Gender-Specific Association of Serum Uric Acid and Pulmonary Function: Data from the Korea National Health and Nutrition Examination Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Demographic Variables and Data Collection
2.3. Measurement of Lung Function
2.4. Statistical Analyses
2.5. Patient and Public Involvement
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, A.H.; Gladden, J.D.; Ahmed, M.; Ahmed, A.; Filippatos, G. Relation of serum uric acid to cardiovascular disease. Int. J. Cardiol. 2016, 213, 4–7. [Google Scholar] [CrossRef]
- Nejatinamini, S.; Ataie-Jafari, A.; Qorbani, M.; Nikoohemat, S.; Kelishadi, R.; Asayesh, H.; Hosseini, S. Association between serum uric acid level and metabolic syndrome components. J. Diabetes Metab. Disord. 2015, 14, 70. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Q.; Liu, J.; Xu, Y. Effects of Uric Acid on Diabetes Mellitus and Its Chronic Complications. Int. J. Endocrinol. 2019, 2019, 9691345. [Google Scholar] [CrossRef]
- Li, M.; Hu, X.; Fan, Y.; Li, K.; Zhang, X.; Hou, W.; Tang, Z. Hyperuricemia and the risk for coronary heart disease morbidity and mortality a systematic review and dose-response meta-analysis. Sci. Rep. 2016, 6, 19520. [Google Scholar] [CrossRef] [Green Version]
- Cicero, A.F.G.; Fogacci, F.; Borghi, C. Uric acid and thrombotic risk: An emerging link. Intern. Emerg. Med. 2020, 15, 1167–1168. [Google Scholar] [CrossRef]
- Li, H.; Qian, F.; Liu, H.; Zhang, Z. Elevated Uric Acid Levels Promote Vascular Smooth Muscle Cells (VSMC) Proliferation via an Nod-Like Receptor Protein 3 (NLRP3)-Inflammasome-Dependent Mechanism. Med. Sci. Monit. 2019, 25, 8457–8464. [Google Scholar] [CrossRef]
- Bahadoran, Z.; Mirmiran, P.; Kashfi, K.; Ghasemi, A. Hyperuricemia-induced endothelial insulin resistance: The nitric oxide connection. Pflügers Arch. -Eur. J. Physiol. 2021. [Google Scholar] [CrossRef]
- Bartziokas, K.; Papaioannou, A.I.; Loukides, S.; Papadopoulos, A.; Haniotou, A.; Papiris, S.; Kostikas, K. Serum uric acid as a predictor of mortality and future exacerbations of COPD. Eur. Respir. J. 2014, 43, 43–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aida, Y.; Shibata, Y.; Osaka, D.; Abe, S.; Inoue, S.; Fukuzaki, K.; Tokairin, Y.; Igarashi, A.; Yamauchi, K.; Nemoto, T.; et al. The relationship between serum uric acid and spirometric values in participants in a health check: The Takahata study. Int. J. Med. Sci. 2011, 8, 470–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.U.; Hwang, J.; Ahn, J.K. Serum uric acid is positively associated with pulmonary function in Korean health screening examinees. Mod. Rheumatol. 2017, 27, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Horsfall, L.J.; Nazareth, I.; Petersen, I. Serum uric acid and the risk of respiratory disease: A population-based cohort study. Thorax 2014, 69, 1021–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Yun, Y.; Yang, D.; Hu, X.; Dong, X.; Zhang, N.; Zhang, L.; Yin, H.; Duan, W. What Is the Biological Function of Uric Acid? An Antioxidant for Neural Protection or a Biomarker for Cell Death. Dis. Markers 2019, 2019, 4081962. [Google Scholar] [CrossRef] [PubMed]
- Kelly, F.J.; Blomberg, A.; Frew, A.; Holgate, S.T.; Sandstrom, T. Antioxidant kinetics in lung lavage fluid following exposure of humans to nitrogen dioxide. Am. J. Respir. Crit. Care Med. 1996, 154, 1700–1705. [Google Scholar] [CrossRef] [PubMed]
- Kweon, S.; Kim, Y.; Jang, M.J.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.H.; Oh, K. Data resource profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.; Baek, S.Y.; Kim, S.W.; Eun, Y.H.; Kim, I.Y.; Lee, J.; Jeon, C.H.; Koh, E.M.; Cha, H.S. Comorbidities and health-related quality of life in Koreans with knee osteoarthritis: Data from the Korean National Health and Nutrition Examination Survey (KNHANES). PLoS ONE 2017, 12, e0186141. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirasawa, T.; Ochiai, H.; Yoshimoto, T.; Nagahama, S.; Watanabe, A.; Yoshida, R.; Kokaze, A. Cross-sectional study of associations between normal body weight with central obesity and hyperuricemia in Japan. BMC Endocr. Disord. 2020, 20, 2. [Google Scholar]
