lee, S.; Min, K.-J.; Hong, J.H.; Song, J.Y.; Lee, J.K.; Lee, N.W.; Kim, T. Advances in the Treatment and Prevention of Chemotherapy-Induced Ovarian Toxicity. Int. J. Mol. Sci. 2020, 21, 7792. [Google Scholar] [CrossRef]
- Kalich-Philosoph, L.; Roness, H.; Carmely, A.; Fishel-Bartal, M.; Ligumsky, H.; Paglin, S.; Wolf, I.; Kanety, H.; Sredni, B.; Meirow, D. Cyclophosphamide Triggers Follicle Activation and “Burnout”; AS101 Prevents Follicle Loss and Preserves Fertility. Sci. Transl. Med. 2013, 5, 185ra62. [Google Scholar] [CrossRef]
- Gavish, Z.; Peer, G.; Hadassa, R.; Yoram, C.; Meirow, D. Follicle activation and ’burn-out’ contribute to post-transplantation follicle loss in ovarian tissue grafts: The effect of graft thickness. Hum. Reprod. 2014, 29, 989–996. [Google Scholar] [CrossRef] [Green Version]
- Meirow, D.; Nugent, D. The effects of radiotherapy and chemotherapy on female reproduction. Hum. Reprod. Update 2001, 7, 535–543. [Google Scholar] [CrossRef] [Green Version]
- Ogilvy-Stuart, A.L.; Shalet, S.M. Effect of Radiation on the Human Reproductive System. Environ. Health Perspect. 1993, 101 (Suppl. 2), 109–116. [Google Scholar]
- Paix, A.; Antoni, D.; Waissi, W.; Ledoux, M.-P.; Bilger, K.; Fornecker, L.; Noel, G. Total body irradiation in allogeneic bone marrow transplantation conditioning regimens: A review. Crit. Rev. Oncol. Hematol. 2018, 123, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Rozen, G.; Rogers, P.; Chander, S.; Anderson, R.; McNally, O.; Umstad, M.; Winship, A.; Hutt, K.; Teh, W.T.; Dobrotwir, A.; et al. Clinical summary guide: Reproduction in women with previous abdominopelvic radiotherapy or total body irradiation. Hum. Reprod. Open 2020, 2020, hoaa045. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.Y.; Filippi, A.R.; Dabaja, B.S.; Yahalom, J.; Specht, L.K. Total Body Irradiation: Guidelines from the International Lymphoma Radiation Oncology Group (ILROG). Int. J. Radiat. Oncol. 2018, 101, 521–529. [Google Scholar] [CrossRef]
- Teh, W.T.; Stern, C.; Chander, S.; Hickey, M. The Impact of Uterine Radiation on Subsequent Fertility and Pregnancy Outcomes. BioMed Res. Int. 2014, 2014, 482968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forgeard, N.; Jestin, M.; Vexiau, D.; Chevillon, F.; Ricadat, E.; de Latour, R.P.; Robin, M.; de Fontbrune, F.S.; Xhaard, A.; Michonneau, D.; et al. Sexuality- and Fertility-Related Issues in Women after Allogeneic Hematopoietic Stem Cell Transplantation. Transplant. Cell. Ther. 2021, 27, 432.e1–432.e6. [Google Scholar] [CrossRef]
- Huang, K.-E. Assessment of Hypothalamic-Pituitary Function in Women after External Head Irradiation. J. Clin. Endocrinol. Metab. 1979, 49, 623–627. [Google Scholar] [CrossRef]
- Farhadfar, N.; Stan, M.N.; Shah, P.; Sonawane, V.; Hefazi, M.T.; Murthy, H.S.; Zou, F.; Sican, X.; Hashmi, S.K. Thyroid dysfunction in adult hematopoietic cell transplant survivors: Risks and outcomes. Bone Marrow Transplant. 2018, 53, 977–982. [Google Scholar] [CrossRef] [Green Version]
- Detti, L. Options for preserving fertility in women undergoing gonadotoxic treatment. Clevel. Clin. J. Med. 2021, 88, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.X.; Zhang, L.L.; Li, H.X.; Yue, F.; Wang, N.H.; Xue, S.L.; Wang, Y.Q.; Zhang, X.H. Fertility preservation in cancer patients. Reprod. Dev. Med. 2021, 5, 44–54. [Google Scholar]
- Berceanu, C.; Cirstoiu, M.; Mehedintu, C.; Bratila, P.; Berceanu, S.; Vladareanu, S.; Bohiltea, R.; Bratila, E. Hormone deficiency and its impact on the lower urinary tract. In Proceedings of the 13th National Congress of Urogynecology, Brașov, Romania, 29 September–1 October 2016; pp. 29–38. [Google Scholar]
