Renal Impairment Detectors: IGFBP-7 and NGAL as Tubular Injury Markers in Multiple Myeloma Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Ethics Statement
2.3. Laboratory Tests
2.4. Statistical Methods
3. Results
3.1. Patient Characteristics
3.2. Associations between Urinary Markers of Tubular Injury and Clinical Characteristics of MM Patients
3.3. Correlations of Urinary Markers of Tubular Injury among Patients with MM
3.4. Associations between Studied Markers of Tubular Injury and Follow-Up Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AKI | Acute Kidney Injury |
autoPBSCT | Autologous Peripheral. Blood Stem Cell Transplantation |
CKD-EPI | Chronic Kidney Disease Epidemiology Collaboration |
CR | Complete Response |
Ig | Immunoglobulin |
ISS | International Staging System |
IQR | interquartile range |
MM | Directory of open access journals |
PD | Progressive Disease |
PR | Partial Response |
SD | Stable Disease |
Cr | Creatinine |
CysC | cystatin C |
eGFR | estimated glomerular filtration rate |
FLC | free light chains |
IGFBP-7 | insulin-like growth factor-binding protein 7 |
IQR | interquartile range |
LC | light chains |
NA | not applicable |
NGAL | neutrophil gelatinase-associated lipocalin |
NT-proBNP | N-terminal pro-brain natriuretic peptide |
TIMP-2 | tissue inhibitor of matrix metalloproteinase 2 |
MGUS | monoclonal gammopathy of undetermined significance |
SMM | Smoldering multiple myeloma |
References
- Turesson, I.; Bjorkholm, M.; Blimark, C.H.; Kristinsson, S.; Velez, R.; Landgren, O. Rapidly changing myeloma epidemiology in the general population: Increased incidence, older patients, and longer survival. Eur. J. Haematol. 2018, 101, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Mohty, M.; Cavo, M.; Fink, L.; Gonzalez-McQuire, S.; Leleu, H.; Mateos, M.V.; Raab, M.S.; Schoen, P.; Yong, K. Understanding mortality in multiple myeloma: Findings of a European retrospective chart review. Eur. J. Haematol. 2019, 103, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Nasr, S.H.; Valery, A.M.; Sethi, S.; Fidler, M.E.; Cornell, L.D.; Gertz, M.A.; Lacy, M.; Dispenzieri, A.; Rajkumar, S.V.; Kyle, R.A.; et al. Clinicopathologic correlations in multiple myeloma: A case series of 190 patients with kidney biopsies. Am. J. Kidney Dis. 2012, 59, 786–794. [Google Scholar] [CrossRef]
- Sprangers, B. Aetiology and management of acute kidney injury in multiple myeloma. Nephrol. Dial. Transplant. 2018, 33, 722–724. [Google Scholar] [CrossRef]
- Knudsen, L.M.; Hippe, E.; Hjorth, M.; Holmberg, E.; Westin, J. Renal function in newly diagnosed multiple myeloma—A demographic study of 1353 patients. Eur. J. Haematol. 1994, 53, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Haynes, R.J.; Read, S.; Collins, G.P.; Darby, S.C.; Winearls, C.G. Presentation and survival of patients with severe acute kidney injury and multiple myeloma: A 20-year experience from a single centre. Nephrol. Dial. Transplant. 