The Spread of the COVID-19 Outbreak in Brazil: An Overview by Kohonen Self-Organizing Map Networks
Abstract
:1. Introduction
2. Methodology
2.1. Database
2.2. Proposed Method
2.3. Computer Processing and Program
3. Results
3.1. Spread of COVID-19 by Brazilian Regions
3.2. Spread of COVID-19 by Brazilian States
3.3. Spread of COVID-19 by Brazilian Cities
4. Discussion
4.1. Spread of COVID-19 by Brazilian Regions
4.2. Spread of COVID-19 by Brazilian States
4.3. Spread of COVID-19 by Brazilian Cities
4.4. Overview of the COVID-19 Spread in Brazil
5. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; et al. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef] [Green Version]
- Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat. Med. 2020, 26, 450–452. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Coronavirus Pandemic Data. Available online: https://covid19.who.int (accessed on 18 February 2021).
- Yan, Y.; Shin, W.I.; Pang, Y.X.; Meng, Y.; Lai, J.; You, C.; Zhao, H.; Lester, E.; Wu, T.; Pang, C.H. The first 75 days of novel coronavirus (SARS-CoV-2) outbreak: Recent advances, prevention, and treatment. Int. J. Environ. Res. Public Health 2020, 17, 2323. [Google Scholar] [CrossRef] [Green Version]
- Thanh Le, T.; Andreadakis, Z.; Kumar, A.; Gómez Román, R.; Tollefsen, S.; Saville, M.; Mayhew, S. The COVID-19 vaccine development landscape. Nat. Rev. Drug Discov. 2020, 19, 305–306. [Google Scholar] [CrossRef]
- Lippi, G.; Henry, B.M.; Bovo, C.; Sanchis-Gomar, F. Health risks and potential remedies during prolonged lockdowns for coronavirus disease 2019 (COVID-19). Diagnosis 2020, 7, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.K.; Akl, E.A.; Duda, S.; Solo, K.; Yaacoub, S.; Schünemann, H.J. COVID-19 Systematic Urgent Review Group Effort (SURGE) study authors Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-analysis. Lancet 2020, 6736, 1–15. [Google Scholar] [CrossRef]
- Lau, H.; Khosrawipour, V.; Kocbach, P.; Mikolajczyk, A.; Schubert, J.; Bania, J.; Khosrawipour, T. The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China. J. Travel Med. 2020, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Galvan, D.; Effting, L.; Cremasco, H.; Adam Conte-Junior, C. Can Socioeconomic, Health, and Safety Data Explain the Spread of COVID-19 Outbreak on Brazilian Federative Units? Int. J. Environ. Res. Public Health 2020, 17, 8921. [Google Scholar] [CrossRef]
- Giordano, G.; Blanchini, F.; Bruno, R.; Colaneri, P.; Di Filippo, A.; Di Matteo, A.; Colaneri, M. Modelling the COVID-19 Epidemic and Implementation of Population-Wide Interventions in Italy. Nat. Med. 2020. [Google Scholar] [CrossRef]
- Tomar, A.; Gupta, N. Prediction for the spread of COVID-19 in India and effectiveness of preventive measures. Sci. Total Environ. 2020, 728, 138762. [Google Scholar] [CrossRef] [PubMed]
- Naudé, W. Artificial intelligence vs COVID-19: Limitations, constraints and pitfalls. AI Soc. 2020. [Google Scholar] [CrossRef]
- Melin, P.; Monica, J.C.; Sanchez, D.; Castillo, O. Analysis of Spatial Spread Relationships of Coronavirus (COVID-19) Pandemic in the World using Self Organizing Maps. Chaos Solitons Fractals 2020, 138, 109917. [Google Scholar] [CrossRef]
- Kang, D.; Choi, H.; Kim, J.H.; Choi, J. Spatial epidemic dynamics of the COVID-19 outbreak in China. Int. J. Infect. Dis. 2020, 94, 96–102. [Google Scholar] [CrossRef]
- Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice Hal: New York, NY, USA, 2001; ISBN 978-0-02-352761-6. [Google Scholar]
- Kohonen, T. Self-Organizing Maps. In Springer Series in Information Sciences; Springer: Berlin/Heidelberg, Germany, 1997; Volume 30, ISBN 978-3-540-62017-4. [Google Scholar]
- Galvan, D.; Cremasco, H.; Gomes Mantovani, A.C.; Bona, E.; Killner, M.; Borsato, D. Kinetic study of the transesterification reaction by artificial neural networks and parametric particle swarm optimization. Fuel 2020, 267, 117221. [Google Scholar] [CrossRef]
- Cremasco, H.; Borsato, D.; Angilelli, K.G.; Galão, O.F.; Bona, E.; Valle, M.E. Application of self-organising maps towards segmentation of soybean samples by determination of inorganic compounds content. J. Sci. Food Agric. 2016, 96, 306–310. [Google Scholar] [CrossRef]
- Bullock, J.; Luccioni, A.; Pham, K.H.; Lam, C.S.N.; Luengo-Oroz, M. Mapping the landscape of artificial intelligence applications against COVID-19. J. Artif. Intell. Res. 2020, 69, 807–845. [Google Scholar] [CrossRef]
- Hartono, P. Similarity maps and pairwise predictions for transmission dynamics of COVID-19 with neural networks. Inform. Med. Unlocked 2020, 20, 100386. [Google Scholar] [CrossRef]
- Ministério da Saúde do Brasil (MS). Coronavirus Pandemic Data in Brazil. Available online: https://covid.saude.gov.br/ (accessed on 31 May 2020).
