Immuno-Hormonal, Genetic and Metabolic Profiling of Newborns as a Basis for the Life-Long OneHealth Medical Record: A Scoping Review
Abstract
:1. Introduction
2. Bridging Silos Management: The OneHealth Concept
3. Newborn Screening as the First Step of OneHealthMR
4. OneHealthMR
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karki, N.; Verma, N.; Trozzi, F.; Tao, P.; Kraka, E.; Zoltowski, B. Predicting Potential SARS-COV-2 Drugs-In Depth Drug Database Screening Using Deep Neural Network Framework SSnet, Classical Virtual Screening and Docking. Int. J. Mol. Sci. 2021, 22, 1573. [Google Scholar] [CrossRef] [PubMed]
- Manandhar, I.; Alimadadi, A.; Aryal, S.; Munroe, P.B.; Joe, B.; Cheng, X. Gut microbiome-based supervised machine learning for clinical diagnosis of inflammatory bowel diseases. Am. J. Physiol. Gastrointest Liver Physiol. 2021. [Google Scholar] [CrossRef]
- Knudsen, T.B.; Spielmann, M.; Megason, S.G.; Faustman, E.M. Single-cell profiling for advancing birth defects research and prevention. Birth Defects Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Ogino, S.; Nowak, J.A.; Hamada, T.; Milner, D.A., Jr.; Nishihara, R. Insights into Pathogenic Interactions Among Environment, Host, and Tumor at the Crossroads of Molecular Pathology and Epidemiology. Annu. Rev. Pathol. 2019, 14, 83–103. [Google Scholar] [CrossRef]
- Herrick, C. The optics of noncommunicable diseases: From lifestyle to environmental toxicity. Sociol. Health Illn. 2020, 42, 1041–1059. [Google Scholar] [CrossRef] [PubMed]
- Korfmacher, K.S. Bridging Silos: A Research Agenda for Local Environmental Health Initiatives. New Solut. 2020, 30, 173–182. [Google Scholar] [CrossRef]
- Kiviniemi, M.T.; Przybyla, S.M. Integrative Approaches to the Undergraduate Public Health Major Curriculum: Strengths, Challenges, and Examples. Front. Public Health 2019, 7, 106. [Google Scholar] [CrossRef] [Green Version]
- FAO; OiE; WHO. The FAO-OIE-WHO Collaboration—Sharing Responsibilities and Coordinating Global Activities to Address Health Risks at the Animal-Human-Ecosystems Interfaces—A Tripartite Concept Note [Internet]. 2010. Available online: https://www.oie.int/fileadmin/Home/eng/Current_Scientific_Issues/docs/pdf/FINAL_CONCEPT_NOTE_Hanoi.pdf (accessed on 17 December 2019).
- Frazzoli, C.; Mantovani, A. (Eds.) The Environment-Animal-Human Web: A “One Health” View of Toxicological Risk Analysis [Internet]. Frontiers Media SA; (Frontiers Research Topics). 2019. Available online: https://www.frontiersin.org/research-topics/3593/the-environment-animal-human-web-a-one-health-view-of-toxicological-risk-analysis (accessed on 2 June 2019).
