The Efficacy of Convalescent Plasma Use in Critically Ill COVID-19 Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients Enrolment
2.2. Donor Eligibility
2.3. Disease Severity Classification
2.4. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Laboratory Findings
3.3. The Outcome of Patients Treated with CP
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tanne, J.H. Covid-19: FDA Approves the Use of Convalescent Plasma to Treat Critically Ill Patients. BMJ 2020, 386, m1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marano, G.; Vaglio, S.; Pupella, S.; Facco, G.; Catalano, L.; Liumbruno, G.M.; Grazzini, G. Convalescent plasma: New evidence for an old therapeutic tool? Blood Transfus. 2016, 14, 152. [Google Scholar] [PubMed] [Green Version]
- Chen, L.; Xiong, J.; Bao, L.; Shi, Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect. Dis. 2020, 20, 398–400. [Google Scholar] [CrossRef]
- Metodologia Pentru Colectarea Testarea Procesarea Stocarea Si Distributia a Plasmei. The Romanian Ministry of Health, Bucharest, Romania. Available online: www.ms.ro:http://www.ms.ro/2020/04/22/metodologia-pentru-colectarea-testarea-procesarea-stocarea-si-distributia-a-plasmei (accessed on 22 April 2020).
- Hung, I.F.; To, K.K.; Lee, C.-K.; Lee, K.-L.; Chan, K.; Yan, W.-W.; Liu, R.; Watt, C.-L.; Chan, W.-M.; Lai, K.-Y.; et al. Convalescent Plasma Treatment Reduced Mortality in Patients With Severe Pandemic Influenza A (H1N1) 2009 Virus Infection. Clin. Infect. Dis. 2011, 52, 447–456. [Google Scholar] [CrossRef]
- Soo, Y.; Cheng, Y.; Wong, R.; Hui, D.; Lee, C.; Tsang, K.; Ng, M.; Chan, P.; Cheng, G.; Sung, J. Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin. Microbiol. Infect. 2004, 10, 676–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luke, T.C.; Kilbane, E.M.; Jackson, J.L.; Hoffman, S.L. Meta-analysis: Convalescent blood products for Spanish influenza pneumonia: A future H5N1 treatment? Ann. Intern. Med. 2006, 145, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Mair-Jenkins, J.; Saavedra-Campos, M.; Baillie, J.; Cleary, P.; Khaw, F.; Lim, W.; Makki, S.; Rooney, K.; Nguyen-Van-Tam, J.; Beck, C. Convalescent Plasma Study Group The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: A systematic review and exploratory meta-analysis. J. Infect. Dis. 2015, 211, 80–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajendran, K.; Krishnasamy, N.; Rangarajan, J.; Rathinam, J.; Natarajan, M.; Ramachandran, A. Convalescent plasma transfusion for the treatment of COVID-19: Systematic review. J. Med. Virol. 2020, 92, 1475–1483. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Wang, D.; Nie, J.; Liang, H.; Gu, J.; Zhao, A.; Xu, L.; Lang, C.; Cui, X.; Guo, X.; et al. The efficacy assessment of convalescent plasma therapy for COVID-19 patients: A multi-center case series. Signal Transduct. Target. Ther. 2020, 5, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Luchsinger, L.L.; Ransegnola, B.P.; Jin, D.K.; Muecksch, F.; Weisblum, Y.; Bao, W.; George, P.J.; Rodriguez, M.; Tricoche, N.; Schmidt, F.; et al. Serological assays estimate highly variable SARS-CoV-2 neutralizing antibody activity in recovered COVID-19 patients. J. Clin. Microbiol. 2020, 58. [Google Scholar] [CrossRef] [PubMed]
- Simonovich, V.A.; Pratx, L.D.B.; Scibona, P.; Beruto, M.V.; Vallone, M.G.; Vázquez, C.; Savoy, N.; Giunta, D.H.; Pérez, L.G.; Sánchez, M.D.L.; et al. A Randomized Trial of Convalescent Plasma in Covid-19 Severe Pneumonia. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Li, L.; Zhang, W.; Hu, Y.; Tong, X.; Zheng, S.; Yang, J.; Kong, Y.; Ren, L.; Wei, Q.; Mei, H.; et al. Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients with Severe and Life-threatening COVID-19. JAMA 2020, 324, 460. [Google Scholar] [CrossRef] [PubMed]