2010, 25, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Tsakiris, D.J.; Stel, V.S.; Finne, P.; Fraser, E.; Heaf, J.; de Meester, J.; Schmaldienst, S.; Dekker, F.; Verrina, E.; Jager, K.J. Incidence and outcome of patients starting renal replacement therapy for end-stage renal disease due to multiple myeloma or light-chain deposit disease: An ERA-EDTA Registry study. Nephrol. Dial. Transplant. 2010, 25, 1200–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knudsen, L.M.; Hjorth, M.; Hippe, E. Renal failure in multiple myeloma: Reversibility and impact on the prognosis. Nordic Myeloma Study Group. Eur. J. Haematol. 2000, 65, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, M.A.; Delimpasi, S.; Katodritou, E.; Vassou, A.; Kyrtsonis, M.C.; Repousis, P.; Kartasis, Z.; Parchaidou, A.; Michael, M.; Michalis, E.; et al. Significant improvement in the survival of patients with multiple myeloma presenting with severe renal impairment after the introduction of novel agents. Ann. Oncol. 2014, 25, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Uttervall, K.; Duru, A.D.; Lund, J.; Liwing, J.; Gahrton, G.; Holmberg, E.; Aschan, J.; Alici, E.; Nahi, H. The use of novel drugs can effectively improve response, delay relapse and enhance overall survival in multiple myeloma patients with renal impairment. PLoS ONE 2014, 9, e101819. [Google Scholar] [CrossRef] [Green Version]
- Coriu, D.; Dytfeld, D.; Niepel, D.; Spicka, I.; Markuljak, I.; Mihaylov, G.; Ostojic-Kolonic, S.; Fink, L.; Toka, K.S.; Björklöf, K. Real-world multiple myeloma management practice patterns and outcomes in selected Central and Eastern European countries. Pol. Arch. Intern. Med. 2018, 128, 500–511. [Google Scholar] [CrossRef] [PubMed]
- Hus, I.; Walter-Croneck, A.; Masternak, A.; Jurczyszyn, A.; Usnarska-Zubikiewicz, L.; Bołkun, Ł.; Druzd-Sitek, A.; Rymko, M.; Łętowska, J.; Lech-Marańda, E.; et al. Real-life experience with bortezomib-based regimens in elderly patients with newly diagnosed multiple myeloma and comorbidities: A Polish retrospective multicenter study. Pol. Arch. Intern. Med. 2017, 127, 765–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finkel, K.W.; Cohen, E.P.; Shirali, A.; Abudayyeh, A. Paraprotein–Related Kidney Disease: Evaluation and Treatment of Myeloma Cast Nephropathy. Clin. J. Am. Soc. Nephrol. 2016, 11, 2273–2279. [Google Scholar] [CrossRef] [PubMed]
- Batko, K.; Malyszko, J.; Jurczyszyn, A.; Vesole, D.H.; Gertz, M.A.; Leleu, X.; Suska, A.; Krzanowski, M.; Sułowicz, W.; Malyszko, J.S.; et al. The clinical implication of monoclonal gammopathies: Monoclonal gammopathy of undetermined significance and of renal significance. Nephrol. Dial. Transplant. 2019, 34, 1440–1452. [Google Scholar] [CrossRef]
- Hutchison, C.A.; Batuman, V.; Behrens, J.; Bridoux, F.; Sirac, C.; Dispenzieri, A.; Herrera, G.A.; Lachmann, H.; Sanders, P.W. The pathogenesis and diagnosis of acute kidney injury in multiple myeloma. Nat. Rev. Nephrol. 2011, 8, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Yadav, P.; Sathick, I.J.; Leung, N.; Brown, E.E.; Cook, M.; Sanders, P.W.; Cockwell, P. Serum free light chain level at diagnosis in myeloma cast nephropathy—a multicentre study. Blood Cancer J. 2020, 10, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woziwodzka, K.; Vesole, D.H.; Malyszko, J.; Batko, K.; Jurczyszyn, A.; Koc-Żórawska, E.; Krzanowski, M.; Małyszko, J.S.; Żórawski, M.; Waszczuk-Gajda, A.; et al. New Markers of Renal Failure in Multiple Myeloma and Monoclonal Gammopathies. J. Clin. Med. 2020, 9, 1652. [Google Scholar] [CrossRef] [PubMed]