- Ribeiro, C.d.S.; van de Burgwal, L.H.M.; Regeer, B.J. Overcoming challenges for designing and implementing the One Health approach: A systematic review of the literature. One Health 2019, 7, 100085. [Google Scholar] [CrossRef]
- Leijs, M.M.; van der Linden, L.M.; Koppe, J.G.; de Voogt, P.; Olie, K.; van Aalderen, W.M.C.; Ten Tusscher, G.W. The influence of perinatal and current dioxin and PCB exposure on puberty: A review. Biomonitoring 2014, 1, 16–24. [Google Scholar] [CrossRef]
- Leijs, M.M.; van der Linden, L.M.; Koppe, J.G.; Olie, K.; van Aalderen, W.M.C.; Ten Tusscher, G.W. The influence of perinatal and current dioxin and PCB exposure on reproductive parameters (sex-ratio, menstrual cycle characteristics, endometriosis, semen quality, and prematurity): A review. Biomonitoring 2014, 1, 1–15. [Google Scholar] [CrossRef]
- Emeny, R.T.; Carpenter, D.O.; Lawrence, D.A. Health disparities: Intracellular consequences of social determinants of health. Toxicol. Appl Pharmacol. 2021, 4, 115444. [Google Scholar] [CrossRef]
- ten Tusscher, G.W.; Leijs, M.M.; Koppe, J.G. Paediatric environmental health history taking—Why bother? Acta Paediatr. Suppl. 2006, 95, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, J.; Kim, E.; Kim, W.J.; Won, S. Prenatal lead exposure and cord blood DNA methylation in the Korean Exposome Study. Environ. Res. 2021, 195, 110767. [Google Scholar] [CrossRef] [PubMed]
- Campbell, R.K.; Curtin, P.; Bosquet Enlow, M.; Brunst, K.J.; Wright, R.O.; Wright, R.J. Disentangling Associations Among Maternal Lifetime and Prenatal Stress, Psychological Functioning During Pregnancy, Maternal Race/Ethnicity, and Infant Negative Affectivity at Age 6 Months: A Mixtures Approach. Health Equity 2020, 4, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Vineis, P.; Robinson, O.; Chadeau-Hyam, M.; Dehghan, A.; Mudway, I.; Dagnino, S. What is new in the exposome? Environ. Int. 2020, 143, 105887. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Arora, M.; Chaleckis, R.; Isobe, T.; Jain, M.; Meister, I.; Melén, E.; Perzanowski, M.; Torta, F.; Wenk, M.R.; et al. Tackling the Complexity of the Exposome: Considerations from the Gunma University Initiative for Advanced Research (GIAR) Exposome Symposium. Metabolites 2019, 9, 106. [Google Scholar] [CrossRef] [Green Version]
- Malvagia, S.; Forni, G.; Ombrone, D.; la Marca, G. Development of Strategies to Decrease False Positive Results in Newborn Screening. Int. J. Neonatal. Screen 2020, 6, 84. [Google Scholar] [CrossRef]
- Mookken, T. Universal Implementation of Newborn Screening in India. Int. J. Neonatal Screen. 2020, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.; Petros, M. Simple Test, Complex System: Multifaceted Views of Newborn Screening Science, Technology, and Policy. Glob. Pediatr. Health 2019, 6. [Google Scholar] [CrossRef]
- Neu, M.B.; Bowling, K.M.; Cooper, G.M. Clinical utility of genomic sequencing. Curr. Opin. Pediatr. 2019, 31, 732–738. [Google Scholar] [CrossRef]
- Taruscio, D.; Bermejo-Sanchez, E.; Salerno, P.; Mantovani, A. Primary prevention as an essential factor ensuring sustainability of health systems: The example of congenital anomalies. Ann. Ist. Super. Sanità 2019, 55, 258–264. [Google Scholar]
- Loeber, J.G. European Union Should Actively Stimulate and Harmonise Neonatal Screening Initiatives. Int. J. Neonatal. Screen. 2018, 4, 32. [Google Scholar] [CrossRef] [Green Version]
- Unim, B.; Pitini, E.; Lagerberg, T.; Adamo, G.; De Vito, C.; Marzuillo, C.; Paolo, P. Current Genetic Service Delivery Models for the Provision of Genetic Testing in Europe: A Systematic Review of the Literature. Front. Genet. 2019, 10, 552. [Google Scholar] [CrossRef] [Green Version]