- Saito, H.; Nishimura, M.; Shibuya, E.; Makita, H.; Tsujino, I.; Miyamoto, K.; Kawakami, Y. Tissue hypoxia in sleep apnea syndrome assessed by uric acid and adenosine. Chest 2002, 122, 1686–1694. [Google Scholar] [CrossRef]
- Shimizu, Y.; Nagaya, N.; Satoh, T.; Uematsu, M.; Kyotani, S.; Sakamaki, F.; Nakanishi, N.; Miyatake, K. Serum uric acid level increases in proportion to the severity of pulmonary thromboembolism. Circ. J. 2002, 66, 571–575. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.-Y.; Ma, L.-L.; Wang, L.-X. Relationship between serum uric acid levels and ventricular function in patients with idiopathic pulmonary hypertension. Exp. Clin. Cardiol. 2013, 18, e37–e39. [Google Scholar]
- Kelley, E.E.; Hock, T.; Khoo, N.K.H.; Richardson, G.R.; Johnson, K.K.; Powell, P.C.; Giles, G.I.; Agarwal, A.; Lancaster, J.R.; Tarpey, M.M. Moderate hypoxia induces xanthine oxidoreductase activity in arterial endothelial cells. Free. Radic. Biol. Med. 2006, 40, 952–959. [Google Scholar] [CrossRef]
- Pascual-Figal, D.A.; Hurtado-Martínez, J.A.; Redondo, B.; Antolinos, M.J.; Ruiperez, J.A.; Valdes, M. Hyperuricaemia and long-term outcome after hospital discharge in acute heart failure patients. Eur. J. Heart Fail. 2007, 9, 518–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozanturk, E.; Ucar, Z.Z.; Varol, Y.; Koca, H.; Demir, A.U.; Kalenci, D.; Halilcolar, H.; Ozacar, R. Urinary uric acid excretion as an indicator of severe hypoxia and mortality in patients with obstructive sleep apnea and chronic obstructive pulmonary disease. Rev. Port. Pneumol. (Engl. Ed.) 2016, 22, 18–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard, S.C.; Pui, C.-H.; Ribeiro, R.C. Chapter 4-Tumor Lysis Syndrome. In Renal Disease in Cancer Patients; Finkel, K.W., Howard, S.C., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 39–64. [Google Scholar]
- Martinon, F.; Pétrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006, 440, 237–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasse, P.; Riteau, N.; Charron, S.; Girre, S.; Fick, L.; Pétrilli, V.; Tschopp, J.; Lagente, V.; Quesniaux, V.F.; Ryffel, B.; et al. Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. Am. J. Respir. Crit. Care Med. 2009, 179, 903–913. [Google Scholar] [CrossRef]
- Ruggiero, C.; Cherubini, A.; Ble, A.; Bos, A.J.; Maggio, M.; Dixit, V.D.; Lauretani, F.; Bandinelli, S.; Senin, U.; Ferrucci, L. Uric acid and inflammatory markers. Eur. Heart J. 2006, 27, 1174–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanellis, J.; Watanabe, S.; Li, J.H.; Kang, D.H.; Li, P.; Nakagawa, T.; Wamsley, A.; Sheikh-Hamad, D.; Lan, H.Y.; Feng, L.; et al. Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension 2003, 41, 1287–1293. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.J.; Kang, D.H.; Feig, D.; Kivlighn, S.; Kanellis, J.; Watanabe, S.; Tuttle, K.R.; Rodriguez-Iturbe, B.; Herrera-Acosta, J.; Mazzali, M. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension 2003, 41, 1183–1190. [Google Scholar] [CrossRef] [Green Version]
- Komaki, Y.; Sugiura, H.; Koarai, A.; Tomaki, M.; Ogawa, H.; Akita, T.; Hattori, T.; Ichinose, M. Cytokine-mediated xanthine oxidase upregulation in chronic obstructive pulmonary disease’s airways. Pulm. Pharmacol. Ther. 2005, 18, 297–302. [Google Scholar] [CrossRef]