- Kashani, K.; Al-Khafaji, A.; Ardiles, T.; Artigas, A.; Bagshaw, S.M.; Bell, M.; Bihorac, A.; Birkhahn, R.; Cely, C.M.; Chawla, L.S.; et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit. Care 2013, 17, R25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dittmann, K.; Wallaschofski, H.; Rettig, R.; Stracke, S.; Endlich, K.; Völzke, H.; Nauck, M. Association between serum insulin-like growth factor I or IGF-binding protein 3 and estimated glomerular filtration rate: Results of a population-based sample. BMC Nephrol. 2012, 13, 169. [Google Scholar] [CrossRef] [Green Version]
- Walk, J.C.; Ayati, B.P.; Holstein, S.A. Modeling the Effects of Multiple Myeloma on Kidney Function. Sci. Rep. 2019, 9, 1726. [Google Scholar] [CrossRef] [PubMed]
- KDIGO CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013, 3, 1–150. [Google Scholar]
- Johnson, A.C.M.; Zager, R.A. Mechanisms Underlying Increased TIMP2 and IGFBP7 Urinary Excretion in Experimental AKI. J. Am. Soc. Nephrol. 2018, 29, 2157–2167. [Google Scholar] [CrossRef] [PubMed]
- Cuartero, M.; Ballús, J.; Sabater, J.; Pérez, X.; Nin, N.; Ordonez-Llanos, J.; Betbesé, A.J. Cell-cycle arrest biomarkers in urine to predict acute kidney injury in septic and non-septic critically ill patients. Ann. Intensive Care 2017, 7, 92. [Google Scholar] [CrossRef] [PubMed]
- Di Leo, L.; Nalesso, F.; Garzotto, F.; Xie, Y.; Yang, B.; Virzì, G.M.; Passannante, A.; Bonato, R.; Carta, M.; Giavarina, D.; et al. Predicting Acute Kidney Injury in Intensive Care Unit Patients: The Role of Tissue Inhibitor of Metalloproteinases-2 and Insulin-Like Growth Factor-Binding Protein-7 Biomarkers. Blood Purif. 2018, 45, 270–277. [Google Scholar] [CrossRef]
- Liu, C.; Lu, X.; Mao, Z.; Kang, H.; Liu, H.; Pan, L.; Hu, J.; Wang, L.; Zhou, F. The diagnostic accuracy of urinary [TIMP-2]·[IGFBP7] for acute kidney injury in adults: A PRISMA-compliant meta-analysis. Medicine 2017, 96, e7484. [Google Scholar] [CrossRef]
- Cho, W.Y.; Lim, S.Y.; Yang, J.H.; Oh, S.W.; Kim, M.G.; Jo, S.K. Urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7 as biomarkers of patients with established acute kidney injury. Korean J. Intern. Med. 2020, 35, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Bolomsky, A.; Hose, D.; Schreder, M.; Seckinger, A.; Lipp, S.; Klein, B.; Heintel, D.; Ludwig, H.; Zojer, N. Insulin like growth factor binding protein 7 (IGFBP7) expression is linked to poor prognosis but may protect from bone disease in multiple myeloma. J. Hematol. Oncol. J. Hematol. Oncol. 2015, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Holien, T.; Våtsveen, T.K.; Hella, H.; Rampa, C.; Brede, G.; Grøseth, L.A.; Rekvig, M.; Børset, M.; Standal, T.; Waage, A.; et al. Bone morphogenetic proteins induce apoptosis in multiple myeloma cells by Smad-dependent repression of MYC. Leukemia 2012, 26, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Emlet, D.R.; Pastor-Soler, N.; Marciszyn, A.; Wen, X.; Gomez, H.; Humphries, W.H.; Morrisroe, S.; Volpe, J.K.; Kellum, J.A. Insulin-like growth factor binding protein 7 and tissue inhibitor of metalloproteinases-2: Differential expression and secretion in human kidney tubule cells. Am. J. Physiol. Renal Physiol. 2017, 312, F284–F296. [Google Scholar] [CrossRef] [Green Version]