- IBGE. Instituto Brasileiro de Geografia e Estatística (IBGE) Estimated Brazilian Population for 2019. Available online: https://www.ibge.gov.br/ (accessed on 31 May 2020).
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 1493938436. [Google Scholar]
- Sanchez, J.L.; Pereira, S.B.G.; Tanamati, A.; Tanamati, A.A.C.; Bona, E. Monitoring industrial hydrogenation of soybean oil using self-organizing maps. Emirates J. Food Agric. 2019, 31, 779–787. [Google Scholar] [CrossRef]
- Hu, Z.; Ge, Q.; Li, S.; Jin, L.; Xiong, M. Artificial intelligence forecasting of covid-19 in China. arXiv 2020, arXiv:2002.07112. [Google Scholar]
- Rosario, D.D.; Mutz, Y.S.; Ferrari, R.G.; Bernardes, P.C.; Conte-Junior, C.A. The COVID-19 pandemic in Brazil built on socioeconomic and political pillars. Pathog. Glob. Health 2021, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Rosario, D.K.A.; Mutz, Y.S.; Bernardes, P.C.; Conte-Junior, C.A. Relationship between COVID-19 and weather: Case study in a tropical country. Int. J. Hyg. Environ. Health 2020, 113587. [Google Scholar] [CrossRef] [PubMed]
- Remuzzi, A.; Remuzzi, G. COVID-19 and Italy: What next? Lancet 2020, 395, 1225–1228. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, J.; Yao, J.; Zhang, X.; Li, L.; Xu, X.; He, X.; Wang, B.; Fu, S.; Niu, T.; et al. Impact of meteorological factors on the COVID-19 transmission: A multi-city study in China. Sci. Total Environ. 2020, 726, 138513. [Google Scholar] [CrossRef]
- Bashir, M.F.; Ma, B.; Komal, B.; Bashir, M.A.; Tan, D.; Bashir, M. Correlation between climate indicators and COVID-19 pandemic in New York, USA. Sci. Total Environ. 2020, 728, 138835. [Google Scholar] [CrossRef]
- Şahin, M. Impact of weather on COVID-19 pandemic in Turkey. Sci. Total Environ. 2020, 728. [Google Scholar] [CrossRef]
- Instituto Nacional de Meteorologia (INMET) Technical Climate Notes from Brazil. Available online: http://www.inmet.gov.br/ (accessed on 12 June 2020).
Brazil BRA/210,147,125 | |
North N/18,430,980 (9%) | |
Acre AC/881,935 (0.4%) | Rio Branco RBO/407,319 (46.2%) |
Amapá AP/845,731 (0.4%) | Macapá MPA/503,327 (59.5%) |
Amazonas AM/4,144,597 (2.0%) | Manaus MNS/2,182,763 (52.7%) |
Pará PA/8,602,865 (4.1%) | Belém BLM/1,492,745 (17.4%) Ananindeua AIU/530,598 (6.2%) |
Rondônia RO/1,777,225 (0.8%) | Porto Velho PVO/529,544 (29.8%) |
Roraima RR/605,761 (0.3%) | Boa Vista BVA/399,213 (65.9%) |
Tocantins TO/1,572,866 (0.7%) | Palmas PMJ/299,127 (19.0%) |
Northeast NE/57,071,654 (27%) | |
Alagoas AL/3,337,357 (1.6%) | Maceió MCO/1,018,948 (30.5%) |
Bahia BA/14,873,064 (7.1%) | Salvador SDR/2,872,347 (19.3%) Feira de Santana FSA/614,872 (4.1%) * |
Ceará CE/9,132,078 (4.3%) | Fortaleza FLA/2,669,342 (29.2%) |
Maranhão MA/7,075,181 (3.4%) | São Luís SLS/1,101,884 (15.6%) |
Paraíba PB/4,018,127 (1.9%) | João Pessoa JPA/809,015 (20.1%) |
Pernambuco PE/9,557,071 (4.5%) | Recife RCE/1,645,727 (17.2%) Jaboatão dos Guararapes JBO/702,298 (7.3%) * |
Piauí PI/3,273,227 (1.6%) | Teresina TSA/864,845 (26.4%) |
Rio Grande do Norte RN/3,506,853 (1.7%) | Natal NTL/884,122 (25.2%) |
Sergipe SE/2,298,696 (1.1%) | Aracajú AJU/657,013 (28.6%) |