- Casadevall, A.; Joyner, M.J.; Pirofski, L.-A. A Randomized Trial of Convalescent Plasma for COVID-19—Potentially Hopeful Signals. JAMA 2020, 324, 455. [Google Scholar] [CrossRef] [PubMed]
- Perotti, C.; Baldanti, F.; Bruno, R.; Del Fante, C.; Seminari, E.; Casari, S.; Percivalle, E.; Glingani, C.; Musella, V.; Belliato, M.; et al. Mortality reduction in 46 severe Covid-19 patients treated with hyperimmune plasma. A proof of concept single arm multicenter trial. Haematologica 2020, 105, 2834–2840. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, Y.; Mukherjee, A.; Kumar, D.P.; Chatterjee, P.; Nag, V.; Malhotra, P. Convalescent plasma in the management of moderate covid-19 in adults in India: Open label phase II multicentre randomised controlled trial (PLACID Trial). BMJ 2020, 371. [Google Scholar] [CrossRef] [PubMed]
- Gharbharan, A.; Jordans, C.C.E.; Geurtsvankessel, C.; den Hollander, J.G.; Karim, F.; Mollema, F.P.N.; Stalenhoef-Schukken, J.E.; Dofferhoff, A.; Ludwig, I.; Koster, A.; et al. Convalescent Plasma for COVID-19. A randomized clinical trial. medRxiv 2020. [Google Scholar] [CrossRef]
- Zou, X.; Li, S.; Fang, M.; Hu, M.; Bian, Y.; Ling, J.; Yu, S.; Jing, L.; Li, D.; Huang, J. Acute Physiology and Chronic Health Evaluation II Score as a Predictor of Hospital Mortality in Patients of Coronavirus Disease 2019. Crit. Care Med. 2020, 48, e657–e665. [Google Scholar] [CrossRef] [PubMed]
- Bloch, E.M.; Shoham, S.; Casadevall, A.; Sachais, B.S.; Shaz, B.; Winters, J.L.; Van Buskirk, C.; Grossman, B.J.; Joyner, M.; Henderson, J.P.; et al. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J. Clin. Investig. 2020, 130, 2757–2765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, M.; Gao, Y.; Wang, G.; Song, G.; Liu, S.; Sun, D.; Xu, Y.; Tian, Z. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell. Mol. Immunol. 2020, 17, 533–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Patient | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Sex | Male | Male | Male | Male | Male |
Age (years) | 45 | 46 | 40 | 46 | 43 |
Weight (kg/BMI) | 80/21.4 | 95/27.6 | 100/32.3 | 103/35.1 | 87/24.4 |
Comorbidities | No | hypertension | obesity | obesity, atrial fibrillation | No |
Time until admission | 7 days | 5 days | 6 days | 6 days | 8 days |
Symptoms | cough, shortness of breath | fever, cough, shortness of breath | cough, sputum production, fever | confusion, cough, fever | fever, fatigue, shortness of breath |
Treatment | |||||
Antivirals | Kaletra | Remdesivir | Darunavir, Norvir | Remdesivir | Remdesivir |
Corticosteroids | Dexamethasone | Dexamethasone | Dexamethasone | Dexamethasone | Dexamethasone |
Antibiotics | Cefort, Moxifloxacin | Cefort | Moxifloxacin | Moxifloxacin | Moxifloxacin |
Others | Fraxiparine, Tocilizumab | Fraxiparine | Fraxiparine | Fraxiparine | Fraxiparine |
Patient | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Laboratory findings | |||||
CRP level mg/dl (normal levels < 5) | |||||
Before CP transfusion | 2.19 | 172.2 | 5.36 | 176.5 | 120.56 |
Day 1 posttransfusion | 0.87 | 37.11 | 4.59 | 251.9 | 40.3 |
Day 2 posttransfusion | 0.53 | 16.55 | 2.65 | 106.2 | 66.44 |
Day 3 posttransfusion | 0.31 | 19.75 | 3.12 | 34.11 | 41.71 |
Day 4 posttransfusion | 0.33 | 28.3 | 1.27 | 9.51 | 16.16 |
Day 5 posttransfusion | 0.57 | 94.99 | 0.35 | 7.23 | 10.90 |
Procalcitonin ng/mL (normal range 0–0.5) | |||||
Before CP transfusion | 1.2 | 0.08 | 0.05 | 0.06 | 0.71 |
Day 1 posttransfusion | 0.9 | 0.22 | 0.04 | 0.06 | 0.09 |
Day 2 posttransfusion | 1.1 | 0.20 | 0.23 | 0.04 | 0.11 |
Day 3 posttransfusion | 0.7 | 0.23 | 0.04 | 0.04 | 0.09 |
Day 4 posttransfusion | 0.3 | 0.54 | 0.03 | 0.10 | 0.06 |