- Hussein, R.S.; Khan, Z.; Zhao, Y. Fertility Preservation in Women: Indications and Options for Therapy. Mayo Clin. Proc. 2020, 95, 770–783. [Google Scholar] [CrossRef]
- Kasum, M.; Šimunić, V.; Orešković, S.; Beketić-Orešković, L. Fertility preservation with ovarian stimulation protocols prior to cancer treatment. Gynecol. Endocrinol. 2014, 30, 182–186. [Google Scholar] [CrossRef] [Green Version]
- Parton, C.; Ussher, J.M.; Perz, J. Hope, burden or risk: A discourse analytic study of the construction and experience of fertility preservation in the context of cancer. Psychol. Health 2019, 34, 456–477. [Google Scholar] [CrossRef]
- Macklon, K.T.; Pedersen, A.T.; Larsen, E.C.; Colmorn, L.B. Fertility counselling of younger women after cancer treatment. Ugeskr Laeger 2020, 182, V07200499. [Google Scholar]
- Harada, M.; Osuga, Y. Fertility preservation for female cancer patients. Int. J. Clin. Oncol. 2019, 24, 28–33. [Google Scholar] [CrossRef]
- Moreno-Ortiz, H.; Acosta, I.D.; Lucena-Quevedo, E.; Arias-Sosa, L.A.; Dallos-Báez, A.E.; Forero-Castro, M.; Esteban-Pérez, C. Ovarian Reserve Markers: An Update, Biomarker—Indicator of Abnormal Physiological Process; Begum, G., Ed.; IntechOpen: London, UK, 2018. [Google Scholar]
- De Carvalho, B.R.; Japur de Sá Rosa e Silva, A.C.; Rosa e Silva, J.C.; dos Reis, R.M.; Ferriani, R.A.; Silva de Sá, M.F. Ovarian reserve evaluation: State of the art. J. Assist. Reprod. Genet. 2008, 25, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Roudebush, W.E.; Kivens, W.J.; Mattke, J.M. Biomarkers of Ovarian Reserve. Biomark. Insights 2008, 3, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Pinelli, S.; Basile, S. Fertility Preservation: Current and Future Perspectives for Oncologic Patients at Risk for Iatrogenic Premature Ovarian Insufficiency. BioMed Res. Int. 2018, 2018, 6465903. [Google Scholar] [CrossRef]
- Lee, J.H.; Choi, Y.S. The role of gonadotropin-releasing hormone agonists in female fertility preservation. Clin. Exp. Reprod. Med. 2021, 48, 11–26. [Google Scholar] [CrossRef]
- Weterings, M.A.; Glanville, E.; van Eekelen, R.; Hartog, J.E.D.; Farquhar, C. Interventions for fertility preservation in women with cancer undergoing chemotherapy. Cochrane Database Syst. Rev. 2017, 12, CD012891. [Google Scholar] [CrossRef]
- Dolmans, M.-M.; Manavella, D. Recent advances in fertility preservation. J. Obstet. Gynaecol. Res. 2019, 45, 266–279. [Google Scholar] [CrossRef]
- Salama, M.; Mallmann, P. Emergency fertility preservation for female patients with cancer: Clinical perspectives. Anticancer. Res. 2015, 35, 3117–3127. [Google Scholar]
- Liebenthron, J.; Montag, M. Cryopreservation and Thawing of Human Ovarian Cortex Tissue Slices. In Cryopreservation and Freeze-Drying Protocols; Humana: New York, NY, USA, 2020; Volume 2180, pp. 485–499. [Google Scholar] [CrossRef]
- Alvarez, R.; Ramanathan, P. Fertility preservation in female oncology patients: The influence of the type of cancer on ovarian stimulation response. Hum. Reprod. 2018, 33, 2051–2059. [Google Scholar] [CrossRef]
- Terren, C.; Munaut, C. Molecular Basis Associated with the Control of Primordial Follicle Activation during Transplantation of Cryopreserved Ovarian Tissue. Reprod. Sci. 2021, 28, 1257–1266. [Google Scholar] [CrossRef]
- Shapira, M.; Raanani, H.; Cohen, Y.; Meirow, D. Fertility Preservation in Young Females with Hematological Malignancies. Acta Haematol. 2014, 132, 400–413. [Google Scholar] [CrossRef]
- Salama, M.; Isachenko, V.; Isachenko, E.; Rahimi, G.; Mallmann, P. Advances in fertility preservation of female patients with hematological malignancies. Expert Rev. Hematol. 2017, 10, 951–960. [Google Scholar] [CrossRef]