- López-Bermejo, A.; Khosravi, J.; Ricart, W.; Castro, A.; Hwa, V.; Pratt, K.L.; Casamitjana, R.; Rosenfeld, R.G.; Fernández-Real, J.M. Insulin-Like Growth Factor Binding Protein–Related Protein 1 (IGFBP-rP1/MAC25) Is Linked to Endothelial-Dependent Vasodilation in High-Ferritin Type 2 Diabetes. Diabetes Care 2007, 30, 1615–1617. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, J.; Takiyama, Y.; Honjyo, J.; Makino, Y.; Fujita, Y.; Tateno, M.; Haneda, M. Role of IGFBP7 in Diabetic Nephropathy: TGF-β1 Induces IGFBP7 via Smad2/4 in Human Renal Proximal Tubular Epithelial Cells. PLoS ONE 2016, 11, e0150897. [Google Scholar] [CrossRef]
- Banaszkiewicz, M.; Małyszko, J.; Vesole, D.H.; Woziwodzka, K.; Jurczyszyn, A.; Żórawski, M.; Krzanowski, M.; Małyszko, J.; Batko, K.; Kuźniewski, M.; et al. New Biomarkers of Ferric Management in Multiple Myeloma and Kidney Disease-Associated Anemia. J. Clin. Med. 2019, 8, 1828. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Zhao, Y.; Yong, Z.; Zhao, W. Evaluation value of neutrophil gelatinase-associated lipocalin for the renal dysfunction of patients with chronic kidney disease: A meta-analysis. Aging Med. 2018, 1, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Bauvois, B.; Susin, S.A. Revisiting Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Cancer: Saint or Sinner? Cancers 2018, 10, 336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papassotiriou, G.P.; Kastritis, E.; Gkotzamanidou, M.; Christoulas, D.; Eleutherakis-Papaiakovou, E.; Migkou, M.; Gavriatopoulou, M.; Roussou, M.; Margeli, A.; Papassotiriou, I.; et al. Neutrophil Gelatinase--Associated Lipocalin and Cystatin C Are Sensitive Markers of Renal Injury in Patients with Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2016, 16, 29–35. [Google Scholar] [CrossRef]
- Du, W.; Shen, T.; Li, H.; Liu, Y.; He, L.; Tan, L.; Hu, M. Urinary NGAL for the diagnosis of the renal injury from multiple myeloma. Cancer Biomark. Sect. Dis. Mark. 2017, 18, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.H.; Cha, J. Analysis of neutrophil gelatinase-associated lipocalin, vascular endothelial growth factor, and soluble receptor for advanced glycation end-products in bone marrow supernatant in hematologic malignancies. Clin. Biochem. 2020, 80, 19–24. [Google Scholar] [CrossRef]
- Solimando, A.G.; Da Vià, M.C.; Leone, P.; Borrelli, P.; Croci, G.A.; Tabares, P.; Brandl, A.; Di Lernia, G.; Bianchi, F.P.; Tafuri, S.; et al. Halting the vicious cycle within the multiple myeloma ecosystem: Blocking JAM-A on bone marrow endothelial cells restores angiogenic homeostasis and suppresses tumor progression. Haematologica 2021, 106, 1943–1956. [Google Scholar] [CrossRef] [PubMed]