Southeast SE/88,371,433 (42%) | |
Espírito Santo ES/4,018,650 (1.9%) | Vitória VTA/362,097 (9.0%) Serra SEA/517,510 (12.9%) * |
Minas Gerais MG/21,168,791 (10.1%) | Belo Horizonte BHE/2,512,070 (11.9%) Contagem CEM/663,855 (3.1%) * Juiz de Fora JFA/568,873 (2.7%) * Uberlândia ULA/691,305 (3.3%) * |
Rio de Janeiro RJ/17,264,943 (8.2%) | Rio de Janeiro RIO/6,718,903 (38.9%) Belford Roxo BFX/510,906 (3.0%) * Campos dos Goytacazes CPS/507,548 (2.9%) * Duque de Caxias DQX/919,596 (5.3%) * Niterói NRI/513,584 (3.0%) * Nova Iguaçu NIU/821,128 (4.8%) * São Gonçalo SGO/1,084,839 (6.3%) * |
São Paulo SP/45,919,049 (21.9%) | São Paulo SPA/12,252,023 (26.7%) Campinas CAM/1,204,073 (2.6%) * Guarulhos GRH/1,379,182 (3.0%) * Osasco OSC/698,418 (1.5%) * Ribeirão Preto RPR/703,293 (1.5%) * Santo André SDE/718,773 (1.6%) * São Bernardo do Campo SBC/838,936 (1.8%) * São José dos Campos SJC/721,944 (1.6%) * Sorocaba SCB/679,378 (1.5%) * |
South S/29,975,985 (14%) | |
Paraná PR/11,433,957 (5.4%) | Curitiba CTA/1,933,105 (16.9%) Londrina LDA/569,733 (5.0%) * |
Rio Grande do Sul RS/11,377,239 (5.4%) | Porto Alegre PAE/1,483,771 (13.0%) Caxias do Sul CSL/510,906 (4.5%) * |
Santa Catarina SC/7,164,788 (3.4%) | Florianópolis FNS/500,973 (7.0%) Joinville JVE/590,466 (8.2%) * |
Central-West CW/16,297,074 (8%) | |
Distrito Federal DF/3,015,268 (1.4%) | Brasília BSA/3,015,268 (100%) |
Goiás GO/7,018,354 (3.3%) | Goiânia GNA/1,516,113 (21.6%) Aparecida de Goiânia ACG/578,179 (8.2%) * |
Mato Grosso MT/3,484,466 (1.7%) | Campo Grande CPE/895,982 (32.2%) |
Mato Grosso do Sul MS/2,778,986 (1.3%) | Cuiabá CBA/612,547 (17.6%) |
ANN | Dataset † | Distribution | Variables | ||
---|---|---|---|---|---|
1 | 20 | Region | 5 regions | Epidemiological week total sum | Novel and accumulated numbers of cases and deaths by COVID-19 per 100,000 inhabitants |
2 | 200 | Ten epidemiological weeks | |||
3 | 108 | States | 26 states plus the federal district | Epidemiological week total sum | |
4 | 1080 | Ten epidemiological weeks | |||
5 | 208 | City | 27 capital plus 25 other cities | Epidemiological week total sum | |
6 | 2080 | Ten epidemiological weeks | |||
3488 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galvan, D.; Effting, L.; Cremasco, H.; Conte-Junior, C.A. The Spread of the COVID-19 Outbreak in Brazil: An Overview by Kohonen Self-Organizing Map Networks. Medicina 2021, 57, 235. https://doi.org/10.3390/medicina57030235
Galvan D, Effting L, Cremasco H, Conte-Junior CA. The Spread of the COVID-19 Outbreak in Brazil: An Overview by Kohonen Self-Organizing Map Networks. Medicina. 2021; 57(3):235. https://doi.org/10.3390/medicina57030235
Chicago/Turabian StyleGalvan, Diego, Luciane Effting, Hágata Cremasco, and Carlos Adam Conte-Junior. 2021. "The Spread of the COVID-19 Outbreak in Brazil: An Overview by Kohonen Self-Organizing Map Networks" Medicina 57, no. 3: 235. https://doi.org/10.3390/medicina57030235
APA StyleGalvan, D., Effting, L., Cremasco, H., & Conte-Junior, C. A. (2021). The Spread of the COVID-19 Outbreak in Brazil: An Overview by Kohonen Self-Organizing Map Networks. Medicina, 57(3), 235. https://doi.org/10.3390/medicina57030235