A Pharmacological Analysis of the Activity and Failure of the Medical Treatment of High-Grade Osteosarcoma
Abstract
:1. Introduction
2. Chemotherapy
3. Antimetabolites
3.1. High-Dose Methotrexate (HDMTX)
3.2. Mechanism of Resistance
4. Other Antimetabolites
Pemetrexed
5. Antitumor Antibiotics
5.1. Doxorubicin
5.2. Platinum Analogs (PA)
6. Alkylating Agents
- changes in drug uptake or transport,
- increased DNA damage repair,
- decreased prodrug activation activity,
- increased scavenging of drug species,
- increased enzymatic detoxification,
7. Second Line Chemotherapy Agents
8. New Targets and New Agents
9. Check Point Inhibitors
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Valery, P.C.; Laversanne, M.; Bray, F. Bone cancer incidence by morphological subtype: A global assessment. Cancer Causes Control 2015, 26, 1127–1139. [Google Scholar] [CrossRef]
- ESMO Guidelines Committee; ERN PaedCan; ERN EURACAN. Bone sarcomas: ESMO–PaedCan–EURACAN: Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29, iv79–iv95. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, N.; Bruland, O.S.; Bielack, S.S. Pediatric and Adolescent Osteosarcoma; Springer: New York, NY, USA, 2009. [Google Scholar]
- Kempf-Bielack, B.; Bielack, S.S.; Jürgens, H.; Branscheid, D.; Berdel, W.E.; Exner, G.U.; Göbel, U.; Helmke, K.; Jundt, G.; Kabisch, H.; et al. Osteosarcoma relapse after combined modality therapy: An analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS). J. Clin. Oncol. 2005, 23, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Carrle, D.; Bielack, S. Osteosarcoma lung metastases detection and principles of multimodal therapy. Cancer Treat. Res. 2009, 152, 165–184. [Google Scholar] [PubMed]
- Ferrari, S.; Briccoli, A.; Mercuri, M.; Bertoni, F.; Picci, P.; Tienghi, A.; Brach Del Prever, A.; Fagioli, F.; Comandone, A.; Bacci, G. Postrelapse survival in osteosarcoma of the extremities: Prognostic factors for long-term survival. J. Clin. Oncol. 2003, 21, 710–715. [Google Scholar] [CrossRef]
- Bacci, G.; Longhi, A.; Fagioli, F.; Briccoli, A.; Versari, M.; Picci, P. Adjuvant and neoadjuvant chemotherapy for osteosarcoma of the extremities: 27 year experience at Rizzoli Institute, Italy. Eur. J. Cancer 2005, 41, 2836–2845. [Google Scholar] [CrossRef] [Green Version]
- Saif, M.V.; Chu, E. Antimetabolites. In Cancer Principles & Practice of Oncology, 10th ed.; DeVita, V.T., Rosenberg, S.A., Eds.; Wolters Kluwer Health: New York, NY, USA, 2015; pp. 208–217. [Google Scholar]
- Bertino, J.R. Ode to methotrexate. J. Clin. Oncol. 1993, 11, 5–14. [Google Scholar] [CrossRef]
- Rosen, G.; Caparros, B.; Huvos, A.G.; Kosloff, C.; Nirenberg, A.; Cacavio, A.; Marcove, R.C.; Lane, J.M.; Mehta, B.; Urban, C. Preoperative chemotherapy for osteogenic sarcoma: Selection of postoperative adjuvant chemotherapy based on the response of the primary tumor to preoperative chemotherapy. Cancer 1982, 49, 1221–1230. [Google Scholar] [CrossRef]
- Bielack, S.; Jürgens, H.; Jundt, G. Osteosarcoma: The COSS experience. Cancer Treat. Res. 2009, 152, 289–308. [Google Scholar] [PubMed]