Day 5 posttransfusion | 0.2 | 0.70 | 0.02 | 0.87 | 0.14 |
IL-6 pg/mL (normal range 0–7) | |||||
Before CP transfusion | 63.1 | 168.3 | 2.77 | 251.9 | 189.3 |
Day 1 posttransfusion | 51.7 | 350.9 | 3.11 | 152.3 | 205.7 |
Day 2 posttransfusion | 32.8 | 169.9 | 2.15 | 78.2 | 212.24 |
Day 3 posttransfusion | 25.8 | 327.5 | 2.10 | 458 | 360.79 |
Day 4 posttransfusion | 15.2 | 483.2 | 1.68 | 443.9 | 333.60 |
Day 5 posttransfusion | 6.7 | 1089 | 1.20 | 343.6 | 416.70 |
WBC count × 109/L (normal range, 4–10) | |||||
Before CP transfusion | 7.47 | 24.06 | 5.50 | 6.55 | 7.2 |
Day 1 posttransfusion | 6.77 | 13.53 | 5.25 | 7.36 | 13.65 |
Day 2 posttransfusion | 6.31 | 9.58 | 4.56 | 12.00 | 12.12 |
Day 3 posttransfusion | 6.30 | 11.35 | 3.58 | 13.69 | 16.20 |
Day 4 posttransfusion | 7.92 | 22.23 | 3.89 | 13.68 | 21.65 |
Day 5 posttransfusion | 7.45 | 26.10 | 3.12 | 8.67 | 20.20 |
LY count × 109/L (normal range, 1.1–3.2) | |||||
Before CP transfusion | 0.65 | 0.48 | 0.73 | 0.74 | 0.12 |
Day 1 posttransfusion | 0.72 | 0.88 | 0.68 | 1.25 | 0.19 |
Day 2 posttransfusion | 1.44 | 0.62 | 0.49 | 0.62 | 0.28 |
Day 3 posttransfusion | 2.30 | 2.5 | 0.34 | 0.11 | 0.25 |
Day 4 posttransfusion | 4.33 | 0.78 | 0.25 | 0.75 | 0.64 |
Day 5 posttransfusion | 2.55 | 0.79 | 0.36 | 0.98 | 0.66 |
Patient | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Complications before CP administration | hepatic cytolysis, metabolic acidosis, hypokalemia, basal pleurisy | sepsis of unknown cause, hyponatremia | anemia, left pleurisy | sepsis of unknown cause, hepatic cytolysis | anemia |
APACHE II score | 3 | 17 | 10 | 20 | 19 |
Clinical classification before CP transfusion | severe | severe | severe | severe | severe |
Transfusion volume | 400 mL | 400 mL | 400 mL | 400 mL | 400 mL |
The interval between admission and plasma transfusion | 2 | 7 | 3 | 8 | 9 |
Mechanical Ventilation | |||||
Intubated, days before CP | No | 3 | No | 5 | no |
Extubated, days after CP | NA | NA | NA | NA | NA |
Clinical outcome | Survived | Died | Survived | Died | Died |
Length of hospital stay (days) | 15 | 21 | 25 | 11 | 11 |
SARS CoV-2 viral load (cycle threshold, decreased to negative in days) | 7 | NA | 12 | NA | NA |
Blood Test | Outcome | Mean | CI (95%) | p-Value |
---|---|---|---|---|
CRP * | Survived | 1.84 | [−109.57; −25.66] | <0.000 |
Died | 69.46 | |||
Procalcitonin | Survived | 0.44 | [−0.14; 0.46] | 0.283 |
Died | 0.24 | |||
IL-6 * | Survived | 17.35 | [−450.50; −185.33] | <0.000 |
Died | 335.27 | |||
WBC * | Survived | 5.67 | [−12.43; −5.07] | <0.000 |
Died | 14.42 | |||
Lymphocyte Count | Survived | 1.12 | [−0.13; 1.20] | 0.115 |
Died | 0.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tirnea, L.; Bratosin, F.; Vidican, I.; Cerbu, B.; Turaiche, M.; Timircan, M.; Margan, M.-M.; Marincu, I. The Efficacy of Convalescent Plasma Use in Critically Ill COVID-19 Patients. Medicina 2021, 57, 257. https://doi.org/10.3390/medicina57030257
Tirnea L, Bratosin F, Vidican I, Cerbu B, Turaiche M, Timircan M, Margan M-M, Marincu I. The Efficacy of Convalescent Plasma Use in Critically Ill COVID-19 Patients. Medicina. 2021; 57(3):257. https://doi.org/10.3390/medicina57030257
Chicago/Turabian StyleTirnea, Livius, Felix Bratosin, Iulia Vidican, Bianca Cerbu, Mirela Turaiche, Madalina Timircan, Madalin-Marius Margan, and Iosif Marincu. 2021. "The Efficacy of Convalescent Plasma Use in Critically Ill COVID-19 Patients" Medicina 57, no. 3: 257. https://doi.org/10.3390/medicina57030257
APA StyleTirnea, L., Bratosin, F., Vidican, I., Cerbu, B., Turaiche, M., Timircan, M., Margan, M.-M., & Marincu, I. (2021). The Efficacy of Convalescent Plasma Use in Critically Ill COVID-19 Patients. Medicina, 57(3), 257. https://doi.org/10.3390/medicina57030257