- Dolmans, M.-M.; Donnez, J.; Cacciottola, L. Fertility Preservation: The Challenge of Freezing and Transplanting Ovarian Tissue. Trends Mol. Med. 2021, 27, 777–791. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Todorov, P.; Isachenko, E.; Rahimi, G.; Mallmann, P.; Isachenko, V. Construction and cryopreservation of an artificial ovary in cancer patients as an element of cancer therapy and a promising approach to fertility restoration. Hum. Fertil. 2021, 1–21. [Google Scholar] [CrossRef]
- Lambertini, M.; Del Mastro, L.; Pescio, M.C.; Andersen, C.Y.; Azim, H.A.; Peccatori, F.; Costa, M.; Revelli, A.; Salvagno, F.; Gennari, A.; et al. Cancer and fertility preservation: International recommendations from an expert meeting. BMC Med. 2016, 14, 1. [Google Scholar] [CrossRef]
- Hoekman, E.J.; Knoester, D.; Peters, A.A.W.; Jansen, F.W.; de Kroon, C.D.; Hilders, C.G.J.M. Ovarian survival after pelvic radiation: Transposition until the age of 35 years. Arch. Gynecol. Obstet. 2018, 298, 1001–1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuai, Y.; Xu, X.; Wang, A. Preservation of Fertility in Females Treated for Cancer. Int. J. Biol. Sci. 2012, 8, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- Spath, M.A.; Braat, D.D. Iatrogenic and non-iatrogenic causes of female fertility loss that may indicate fertility preservation. Acta Obstet. Gynecol. Scand. 2019, 98, 559–562. [Google Scholar] [CrossRef]
- Mahajan, N. Fertility preservation in female cancer patients: An overview. J. Hum. Reprod. Sci. 2015, 8, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Blumenfeld, Z. Fertility Preservation Using GnRH Agonists: Rationale, Possible Mechanisms, and Explanation of Controversy. Clin. Med. Insights Reprod. Health 2019, 13, 1179558119870163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Protocol to Guide the Assessment of Processing and Cryopreservation of Male and Female Gonadal Tissue and Gametes Prior to Gonadotoxic Treatment to Preserve Fertility for the Future. Protocol Advisory Subcommittee Report, Future Fertility and CanTeen Australia. 2016. Available online: http://www.msac.gov.au/internet/msac/publishing.nsf/Content/B82B7C383F44B6ACCA25801000123C27/$File/1435ConsultationProtocol.pdf (accessed on 18 November 2021).
- Roness, H.; Kashi, O.; Meirow, D. Prevention of chemotherapy-induced ovarian damage. Fertil. Steril. 2016, 105, 20–29. [Google Scholar] [CrossRef]
- Blumenfeld, Z. Critical Care for Young Women—Before Chemotherapy: Preserving Fertility Using GnRH Agonists. Crit. Care Obs. Gyne 2016, 2, 3. [Google Scholar]
- Lambertini, M.; Horicks, F.; Del Mastro, L.; Partridge, A.H.; Demeestere, I. Ovarian protection with gonadotropin-releasing hormone agonists during chemotherapy in cancer patients: From biological evidence to clinical application. Cancer Treat. Rev. 2019, 72, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Blumenfeld, Z. Fertility preservation and GnRHa for chemotherapy: Debate. Cancer Manag. Res. 2014, 6, 313–315. [Google Scholar] [CrossRef] [Green Version]
- Sonigo, C.; Beau, I.; Grynberg, M.; Binart, N. AMH prevents primordial ovarian follicle loss and fertility alteration in cyclophosphamide-treated mice. FASEB J. 2019, 33, 1278–1287. [Google Scholar] [CrossRef]
- Roness, H.; Spector, I.; Leichtmann-Bardoogo, Y.; Savino, A.M.; Dereh-Haim, S.; Meirow, D. Pharmacological administration of recombinant human AMH rescues ovarian reserve and preserves fertility in a mouse model of chemotherapy, without interfering with anti-tumoural effects. J. Assist. Reprod. Genet. 2019, 36, 1793–1803. [Google Scholar] [CrossRef]
- Lee, H.N.; Chang, E.M. Primordial follicle activation as new treatment for primary ovarian insufficiency. Clin. Exp. Reprod. Med. 2019, 46, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Grynberg, M.; Sermondade, N. Fertility preservation: Should we reconsider the terminology? Hum. Reprod. 2019, 34, 1855–1857. [Google Scholar] [CrossRef] [PubMed]