- Bacci, G.; Ferrari, S.; Bertoni, F.; Ruggieri, P.; Picci, P.; Longhi, A.; Casadei, R.; Fabbri, N.; Forni, C.; Versari, M.; et al. Long-term outcome for patients with nonmetastatic osteosarcoma of the extremity treated at the Istituto Ortopedico Rizzoli according to the Istituto Ortopedico Rizzoli/Osteosarcoma-2 Protocol: An updated report. J. Clin. Oncol. 2000, 18, 4016–4027. [Google Scholar] [CrossRef]
- Longhi, A.; Errani, C.; Gonzales-Arabio, D.; Ferrari, C.; Mercuri, M. Osteosarcoma in patients older than 65 years. J. Clin. Oncol. 2008, 26, 5368–5373. [Google Scholar] [CrossRef]
- Bertino, J.R.; Goker, E.; Gorlick, R.; Li, W.W.; Banerjee, D. Resistance Mechanism to Methotrexate in Tumors. Oncologist 1996, 1, 223. [Google Scholar] [CrossRef] [Green Version]
- Grindey, G.B.; Shih, C.; Barnett, C.J.; Pearce, H.L.; Engelhardt, J.A.; Todd, G.C.; Rinzel, S.M.; Worzalla, J.F.; Gossett, L.S.; Everson, T.P.; et al. LY231514, a novel pyrrolo-pyrimidine antifolate that inhibits thymidylate synthase (TS). Proc. Am. Assoc. Cancer Res. 1992, 33, 411. [Google Scholar]
- Shih, C.; Grindey, G.B.; Barnett, C.J.; Pearce, H.L.; Engelhardt, J.A.; Todd, G.C.; Rinzel, S.M.; Worzalla, J.F.; Gossett, L.S.; Everson, T.P.; et al. Structure–activity relationship studies of novel pyrrolopyrimidine antifolate LY231514. Proc. Am. Assoc. Cancer Res. 1992, 33, 411. [Google Scholar]
- Duffaud, F.; Egerer, G.; Ferrari, S.; Rassam, H.; Boecker, U.; Bui-Nguyen, B. A phase II trial of second line pemetrexed in adults with advanced/metastatic osteosarcoma. Eur. J. Cancer 2012, 48, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Riggs, C.E. Antitumor antibiotics and related compound. In The Chemotherapy Source Book, 3rd ed.; Perry, M.C., Ed.; Lippincott Williams & Wilkins (LWW): New York, NY, USA, 2001; pp. 227–250. [Google Scholar]
- Do, K.T.; Kummar, S.; Doroshow, J.H.; Pommier, Y. Topoisomerase Interactive Agents. In Cancer Principles & Practice of Oncology, 10th ed.; DeVita, V.T., Lawrence, T.S., Rosenberg, S.A., Eds.; Wolters Kluwer Health Adis (ESP): Philadelphia, PA, USA, 2015. [Google Scholar]
- Christowitz, C.; Davis, T.; Isaacs, A.; Van Niekerk, G.; Hattingh, S.; Engelbrecht, A.M. Mechanisms of doxorubicin-induced drug resistance and drug resistant tumour growth in a murine breast tumour model. BMC Cancer 2019, 19, 757. [Google Scholar] [CrossRef] [Green Version]
- Raviv, Y.; Pollard, H.B.; Bruggemann, E.P.; Pastan, I.; Gottesman, M.M. Pho-tosensitized labeling of a functional multidrug transporter in living drug-resistant tumor cells. J. Biol. Chem. 1990, 265, 3975–3980. [Google Scholar] [CrossRef]
- Morrow, C.S.; Chiu, J.; Cowan, K.H. Posttranscriptional control of glutathioneS-transferase pi gene expression in human breast cancer cells. J. Biol. Chem. 1992, 267, 10544–10550. [Google Scholar] [CrossRef]
- O’Dwyer, P.G.; Calvert, A. Platinum Analogs. In Cancer Principles & Practice of Oncology, 10th ed.; DeVita, V.T., Lawrence, T.S., Rosenberg, S.A., Eds.; Wolters Kluwer Health Adis (ESP): Philadelphia, PA, USA, 2015; pp. 199–207. [Google Scholar]