- Bieghs, L.; Brohus, M.; Kristensen, I.B.; Kristensen, I.B.; Abildgaard, N.; Bøgsted, M.; Johnsen, H.E.; Conover, C.A.; De Bruyne, E.; Vanderkerken, K.; et al. Abnormal IGF-Binding Protein Profile in the Bone Marrow of Multiple Myeloma Patients. PLoS ONE 2016, 11, e0154256. [Google Scholar] [CrossRef] [Green Version]
- Zakiyanov, O.; Kalousová, M.; Zima, T.; Tesař, V. Matrix Metalloproteinases in Renal Diseases: A Critical Appraisal. Kidney Blood Press. Res. 2019, 44, 298–330. [Google Scholar] [CrossRef]
- Mora-Gutiérrez, J.M.; Rodríguez, J.A.; Fernández-Seara, M.A.; Orbe, J.; Escalada, F.J.; Soler, M.J.; Slon Roblero, M.F.; Riera, M.; Páramo, J.A.; Garcia-Fernandez, N. MMP-10 is Increased in Early Stage Diabetic Kidney Disease and can be Reduced by Renin-Angiotensin System Blockade. Sci. Rep. 2020, 10, 26. [Google Scholar] [CrossRef]
- Müller, D.; Roessner, A.; Röcken, C. Distribution pattern of matrix metalloproteinases 1, 2, 3, and 9, tissue inhibitors of matrix metalloproteinases 1 and 2, and alpha 2-macroglobulin in cases of generalized AA- and AL amyloidosis. Virchows Arch. Int. J. Pathol. 2000, 437, 521–527. [Google Scholar] [CrossRef]
- Keeling, J.; Herrera, G.A. Matrix metalloproteinases and mesangial remodeling in light chain-related glomerular damage. Kidney Int. 2005, 68, 1590–1603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaccoby, S. Advances in the understanding of myeloma bone disease and tumour growth. Br. J. Haematol. 2010, 149, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Urbaniak-Kujda, D.; Kapelko-Slowik, K.; Prajs, I.; Dybko, J.; Wolowiec, D.; Biernat, M.; Slowik, M.; Kuliczkowski, K. Increased expression of metalloproteinase-2 and -9 (MMP-2, MMP-9), tissue inhibitor of metalloproteinase-1 and -2 (TIMP-1, TIMP-2), and EMMPRIN (CD147) in multiple myeloma. Hematology 2016, 21, 26–33. [Google Scholar] [CrossRef]
- Zdzisińska, B.; Walter-Croneck, A.; Kandefer-Szerszeń, M. Matrix metalloproteinases-1 and -2, and tissue inhibitor of metalloproteinase-2 production is abnormal in bone marrow stromal cells of multiple myeloma patients. Leuk. Res. 2008, 32, 1763–1769. [Google Scholar] [CrossRef] [PubMed]
- Hose, D.; Moreaux, J.; Meissner, T.; Seckinger, A.; Goldschmidt, H.; Benner, A.; Mahtouk, K.; Hillengass, J.; Rème, T.; De Vos, J.; et al. Induction of angiogenesis by normal and malignant plasma cells. Blood 2009, 114, 128–143. [Google Scholar] [CrossRef]
- Batko, K.; Krzanowski, M.; Gajda, M.; Dumnicka, P.; Pietrzycka, A.; Fedak, D.; Woziwodzka, K.; Gołasa, P.; Kuźniewski, M.; Litwin, J.A.; et al. Proteoglycan/glycosaminoglycan and collagen content in the arterial wall of patients with end-stage renal disease: New indicators of vascular disease. Pol. Arch. Intern. Med. 2019, 129, 781–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | eGFR (CKD-EPICr) ≤ 60 mL/min/1.73 m2 (n = 28) | eGFR (CKD-EPICr) > 60 mL/min/1.73 m2 (n = 96) | p |
---|---|---|---|
Mean age ± standard deviation, years | 72 ± 9 | 65 ± 10 | 0.001 |
Male sex, n (%) | 10 (36) | 41 (43) | 0.5 |
Median time since diagnosis (IQR), months | 51 (13; 86) | 28 (14; 57) | 0.2 |
Smoldering MM | 2 (7) | 5 (5) | 0.7 |