- Heindel, J.J.; Blumberg, B.; Cave, M.; Machtinger, R.; Mantovani, A.; Mendez, M.A.; Nadal, A.; Palanza, P.; Panzica, G.; Sargis, R.; et al. Metabolism disrupting chemicals and metabolic disorders. Reprod. Toxicol. 2017, 68, 3–33. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Peng, W.; Kuang, J.; Wu, M.; Wu, H.; Murithi, R.G.; Johnson, M.B.; Zheng, X. Preconceptional and prenatal exposure to air pollution increases incidence of childhood pneumonia: A hypothesis of the (pre-)fetal origin of childhood pneumonia. Ecotoxicol. Environ. Saf. 2021, 210, 111860. [Google Scholar] [CrossRef]
- Trasande, L.; Zoeller, R.T.; Hass, U.; Kortenkamp, A.; Grandjean, P.; Myers, J.P.; DiGangi, J.; Hunt, P.M.; Rudel, R.; Sathyanarayana, S.; et al. Burden of disease and costs of exposure to endocrine disrupting chemicals in the European Union: An updated analysis. Andrology 2016, 4, 565–572. [Google Scholar] [CrossRef] [Green Version]
- Jaddoe, V.W.V.; Felix, J.F.; Andersen, A.N.; Charles, M.A.; Chatzi, L.; Corpeleijn, E.; Donner, N.; Elhakeem, A.; Eriksson, J.G.; Foong, R.; et al. The LifeCycle Project-EU Child Cohort Network: A federated analysis infrastructure and harmonized data of more than 250,000 children and parents. Eur. J. Epidemiol. 2020, 35, 709–724. [Google Scholar] [CrossRef]
- Cubadda, F.; Aureli, F.; D’Amato, M.; Raggi, A.; Turco, A.C.; Mantovani, A. Speciated urinary arsenic as biomarker of dietary exposure to inorganic arsenic in residents living in high-arsenic areas in Latium, Italy. Pure App. Chem. 2012, 84, 203–214. [Google Scholar] [CrossRef] [Green Version]
- EFSA (European Food Safety Authority). Scientic report on the 2017European Union report on pesticide residues in food. EFSA J. 2019, 17, 5743. [Google Scholar] [CrossRef]
- Blake, B.E.; Fenton, S.E. Early life exposure to per- and polyfluoroalkyl substances (PFAS) and latent health outcomes: A review including the placenta as a target tissue and possible driver of peri- and postnatal effects. Toxicology 2020, 443, 152565. [Google Scholar] [CrossRef] [PubMed]
- Manzano-Salgado, C.B.; Granum, B.; Lopez-Espinosa, M.J.; Ballester, F.; Iñiguez, C.; Gascón, M.; Martínez, D.; Guxens, M.; Basterretxea, M.; Zabaleta, C.; et al. Prenatal exposure to perfluoroalkyl substances, immune-related outcomes, and lung function in children from a Spanish birth cohort study. Int. J. Hyg. Environ. Health 2019, 222, 945–954. [Google Scholar] [CrossRef]
- Leijs, M.M.; Koppe, J.G.; Olie, K.; Vulsma, T.; van Aalderen, W.M.C.; de Voogt, P.; Legler, J.; ten Tusscher, G.W. Alterations in the programming of energy metabolism in adolescents with background exposure to dioxins, dl-PCBs and PBDEs. PLoS ONE 2017, 12, e0184006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pristner, M.; Warth, B. Drug-Exposome Interactions: The Next Frontier in Precision Medicine. Trends Pharmacol. Sci. 2020, 41, 994–1005. [Google Scholar] [CrossRef]
- Clarke, G.; Stilling, R.M.; Kennedy, P.J.; Stanton, C.; Cryan, J.F.; Dinan, T.G. Minireview: Gut microbiota: The neglected endocrine organ. Mol. Endocrinol. 2014, 28, 1221–1238. [Google Scholar] [CrossRef] [Green Version]
- Rahman, Z.; Dandekar, M.P. Crosstalk between gut microbiome and immunology in the management of ischemic brain injury. J. Neuroimmunol. 2021, 353, 577498. [Google Scholar] [CrossRef] [PubMed]
- Salisbury, A.L.; Papandonatos, G.D.; Stroud, L.R.; Smith, A.K.; Brennan, P.A. Prenatal antidepressant exposures and gastrointestinal complaints in childhood: A gut-brain axis connection? Dev. Psychobiol. 2020, 62, 816–828. [Google Scholar] [CrossRef] [PubMed]