- Tew, K.D. Alkylating Agents. In Cancer Principles & Practice of Oncology, 10th ed.; DeVita, V.T., Lawrence, T.S., Rosenberg, S.A., Eds.; Wolters Kluwer Health Adis (ESP): Philadelphia, PA, USA, 2015; pp. 189–198. [Google Scholar]
- Ferrari, S.; Smeland, S.; Mercuri, M.; Bertoni, F.; Longhi, A.; Ruggieri, P.; Alvegard, T.A.; Picci, P.; Capanna, R.; Bernini, G.; et al. Neoadjuvant chemotherapy with highdose ifosfamide, high-dose methotrexate, cisplatin, and doxorubicin for patients with localized osteosarcoma of the extremity: A joint study by the Italian and Scandinavian Sarcoma Groups. J. Clin. Oncol. 2005, 23, 8845–8852. [Google Scholar] [CrossRef]
- Verschoor, A.J.; Speetjens, F.M.; Dijkstra, P.D.S.; Fiocco, M.; Van De Sande, M.A.J.; Bovée, J.V.M.G.; Gelderblom, H. Single-Center Experience with Ifosfamide Monotherapy as Second-Line Treatment of Recurrent/Metastatic Osteosarcoma. Oncologist 2020, 25, e716–e721. [Google Scholar] [CrossRef] [Green Version]
- Palmerini, E.; Picci, P.; Marchesi, E.; Staals, E.L.; Cesari, M.; Longhi, A.; Paioli, A.; Vanel, D.; Comandone, A.; Donati, D.M.; et al. High dose ifosfamide in metastatic high-grade osteosarcoma, after failure of standard multimodal chemotherapy. J. Clin. Oncol. 2015, 33, 10527. [Google Scholar] [CrossRef]
- Jia, Y.; Xie, J. Promising molecular mechanism responsible for gemcitabine resistance in cancer. Gene Dis. 2015, 2, 299–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoimes, C.J.; Harris, L.N. Antimicrotubule Agents. In Cancer Principles & Practice of Oncology, 10th ed.; DeVita, V.T., Lawrence, T.S., Rosenberg, S.A., Eds.; Wolters Kluwer Health Adis (ESP): Philadelphia, PA, USA, 2015; pp. 228–236. [Google Scholar]
- Palmerini, E.; Jones, R.L.; Marchesi, E.; Paioli, A.; Cesari, M.; Longhi, A.; Meazza, C.; Coccoli, L.; Fagioli, F.; Asaftei, S.; et al. Gemcitabine and docetaxel in relapsed and unresectable high-grade osteosarcoma and spindle cell sarcoma of bone. BMC Cancer 2016, 16, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora, J.; Cruz, C.O.; Parareda, A.; De Torres, C. Treatment of relapsed/refractory pediatric sarcomas with gemcitabine and docetaxel. J. Pediatr. Hematol. Oncol. 2009, 31, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Kleinerman, E.S.; Yu, L.; Dao, J.; Hayes-Jordan, A.A.; Lindsey, B.; Kawedia, J.D.; Stewart, J.; Gordon, N. Aerosol Gemcitabine after Amputation Inhibits Osteosarcoma Lung Metastases but Not Wound Healing. Sarcoma 2018, 2018, 3143096. [Google Scholar] [CrossRef] [Green Version]
- Berger, M.; Grignani, G.; Ferrari, S.; Biasin, E.; Brach del Prever, A.; Aliberti, S.; Saglio, F.; Aflietta, M.; Fagioli, F. Phase 2 trial of two courses of cyclophosphamide and etoposide for relapsed high-risk osteosarcoma patients. Cancer 2009, 115, 2980–2987. [Google Scholar]
- Van Winkle, P.; Angiolillo, A.; Krailo, M.; Cheung, Y.K.; Anderson, B.; Davenport, V.; Reaman, G.; Cairo, M.S. Ifosfamide, carboplatin, and etoposide (ICE) reinduction chemotherapy in a large cohort of children and adolescents with recurrent/refractory sarcoma: The children’s cancer group (CCG) experience. Pediatr. Blood Cancer 2005, 44, 338–347. [Google Scholar] [CrossRef]
