Metabolic and Functional Improvements in a Patient with Charcot-Marie-Tooth Disease Type 2 after EGCG Administration: A Case Report
Abstract
:1. Introduction
2. Materials and Methods
3. Presentation of Case Report
Case Description
4. Discussion
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Harding, A.E.; Thomas, P.K. The clinical features of hereditary motor and sensory neuropathy types I and II. Brain 1980, 103, 259–280. [Google Scholar] [CrossRef] [PubMed]
- Neves, E.L.; Kok, F. Clinical and neurophysiological investigation of a large family with dominant Charcot-Marie-Tooth type 2 disease with pyramidal signs. Arq. Neuro-Psiquiatr. 2011, 69, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Kume, K.; Deguchi, K.; Ikeda, K.; Takata, T.; Kokudo, Y.; Kamada, M.; Tsukaguchi, M.; Touge, T.; Masaki, T. Usefulness of the modified F-ratio for assessmentsof proximal conduction in chronic inflammatory demyelinating polyneuropathy superimposed onCharcot Marie–Tooth disease type 1A. J. Neurol. Sci. 2014, 343, 237–239. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, M.; Sano, Y.; Omoto, M.; Ogasawara, J.-I.; Koga, M.; Takashima, H.; Kanda, T. Charcot-Marie-Tooth disease type 2 caused by homozygous MME gene mutation superimposed by chronic inflammatory demyelinating polyneuropathy. Rinsho Shinkeigaku 2017, 57, 515–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, W.; Li, L.; Ding, Y.; Yang, K.; Chen, Z.; Fan, X.; Jiang, S.; Guan, Y.; Liu, Z.; Xu, D.; et al. The critical role of epigallocatechin gallate in regulating mitochondrial metabolism. Future Med. Chem. 2018, 10, 795–809. [Google Scholar] [CrossRef]
- Casanova, E.; Salvadó, M.J.; Crescenti, A.; Gibert-Ramos, A. Epigallocatechin Gallate Modulates Muscle Homeostasis in Type 2 Diabetes and Obesity by Targeting Energetic and Redox Pathways: A Narrative Review. Int. J. Mol. Sci. 2019, 20, 532. [Google Scholar] [CrossRef] [Green Version]
- Kappelle, P.J.; de Boer, J.F.; Perton, F.G.; Annema, W.; de Vries, R.; Dullaart, R.P.; Tietge, U.J. Increased LCAT activity and hyperglycaemia decrease the antioxidative functionality of HDL. Eur. J. Clin. Investig. 2012, 42, 487–495. [Google Scholar] [CrossRef]
- Isik, A.; Koca, S.S.; Ustundag, B.; Celik, H.; Yildirim, A. Paraoxonase and arylesterase levels in rheumatoid arthritis. Clin. Rheumatol. 2007, 26, 342–348. [Google Scholar] [CrossRef]
- Chen, W.Q.; Xie, Z.Z.; Wang, X.; Zhao, J.H.; Hu, Q.; Chen, Y.H.; Gao, W.Y.; Liu, Y. Influences of PON1 on airway inflammation and remodeling in bronchial asthma. J. Cell Biochem. 2018, 119, 793–805. [Google Scholar] [CrossRef]
- van den Berg, S.W.; Jansen, E.H.; Kruijshoop, M.; Beekhof, P.K.; Blaak, E.; van der Kallen, C.J.; van Greevenbroek, M.M.; Feskens, E.J. Paraoxonase 1 phenotype distribution and activity differs in subjects with newly diagnosed type 2 diabetes (the CODAM Study). Diabet Med. 2008, 25, 186–193. [Google Scholar] [CrossRef]
- Tabak, O.; Gelisgen, R.; Cicekci, H.; Senates, E.; Erdenen, F.; Muderrisoglu, C.; Aral, H.; Uzun, H. Circulating levels of adi-ponectin, orexin-A, ghrelin and the antioxidant paraoxonase-1 in metabolic syndrome. Minerva Med. 2012, 103, 323–329. [Google Scholar] [PubMed]