- Medda, E.; Santini, F.; De Angelis, S.; Franzellin, F.; Fiumalbi, C.; Perico, A.; Gilardi, E.; Mechi, M.T.; Marsili, A.; Citroni, A.; et al. Iodine nutritional status and thyroid effects of exposure to ethylenebisdithiocarbamates. Environ Res. 2017, 154, 152–159. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF). Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J. 2015, 13, 3978. [Google Scholar] [CrossRef]
- EFSA Panel on Food Contact Materials, Enzymes and Processing Aids. Scientific Opinion on the update of the risk assessment of di-butylphthalate(DBP), butyl-benzyl-phthalate (BBP), bis(2-ethylhexyl)phthalate (DEHP), di-isononylphthalate (DINP) anddi-isodecylphthalate (DIDP) for use in food contact materials. EFSA J. 2019, 17, e05838. [Google Scholar] [CrossRef]
- Wipperman, M.F.; Bhattarai, S.K.; Vorkas, C.K.; Maringati, V.S.; Taur, Y.; Mathurin, L.; McAulay, K.; Vilbrun, S.C.; Francois, D.; Bean, J.; et al. Gastrointestinal microbiota composition predicts peripheral inflammatory state during treatment of human tuberculosis. Nat. Commun. 2021, 12, 1141. [Google Scholar] [CrossRef] [PubMed]
- Qin, K.; Zhang, Y.; Wang, Y.; Shi, R.; Pan, R.; Yao, Q.; Tian, Y.; Gao, Y. Prenatal organophosphate pesticide exposure and reproductive hormones in cord blood in Shandong, China. Int. J. Hyg. Environ. Health 2020, 225, 113479. [Google Scholar] [CrossRef] [PubMed]
- Itoh, S.; Araki, A.; Mitsui, T.; Miyashita, C.; Goudarzi, H.; Sasaki, S.; Cho, K.; Nakazawa, H.; Iwasaki, Y.; Shinohara, N.; et al. Association of perfluoroalkyl substances exposure in utero with reproductive hormone levels in cord blood in the Hokkaido Study on Environment and Children’s Health. Environ. Int. 2016, 94, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sunman, B.; Yurdakök, K.; Kocer-Gumusel, B.; Özyüncü, Ö.; Akbıyık, F.; Balc, A.; Özkemahl, G.; Erkekoğlu, P.; Yurdakök, M. Prenatal bisphenol a and phthalate exposure are risk factors for male reproductive system development and cord blood sex hormone levels. Reprod. Toxicol. 2019, 87, 146–155. [Google Scholar] [CrossRef]
- Kolatorova, L.; Vitku, J.; Hampl, R.; Adamcova, K.; Skodova, T.; Simkova, M.; Parizek, A.; Starka, L.; Duskova, M. Exposure to bisphenols and parabens during pregnancy and relations to steroid changes. Environ. Res. 2018, 163, 115–122. [Google Scholar] [CrossRef]
- Tan, U. The grasp reflex from the right and left hand in human neonates indicates that the development of both cerebral hemispheres in males, but only the right hemisphere in females, is favoured by testosterone. Int. J. Psychophysiol. 1994, 16, 39–47. [Google Scholar] [CrossRef]
- Terloyeva, D.; Frey, A.J.; Park, B.Y.; Kauffman, E.M.; Mathew, L.; Bostwick, A.; Varner, E.L.; Lee, B.K.; Croen, L.A.; Fallin, M.D.; et al. Meconium androgens are correlated with ASD-related phenotypic traits in early childhood in a familial enriched risk cohort. Mol. Autism. 2020, 11, 93. [Google Scholar] [CrossRef]
- Ahmed, S.; Mahabbat-e Khoda, S.; Rekha, R.S.; Gardner, R.M.; Ameer, S.S.; Moore, S.; Ekström, E.C.; Vahter, M.; Raqib, R. Arsenic-associated oxidative stress, inflammation, and immune disruption in human placenta and cord blood. Environ. Health Perspect. 2011, 119, 258–264. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, I.; Thoelke, A.; Rehwagen, M.; Rolle-Kampczyk, U.; Schlink, U.; Schulz, R.; Borte, M.; Diez, U.; Herbarth, O. The influence of maternal exposure to volatile organic compounds on the cytokine secretion profile of neonatal T cells. Environ. Toxicol. 2002, 17, 203–210. [Google Scholar] [CrossRef]
- Liu, X.; Chen, D.; Wang, B.; Xu, F.; Pang, Y.; Zhang, L.; Zhang, Y.; Jin, L.; Li, Z.; Ren, A. Does Low Maternal Exposure to Per- and Polyfluoroalkyl Substances Elevate the Risk of Spontaneous Preterm Birth? A Nested Case-Control Study in China. Environ. Sci. Technol. 2020, 54, 8259–8268. [Google Scholar] [CrossRef] [PubMed]