- Saylors, R.L., III; Stine, K.C.; Sullivan, J.; Kepner, J.L.; Wall, D.A.; Bernstein, M.L.; Harris, M.B.; Hayashi, R.; Vietti, T.J. Cyclophosphamide plus topotecan in children with recurrent or refractory solid tumors: A pediatric oncology group phase II study. J. Clin. Oncol. 2001, 19, 3463–3469. [Google Scholar] [CrossRef] [PubMed]
- Boye, K.; Del Prever, A.B.; Eriksson, M.; Saeter, G.; Tienghi, A.; Lindholm, P.; Fagioli, F.; Skjeldal, S.; Ferrari, S.; Hall, K.S. High-dose chemotherapy with stem cell rescue in the primary treatment of metastatic and pelvic osteosarcoma: Final results of the ISG/SSG II study. Pediatr. Blood Cancer 2014, 61, 840–845. [Google Scholar] [CrossRef] [PubMed]
- Lagmay, J.P.; Krailo, M.D.; Dang, H.; Kim, A.; Hawkins, D.S.; Beaty, O.; Widemann, B.C.; Zwerdling, T.; Bomgaars, L.; Langevin, A.M.; et al. Outcome of patients with recurrent osteosarcoma enrolled in seven phase II trials through Children’s Cancer Group, Pediatric Oncology Group and Children’s Oncology group. Learning from the past to move forward. J. Clin. Oncol. 2016, 34, 3031–3038. [Google Scholar] [CrossRef] [PubMed]
- Grosso, F.; Di Leo, P.; Sanfilippo, R.; Stacchiotti, S.; Bertulli, R.; Piovesan, C.; Jimeno, J.; D’Incalci, M.; Gescher, A.; Casali, P.G. Steroid premedication markedly reduces liver and bone marrow toxicity of trabectedin in advanced sarcomas. Eur. J. Cancer 2006, 42, 1484–1490. [Google Scholar] [CrossRef]
- Mori, K.; Ando, K.; Heymann, D. Liposomal muramyl tripeptide phosphatidyl ethanolamine: A safe and effective agent against osteosarcoma pulmonary metastases. Expert Rev. Anticancer Ther. 2008, 8, 151–159. [Google Scholar] [CrossRef]
- Piperno-Neumann, S.; Le Deley, M.C.; Rédini, F. Zoledronate in combination with chemotherapy and surgery to treat osteosarcoma (OS2006): A randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2016, 17, 1070–1080. [Google Scholar] [CrossRef]
- Czarnecka, A.M.; Synoradzki, K.; Filej, W.; Bartnik, E.; Sobczuk, P.; Fiedorowicz, M.; Grieb, P.; Rutkowski, P. Molecular biology of osteosarcoma. Cancers 2020, 12, 2130. [Google Scholar] [CrossRef] [PubMed]
- Gorlick, R.; Anderson, P.; Andrulis, I. Biology of childhood osteogenic sarcoma and potential targets for therapeutic development: Meeting summary. Clin. Cancer Res. 2003, 9, 5442–5453. [Google Scholar] [PubMed]
- Quan, G.M.; Choong, P.F. Anti-angiogenic therapy for osteosarcoma. Cancer Metastasis Rev. 2006, 25, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Cameliet, P.; Jain, R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011, 473, 298–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chau, C.H.; Figg, W.D. Antiangiogenesis Agents. In Cancer Principles & Practice of Oncology, 10th ed.; DeVita, V.T., Lawrence, T.S., Rosenberg, S.A., Eds.; Wolters Kluwer Health Adis (ESP): Philadelphia, PA, USA, 2015; pp. 290–299. [Google Scholar]