- Walsh, N.P.; Gleeson, M.; Shephard, R.J.; Gleeson, M.; Woods, J.A.; Bishop, N.C.; Fleshner, M.; Green, C.; Pedersen, B.K.; Hoffman-Goetz, L.; et al. Position statement. Part one: Immune function and exercise. Exerc. Immunol. Rev. 2011, 17, 6–63. [Google Scholar] [PubMed]
- Tönges, L.; Günther, R.; Suhr, M.; Jansen, J.; Balck, A.; Saal, K.-A.; Barski, E.; Nientied, T.; Götz, A.A.; Koch, J.-C.; et al. Rho kinase inhibition modulates microglia activation and improves survival in a model of amyotrophic lateral sclerosis. Glia 2013, 62, 217–232. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, L.; Berardinelli, M.G.; De Pasquale, L.; Nicoletti, C.; D’Amico, A.; Carvello, F.; Moneta, G.M.; Catizone, A.; Bertini, E.; De Benedetti, F.; et al. Functional and Morphological Improvement of Dystrophic Muscle by Interleukin 6 Receptor Blockade. EBioMedicine 2015, 2, 285–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Society for the Advancement of Kinanthropometry (ISAK). Topend Sports. 2008. Available online: https://www.topendsports.com/testing/isak.htm (accessed on 26 March 2019).
- Alvero Cruz, R.; Cabaas Armesilla, M.; Herrero de Lucas, A.; Martínez Riaza, L.; Moreno Pascual, C.; Porta Manzanido, J.; Sillero Quintana, M.; Sirvent Belando, J. Protocolo de valoración de la composición corporal para el reconocimiento médico-deportivo. Documentos de consenso del grupo español de cineantropometría de la Federación Española de Medicina del Deportes. AMD 2009, 26, 166–179. [Google Scholar]
- Navarro, J.A.C.; Tecles, F.; Tvarijonaviciute, A. Serum paraoxonase 1 (PON1) measurement: An update. BMC Vet. Res. 2014, 10, 74. [Google Scholar] [CrossRef]
- Bennett, S.E.; Bromley, L.E.; Fisher, N.M.; Tomita, M.R.; Niewczyk, P. Validity and Reliability of Four Clinical Gait Measures in Patients with Multiple Sclerosis. Int. J. MS Care 2017, 19, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Tyson, S.; Connell, L. The psychometric properties and clinical utility of measures of walking and mobility in neurological conditions: A systematic review. Clin. Rehabil. 2009, 23, 1018–1033. [Google Scholar] [CrossRef]
- Feys, P.; Lamers, I.; Francis, G.; Benedict, R.; Phillips, G.; LaRocca, N.; Hudson, L.D.; Rudick, R.; Multiple Sclerosis Outcome Assessments Consortium. The Nine-Hole Peg Test as a manual dexterity performance measure for multiple sclerosis. Mult. Scler. J. 2017, 23, 711–720. [Google Scholar] [CrossRef] [Green Version]
- Paltamaa, J.; West, H.; Sarasoja, T.; Wikström, J.; Mälkiä, E. Reliability of physical functioning measures in ambulatory subjects with MS. Physiother. Res. Int. 2005, 10, 93–109. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Febbraio, M.A. Muscle as an Endocrine Organ: Focus on Muscle-Derived Interleukin-6. Physiol. Rev. 2008, 88, 1379–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glund, S.; Deshmukh, A.; Long, Y.C.; Moller, T.; Koistinen, H.A.; Caidahl, K.; Zierath, J.R.; Krook, A. Interleukin-6 Directly Increases Glucose Metabolism in Resting Human Skeletal Muscle. Diabetes 2007, 56, 1630–1637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, P.; Maurya, P.K. Epigallocatechin-3-Gallate Protects Erythrocyte Ca2+-ATPase and Na+/K+-ATPase against Oxidative Induced Damage during Aging in Humans. Adv. Pharm. Bull. 2014, 4, 443–447. [Google Scholar] [PubMed]