- Roness, H.; Kalich-Philosoph, L.; Meirow, D. Prevention of chemotherapy-induced ovarian damage: Possible roles for hormonal and non-hormonal attenuating agents. Hum. Reprod. Update 2014, 20, 759–774. [Google Scholar] [CrossRef] [Green Version]
- Oktem, O.; Oktay, K. Quantitative assessment of the impact of chemotherapy on ovarian follicle reserve and stromal function. Cancer 2007, 110, 2222–2229. [Google Scholar] [CrossRef]
- Goeckenjan, M.; Freis, A.; Glaß, K.; Schaar, J.; Trinkaus, I.; Torka, S.; Wimberger, P.; Germeyer, A. Motherhood after cancer: Fertility and utilisation of fertility-preservation methods. Arch. Gynecol. Obstet. 2020, 301, 1579–1588. [Google Scholar] [CrossRef]
- Henry, N.L.; Xia, R.; Schott, A.F.; McConnell, D.; Banerjee, M.; Hayes, D.F. Prediction of Postchemotherapy Ovarian Function Using Markers of Ovarian Reserve. Oncologist 2014, 19, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Victoria, M.; Labrosse, J.; Krief, F.; Cédrin-Durnerin, I.; Comtet, M.; Grynberg, M. Anti Müllerian Hormone: More than a biomarker of female reproductive function. J. Gynecol. Obstet. Hum. Reprod. 2019, 48, 19–24. [Google Scholar] [CrossRef]
- Moravek, M.; Confino, R.; Smith, K.N.; Kazer, R.R.; Klock, S.C.; Lawson, A.K.; Gradishar, W.J.; Pavone, M.E. Long-term outcomes in cancer patients who did or did not pursue fertility preservation. Fertil. Steril. 2018, 109, 349–355. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, E.; Fernandez, I.; Martinez, M.; Tocino, A.; Portela, S.; Pellicer, A.; García-Velasco, J.A.; Garrido, N. Oocyte donation outcome after oncological treatment in cancer survivors. Fertil. Steril. 2015, 103, 205–213. [Google Scholar] [CrossRef]
- Marklund, A.; Nasiell, J.; Berger, A.-S.; Fagerberg, A.; Rodriguez-Wallberg, K.A. Pregnancy Achieved Using Donor Eggs in Cancer Survivors with Treatment-Induced Ovarian Failure: Obstetric and Perinatal Outcome. J. Women Health 2018, 27, 939–945. [Google Scholar] [CrossRef] [Green Version]
- Gorman, J.R.; Su, H.I.; Pierce, J.P.; Roberts, S.C.; Dominick, S.A.; Malcarne, V.L. A multidimensional scale to measure the reproductive concerns of young adult female cancer survivors. J. Cancer Surviv. 2014, 8, 218–228. [Google Scholar] [CrossRef] [Green Version]
- Boivin, J.; Takefman, J.; Braverman, A. Development and preliminary validation of the fertility quality of life (FertiQoL) tool. Hum. Reprod. 2011, 26, 2084–2091. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehedintu, C.; Frincu, F.; Carp-Veliscu, A.; Barac, R.; Badiu, D.-C.; Zgura, A.; Cirstoiu, M.; Bratila, E.; Plotogea, M. A Warning Call for Fertility Preservation Methods for Women Undergoing Gonadotoxic Cancer Treatment. Medicina 2021, 57, 1340. https://doi.org/10.3390/medicina57121340
Mehedintu C, Frincu F, Carp-Veliscu A, Barac R, Badiu D-C, Zgura A, Cirstoiu M, Bratila E, Plotogea M. A Warning Call for Fertility Preservation Methods for Women Undergoing Gonadotoxic Cancer Treatment. Medicina. 2021; 57(12):1340. https://doi.org/10.3390/medicina57121340
Chicago/Turabian StyleMehedintu, Claudia, Francesca Frincu, Andreea Carp-Veliscu, Ramona Barac, Dumitru-Cristinel Badiu, Anca Zgura, Monica Cirstoiu, Elvira Bratila, and Mihaela Plotogea. 2021. "A Warning Call for Fertility Preservation Methods for Women Undergoing Gonadotoxic Cancer Treatment" Medicina 57, no. 12: 1340. https://doi.org/10.3390/medicina57121340
APA StyleMehedintu, C., Frincu, F., Carp-Veliscu, A., Barac, R., Badiu, D. -C., Zgura, A., Cirstoiu, M., Bratila, E., & Plotogea, M. (2021). A Warning Call for Fertility Preservation Methods for Women Undergoing Gonadotoxic Cancer Treatment. Medicina, 57(12), 1340. https://doi.org/10.3390/medicina57121340