- Ashley-Martin, J.; Lavigne, E.; Arbuckle, T.E.; Johnson, M.; Hystad, P.; Crouse, D.L.; Marshall, J.S.; Dodds, L. Air Pollution During Pregnancy and Cord Blood Immune System Biomarkers. J. Occup. Environ. Med. 2016, 58, 979–986. [Google Scholar] [CrossRef] [Green Version]
- Kar, N.; Parhi, G.K.; Kar, S.; Kar, B. Feasibility of assessing the awareness of cardiovascular risk through Health Passport approach: A pilot study. J. Health Res. 2016, 3, 273–278. [Google Scholar] [CrossRef]
- Fucic, A.; Starcevic, M.; Sindicic Dessardo, N.; Batinic, D.; Kralik, S.; Krasic, J.; Sincic, N.; Loncarevic, D.; Guszak, V. The Impact of Mother’s Living Environment Exposure on Genome Damage, Immunological Status, and Sex Hormone Levels in Newborns. Int. J. Environ. Res. Public Health 2020, 17, 3402. [Google Scholar] [CrossRef]
- Jobst, K.J.; Arora, A.; Pollitt, K.G.; Sled, J.G. Dried blood spots for the identification of bioaccumulating organic compounds: Current challenges and future perspectives. Curr. Opin. Environ. Sci. Health 2020, 15, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Petrick, L.M.; Arora, M.; Niedzwiecki, M.M. Minimally Invasive Biospecimen Collection for Exposome Research in Children’s Health. Curr. Environ. Health Rep. 2020, 7, 198–210. [Google Scholar] [CrossRef]
- Stroustrup, A.; Bragg, J.B.; Spear, E.A.; Aguiar, A.; Zimmerman, E.; Isler, J.R.; Busgang, S.A.; Curtin, P.C.; Gennings, C.; Andra, S.S.; et al. Cohort profile: The Neonatal Intensive Care Unit Hospital Exposures and Long-Term Health (NICU-HEALTH) cohort, a prospective preterm birth cohort in New York City. BMJ Open 2019, 9, e032758. [Google Scholar] [PubMed]
- Bosquet, E.M.; Bollati, V.; Sideridis, G.; Flom, J.D.; Hoxha, M.; Hacker, M.R.; Wright, R.J. Sex differences in effects of maternal risk and protective factors in childhood and pregnancy on newborn telomere length. Psychoneuroendocrinology 2018, 95, 74–85. [Google Scholar] [CrossRef]
- Calatayud, A.M.; García, B.T.; Callejón, L.B.; Arias, B.A.; Collado, M.C. A review of the impact of xenobiotics from dietary sources on infant health: Early life exposures and the role of the microbiota. Environ. Pollut. 2021, 269, 115994. [Google Scholar] [CrossRef] [PubMed]
- Udesky, J.O.; Boronow, K.E.; Brown, P.; Perovich, L.J.; Brody, J.G. Perceived Risks, Benefits, and Interest in Participating in Environmental Health Studies That Share Personal Exposure Data: A U.S. Survey of Prospective Participants. J. Empir. Res. Hum. Res. Ethics 2020, 15, 425–442. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fucic, A.; Mantovani, A.; ten Tusscher, G.W. Immuno-Hormonal, Genetic and Metabolic Profiling of Newborns as a Basis for the Life-Long OneHealth Medical Record: A Scoping Review. Medicina 2021, 57, 382. https://doi.org/10.3390/medicina57040382
Fucic A, Mantovani A, ten Tusscher GW. Immuno-Hormonal, Genetic and Metabolic Profiling of Newborns as a Basis for the Life-Long OneHealth Medical Record: A Scoping Review. Medicina. 2021; 57(4):382. https://doi.org/10.3390/medicina57040382
Chicago/Turabian StyleFucic, Alekandra, Alberto Mantovani, and Gavin W. ten Tusscher. 2021. "Immuno-Hormonal, Genetic and Metabolic Profiling of Newborns as a Basis for the Life-Long OneHealth Medical Record: A Scoping Review" Medicina 57, no. 4: 382. https://doi.org/10.3390/medicina57040382
APA StyleFucic, A., Mantovani, A., & ten Tusscher, G. W. (2021). Immuno-Hormonal, Genetic and Metabolic Profiling of Newborns as a Basis for the Life-Long OneHealth Medical Record: A Scoping Review. Medicina, 57(4), 382. https://doi.org/10.3390/medicina57040382