- Lassuthova, P.; Rebelo, A.P.; Ravenscroft, G.; Lamont, P.J.; Davis, M.R.; Manganelli, F.; Feely, S.M.; Bacon, C.; Brožková, D.Š.; Haberlova, J.; et al. Mutations in ATP1A1 Cause Dominant Charcot-Marie-Tooth Type 2. Am. J. Hum. Genet. 2018, 102, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Pareyson, D.; Marchesi, C. Diagnosis, natural history, and management of Charcot–Marie–Tooth disease. Lancet Neurol. 2009, 8, 654–667. [Google Scholar] [CrossRef] [PubMed]
- Chahbouni, M.; López, M.D.S.; Molina-Carballo, A.; De Haro, T.; Hoyos, A.M.; Fernández-Ortiz, M.; Guerra-Librero, A.; Acuña-Castroviejo, D. Melatonin Treatment Reduces Oxidative Damage and Normalizes Plasma Pro-Inflammatory Cytokines in Patients Suffering from Charcot-Marie-Tooth Neuropathy: A Pilot Study in Three Children. Molecules 2017, 22, 1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | CMT2 Patient Treated with EGCG | ||
---|---|---|---|
Baseline | Follow-Up | ||
IL-6 (pg/mL) | 4.11 | 1.07 | |
PON1 (UI/L) | 3.11 | 3.23 | |
2MWT (m) | 60.00 | 110.00 | |
Jamar (kg) | Right hand Mean (Dominant) | 8.67 | 9.50 |
Left hand Mean | 2.67 | 8.50 | |
9-HPT (s) | Right hand Mean (Dominant) | 25.50 | 24.00 |
Left hand Mean | 25.00 | 24.00 | |
10MWT (s) | Self-selected speed Mean | 11.33 | 5.6 |
Maximum speed Mean | 8.33 | 6.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bustos, A.; Selvi Sabater, P.; Benlloch, M.; Drehmer, E.; López-Rodríguez, M.M.; Platero, F.; Platero, J.L.; Escribá-Alepuz, J.; de la Rubia Ortí, J.E. Metabolic and Functional Improvements in a Patient with Charcot-Marie-Tooth Disease Type 2 after EGCG Administration: A Case Report. Medicina 2021, 57, 104. https://doi.org/10.3390/medicina57020104
Bustos A, Selvi Sabater P, Benlloch M, Drehmer E, López-Rodríguez MM, Platero F, Platero JL, Escribá-Alepuz J, de la Rubia Ortí JE. Metabolic and Functional Improvements in a Patient with Charcot-Marie-Tooth Disease Type 2 after EGCG Administration: A Case Report. Medicina. 2021; 57(2):104. https://doi.org/10.3390/medicina57020104
Chicago/Turabian StyleBustos, Antonio, Pablo Selvi Sabater, María Benlloch, Eraci Drehmer, María Mar López-Rodríguez, Felix Platero, Jose Luis Platero, Jesús Escribá-Alepuz, and Jose Enrique de la Rubia Ortí. 2021. "Metabolic and Functional Improvements in a Patient with Charcot-Marie-Tooth Disease Type 2 after EGCG Administration: A Case Report" Medicina 57, no. 2: 104. https://doi.org/10.3390/medicina57020104
APA StyleBustos, A., Selvi Sabater, P., Benlloch, M., Drehmer, E., López-Rodríguez, M. M., Platero, F., Platero, J. L., Escribá-Alepuz, J., & de la Rubia Ortí, J. E. (2021). Metabolic and Functional Improvements in a Patient with Charcot-Marie-Tooth Disease Type 2 after EGCG Administration: A Case Report. Medicina, 57(2), 104. https://doi.org/10.3390/medicina57020104