- Dubois, S.G.; Shusterman, S.; Ingle, A.M.; Ahern, C.H.; Reid, J.M.; Wu, B.; Baruchel, S.; Glade-Bender, J.; Ivy, P.; Grier, H.E.; et al. Phase I and pharmacokinetic study of sunitinib in pediatric patients with refractory solid tumors: A children’s oncology group study. Clin. Cancer Res. 2011, 17, 5113–5122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navid, F.; Baker, S.D.; McCarville, M.B.; Stewart, C.F.; Billups, C.A.; Wu, J.; Davidoff, A.M.; Spunt, S.L.; Furman, W.L.; McGregor, L.M.; et al. Phase I and clinical pharmacology study of bevacizumab,sorafenib, and low-dose cyclophosphamide in children and young adults with refractory/recurrent solid tumors. Clin. Cancer Res. 2013, 19, 236–246. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, N.A.; Rossen, P.; Rose, H.; Safwat, A. Pazopanib in the Treatment of Bone Sarcomas: Clinical Experience. Transl. Oncol. 2020, 13, 295–299. [Google Scholar] [CrossRef]
- Grignani, G.; Palmerini, E.; Dileo, P. A phase II trial of sorafenib in relapsed and unresectable high-grade osteosarcoma after failure of standard multimodal therapy: An Italian Sarcoma Group study. Ann. Oncol. 2012, 23, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Duffaud, F.; Mir, O.; Boudou-Rouquette, P. Efficacy and safety of regorafenib in adult patients with metastatic osteosarcoma: A non-comparative, randomised, double-blind, placebo-controlled, phase 2 study. Lancet Oncol. 2019, 20, 120–133. [Google Scholar] [CrossRef]
- Grignani, G.; Palmerini, E.; Ferraresi, V. Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: A non-randomised phase 2 clinical trial. Lancet Oncol. 2015, 16, 98–107. [Google Scholar] [CrossRef]
- Schwartz, G.K.; Tap, W.D.; Qin, L.X.; Livingston, M.B.; Undevia, S.D.; Chmielowski, B.; Agulnik, M.; Schuetze, S.M.; Reed, D.R.; Okuno, S.H.; et al. Cixutumumab and temsirolimus for patients with bone and soft-tissue sarcoma: A multicentre, open-label, phase 2 trial. Lancet Oncol. 2013, 14, 371–382. [Google Scholar] [CrossRef] [Green Version]
- Rosenzweig, S.A. Acquired Resistance to Drugs Targeting Tyrosine Kinases. Adv. Cancer Res. 2018, 138, 71–98. [Google Scholar]
- Tawbi, H.A.; Burgess, M.; Bolejack, V. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): A multicentre, two-cohort, single-arm,open-label, phase 2 trial. Lancet Oncol. 2017, 18, 1493–1501. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comandone, A.; Boglione, A.; Comandone, T.; Petrelli, F. A Pharmacological Analysis of the Activity and Failure of the Medical Treatment of High-Grade Osteosarcoma. Medicina 2021, 57, 141. https://doi.org/10.3390/medicina57020141
Comandone A, Boglione A, Comandone T, Petrelli F. A Pharmacological Analysis of the Activity and Failure of the Medical Treatment of High-Grade Osteosarcoma. Medicina. 2021; 57(2):141. https://doi.org/10.3390/medicina57020141
Chicago/Turabian StyleComandone, Alessandro, Antonella Boglione, Tiziana Comandone, and Fausto Petrelli. 2021. "A Pharmacological Analysis of the Activity and Failure of the Medical Treatment of High-Grade Osteosarcoma" Medicina 57, no. 2: 141. https://doi.org/10.3390/medicina57020141
APA StyleComandone, A., Boglione, A., Comandone, T., & Petrelli, F. (2021). A Pharmacological Analysis of the Activity and Failure of the Medical Treatment of High-Grade Osteosarcoma. Medicina, 57(2), 141. https://doi.org/10.3390/medicina57020141