ISS | <0.001 | ||
Stage I, n (%) | 8 (29) | 79 (82) | |
Stage II, n (%) | 10 (36) | 12 (12) | |
Stage III, n (%) | 10 (36) | 5 (5) | |
Immunofixation | |||
IgG, n (%) | 22 (79) | 67 (70) | 0.4 |
IgM, n (%) | 1 (4) | 1 (1) | 0.3 |
IgA, n (%) | 5 (18) | 20 (21) | 0.7 |
κ, n (%) | 17 (61) | 60 (62) | 0.9 |
λ, n (%) | 12 (43) | 33 (34) | 0.4 |
Free light chains, n (%) | 6 (21) | 12 (12) | 0.2 |
Biclonal, n (%) | 2 (7) | 3 (3) | 0.3 |
Non-secretory MM, n (%) | 0 | 4 (4) | 0.6 |
Disease state | 0.036 | ||
CR, n (%) | 4 (14) | 40 (42) | |
PR, n (%) | 15 (54) | 29 (30) | |
SD, n (%) | 3 (11) | 6 (6) | |
PD, n (%) | 6 (21) | 21 (22) | |
Number of prior treatment schemes | 0.3 | ||
No treatment, n (%) | 2 (7) | 7 (7) | |
1, n (%) | 5 (18) | 29 (30) | |
2, n (%) | 10 (36) | 31 (32) | |
3 and more, n (%) | 11 (39) | 29 (30) | |
On chemotherapy treatment at the time of samples collection, n (%) | 16 (57) | 42 (44) | 0.2 |
History of auto-PBSCT, n (%) | 7 (25) | 51 (53) | 0.009 |
Bone lesions, n (%) | 17 (61) | 58 (60) | 0.9 |
History of AKI, n (%) | 6 (21) | 3 (3) | 0.001 |
eGFR (CKD-EPICr) ≤ 60 mL/min/1.73 m2 (n = 28) | eGFR (CKD-EPICr) > 60 mL/min/1.73 m2 (n = 96) | p | |
---|---|---|---|
Serum creatinine, µmol/L | 124 (104; 218) | 73 (65; 81) | <0.001 |
eGFR (CKD-EPICr), mL/min/1.73 m2 | 43 (23; 50) | 84 (71; 93) | NA |
Serum cystatin C, mg/L | 1.55 (1.10; 2.73) | 0.83 (0.70; 1.01) | <0.001 |
eGFR (CKD-EPICysC), mL/min/1.73 m2 | 39 (18; 60) | 93 (72; 105) | <0.001 |
Serum albumin, g/L | 40.0 (37.0; 42.1) | 44.0 (40.6; 45.6) | <0.001 |
Serum β2-microglobulin, mg/L | 4.51 (3.23; 7.34) | 2.40 (2.01; 3.06) | <0.001 |
Serum FLC κ, mg/L | 38.0 (15.0; 91.8) | 17.6 (11.6; 37.7) | 0.010 |
Serum FLC λ, mg/L | 24.0 (14.0; 52.9) | 16.0 (11.4; 22.4) | 0.023 |
Involved serum FLC | 53.4 (30.5; 116.0) | 22.6 (15.4; 91.6) | 0.022 |
Urine LC κ, mg/L | 11.8 (ND; 49.9) | ND (ND; 26.8) | 0.2 |
Urine LC λ, mg/L | 6.1 (ND; 15.0) | ND (ND; 4.4) | 0.001 |
Involved urine LC | 11.8 (6.8; 43.6) | 6.8 (5.01; 27.8) | 0.06 |
Leukocyte count, ×103/µL | 6.36 (5.44; 7.40) | 5.66 (4.53; 7.06) | 0.1 |
Hemoglobin, g/dL | 11.7 ± 1.7 | 12.9 ± 1.6 | 0.006 |
Platelet count, ×103/µL | 176 (149; 247) | 171 (141; 208) | 0.4 |
Lactate dehydrogenase, U/L | 388 (320; 418) | 351 (303; 404) | 0.1 |
Serum interleukin 6, pg/mL a | 5.26 (1.76; 7.45) | 2.43 (1.56; 4.42) | 0.039 |
Serum NT-proBNP, pg/mL a | 178 (44; 460) | 56 (30; 201) | 0.008 |
Proteinuria, n (%) | 13 ± 46 | 13 ± 14 | <0.001 |
Urine IGFBP-7, ng/mL | 11.83 (5.57; 31.84) | 4.81 (2.15; 9.55) | <0.001 |
Urine TIMP-2, ng/mL | 2.32 (0.57; 8.77) | 2.55 (0.47; 8.10) | 0.9 |
Urine TIMP-2 × IGFBP-7, ng2/mL2 | 26.20 (3.31; 205.75) | 9.02 (1.01; 69.4) | 0.08 |
Urine cystatin C, ng/mL | 55.9 (19.8; 131.4) | 35.4 (16.1; 76.3) | 0.1 |
Urine NGAL monomer, ng/mL | 25.2 (8.1; 71.6) | 8.2 (4.0; 17.1) | <0.001 |
Serum IGFBP-7, ng/mL a | 97.5 (41.2; 128.0) | 33.0 (11.6; 61.5) | <0.001 |
Serum TIMP-2, ng/mL a | 628 (462; 663) | 445 (363; 614) | 0.029 |
Urine/serum IGFBP-7 a | 0.117 (0.050; 0.440) | 0.160 (0.083; 0.463) | 0.6 |
Urine/serum TIMP-2 a | 0.0047 (0.0012; −0.0237) | 0.0036 (0.0009; 0.0160) | 0.6 |
log (Urine IGFBP-7) | log (Urine TIMP-2) | log (Urine Cystatin C) | log (Urine NGAL Monomer) | |||||
---|---|---|---|---|---|---|---|---|
R | p | R | p | R | p | R | p | |
log (serum creatinine) | 0.34 | <0.001 | −0.10 | 0.3 | 0.20 | 0.027 | 0.38 | <0.001 |
eGFR (CKD-EPICr) | −0.38 | <0.001 | −0.02 | 0.8 | −0.14 | 0.1 | −0.34 | <0.001 |
log (serum cystatin C) | 0.38 | <0.001 | −0.07 | 0.5 | 0.07 | 0.5 | 0.28 | 0.002 |
eGFR (CKD-EPICysC) | −0.40 | <0.001 | 0.05 | 0.6 | −0.03 | 0.7 | −0.28 | 0.002 |
Serum albumin | −0.32 | <0.001 | −0.11 | 0.2 | −0.17 | 0.054 | −0.28 | 0.001 |
log (serum β2-microglobulin) | 0.48 | <0.001 | 0.01 | 0.9 | 0.14 | 0.1 | 0.38 | <0.001 |
log (urine light chains κ) | 0.30 | 0.001 | 0.14 | 0.1 | 0.13 | 0.1 | 0.26 | 0.003 |
log (urine light chains λ) | 0.28 | 0.002 | −0.04 | 0.6 | 0.15 | 0.1 | 0.33 | <0.001 |
log (involved urine light chains) | 0.23 | 0.009 | 0.12 | 0.2 | 0.12 | 0.2 | 0.20 | 0.028 |
Independent Variable | Standardized Beta ± Standard Error | p |
---|---|---|
A | ||
log (urine IGFBP-7) | −0.31 ± 0.09 | 0.001 |
log (urine TIMP-2) | 0.12 ± 0.09 | 0.2 |
log (urine cystatin C) | −0.03 ± 0.09 | 0.8 |
log (urine NGAL monomer) | −0.23 ± 0.09 | 0.012 |
R2 for the model | 0.20 | <0.001 |
B | ||
log (urine IGFBP-7) | −0.02 ± 0.07 | 0.7 |
log (urine NGAL monomer) | −0.14 ± 0.07 | 0.046 |
Age | −0.38 ± 0.07 | <0.001 |
Symptomatic MM | 0.03 ± 0.06 | 0.6 |
ISS stage II | −0.29 ± 0.07 | <0.001 |
ISS stage III | −0.48 ± 0.07 | <0.001 |
LDH above upper reference limit | −0.09 ± 0.06 | 0.2 |
No remission | 0.08 ± 0.07 | 0.2 |
log (involved urinary light chains) | 0.06 ± 0.07 | 0.4 |
R2 for the model | 0.57 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woziwodzka, K.; Małyszko, J.; Koc-Żórawska, E.; Żórawski, M.; Dumnicka, P.; Jurczyszyn, A.; Batko, K.; Mazur, P.; Banaszkiewicz, M.; Krzanowski, M.; et al. Renal Impairment Detectors: IGFBP-7 and NGAL as Tubular Injury Markers in Multiple Myeloma Patients. Medicina 2021, 57, 1348. https://doi.org/10.3390/medicina57121348
Woziwodzka K, Małyszko J, Koc-Żórawska E, Żórawski M, Dumnicka P, Jurczyszyn A, Batko K, Mazur P, Banaszkiewicz M, Krzanowski M, et al. Renal Impairment Detectors: IGFBP-7 and NGAL as Tubular Injury Markers in Multiple Myeloma Patients. Medicina. 2021; 57(12):1348. https://doi.org/10.3390/medicina57121348
Chicago/Turabian StyleWoziwodzka, Karolina, Jolanta Małyszko, Ewa Koc-Żórawska, Marcin Żórawski, Paulina Dumnicka, Artur Jurczyszyn, Krzysztof Batko, Paulina Mazur, Małgorzata Banaszkiewicz, Marcin Krzanowski, and et al. 2021. "Renal Impairment Detectors: IGFBP-7 and NGAL as Tubular Injury Markers in Multiple Myeloma Patients" Medicina 57, no. 12: 1348. https://doi.org/10.3390/medicina57121348
APA StyleWoziwodzka, K., Małyszko, J., Koc-Żórawska, E., Żórawski, M., Dumnicka, P., Jurczyszyn, A., Batko, K., Mazur, P., Banaszkiewicz, M., Krzanowski, M., Gołasa, P., Małyszko, J. A., Drożdż, R., & Krzanowska, K. (2021). Renal Impairment Detectors: IGFBP-7 and NGAL as Tubular Injury Markers in Multiple Myeloma Patients. Medicina, 57(12), 1348. https://doi.org/10.3390/medicina57121348