- Cai, W.; Duan, X.-M.; Liu, Y.; Yu, J.; Tang, Y.-L.; Liu, Z.-L.; Jiang, S.; Zhang, C.-P.; Liu, J.-Y.; Xu, J.-X. Uric Acid Induces Endothelial Dysfunction by Activating the HMGB1/RAGE Signaling Pathway. BioMed Res. Int. 2017, 2017, 4391920. [Google Scholar] [CrossRef]
- Tuder, R.M.; Zhen, L.; Cho, C.Y.; Taraseviciene-Stewart, L.; Kasahara, Y.; Salvemini, D.; Voelkel, N.F.; Flores, S.C. Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am. J. Respir. Cell Mol. Biol. 2003, 29, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Kahnert, K.; Alter, P.; Welte, T.; Huber, R.M.; Behr, J.; Biertz, F.; Watz, H.; Bals, R.; Vogelmeier, C.F.; Jörres, R.A. Uric acid, lung function, physical capacity and exacerbation frequency in patients with COPD: A multi-dimensional approach. Respir. Res. 2018, 19, 110. [Google Scholar] [CrossRef] [PubMed]
- Sarangi, R.; Varadhan, N.; Bahinipati, J.; Dhinakaran, A.; Anandaraj; Ravichandran, K. Serum Uric Acid in Chronic Obstructive Pulmonary Disease: A Hospital Based Case Control Study. J. Clin. Diagn. Res. 2017, 11, BC09–BC13. [Google Scholar] [CrossRef] [PubMed]
- García-Larsen, V.; Chinn, S.; Rodrigo, R.; Amigo, H.; Bustos, P.; Rona, R.J. Relationship between oxidative stress-related biomarkers and antioxidant status with asthma and atopy in young adults: A population-based study. Clin. Exp. Allergy 2009, 39, 379–386. [Google Scholar] [CrossRef] [PubMed]
- De Vera, M.A.; Rahman, M.M.; Bhole, V.; Kopec, J.A.; Choi, H.K. Independent impact of gout on the risk of acute myocardial infarction among elderly women: A population-based study. Ann. Rheum. Dis. 2010, 69, 1162–1164. [Google Scholar] [CrossRef]
Variables | Male (Unweighted n = 1401) | Female (Unweighted n = 1776) | ||||
---|---|---|---|---|---|---|
Normal UA UA < 7 mg/dL (n = 1161) | Hyperuricemia UA ≥ 7 mg/dL (n = 240) | p Value | Normal UA UA < 6 mg/dL (n = 1648) | Hyperuricemia UA ≥ 6 mg/dL (n = 128) | p Value | |
Age, mean (years) | 55.00 ± 0.31 | 53.86 ± 0.68 | 0.067 | 55.83 ± 0.34 | 61.30 ± 1.26 | <0.001 |
Income | 0.049 | 0.472 | ||||
Low | 255 (22.0) | 70 (29.2) | 377 (22.9) | 32 (25.0) | ||
Mid-low | 298 (25.7) | 53 (22.1) | 416 (25.2) | 38 (29.7) | ||
Mid-high | 296 (25.5) | 61 (25.4) | 415 (25.2) | 33 (25.8) | ||
High | 312 (26.9) | 56 (23.3) | 440 (26.7) | 25 (19.5) | ||
Education | 0.287 | 0.072 | ||||
Elementary school | 224 (19.3) | 35 (14.6) | 511 (31.0) | 54 (42.2) | ||
Middle school | 158 (13.6) | 34 (14.2) | 242 (14.7) | 13 (10.2) | ||
High school | 356 (30.7) | 80 (33.3) | 505 (30.6) | 43 (33.6) | ||
College graduation | 423 (36.4) | 91 (37.9) | 390 (23.7) | 18 (14.1) | ||
Region | 0.780 | 0.541 | ||||
Urban | 909 (78.3) | 188 (78.3) | 1315 (79.8) | 103 (80.5) | ||
Rural | 252 (21.7) | 52 (21.7) | 333 (20.2) | 25 (19.5) | ||
Marital status | 0.049 | - | ||||
Married | 1118 (96.3) | 224 (93.3) | 1620 (98.3) | 128 (100.0) | ||
Unmarried | 41 (3.5) | 16 (6.7) | 28 (1.7) | 0 (0.0) | ||
Alcohol consumption | 0.068 | 0.428 | ||||
Never | 235 (20.2) | 44 (18.3) | 650 (39.4) | 61 (47.7) | ||
≤1/week | 497 (42.8) | 84 (35.0) | 842 (51.1) | 57 (44.5) | ||
2–3/week | 269 (23.2) | 58 (24.2) | 121 (7.3) | 8 (6.3) | ||
≥4/week | 160 (13.8) | 54 (22.5) | 35 (2.1) | 2 (1.6) | ||
Smoking | 0.914 | 0.569 | ||||
Never smoker | 212 (18.3) | 35 (14.6) | 1523 (92.4) | 116 (90.6) | ||
Ex-smoker | 590 (50.8) | 123 (51.3) | 50 (3.0) | 4 (3.1) | ||
Current smoker | 359 (30.9) | 82 (34.2) | 75 (4.6) | 8 (6.3) | ||
Pulmonary tuberculosis | 63 (5.4) | 16 (6.7) | 0.655 | 64 (3.9) | 3 (2.3) | 0.981 |
Asthma | 13 (1.1) | 6 (2.5) | 0.274 | 59 (3.6) | 5 (3.9) | 0.244 |
Lung cancer | 5 (0.4) | 2 (0.8) | 0.459 | 2 (0.1) | 0 (0.0) | - |
BMI (kg/m2) | 24.54 ± 0.11 | 25.47 ± 0.21 | <0.001 | 24.03 ± 0.11 | 25.99 ± 0.42 | <0.001 |
eGFR | 85.98 ± 0.99 | 76.89 ± 1.01 | <0.001 | 88.65 ± 0.53 | 73.28 ± 2.13 | <0.001 |
MAP (mmHg) | 93.79 ± 0.38 | 95.48 ± 0.79 | 0.052 | 89.94 ± 0.36 | 92.37 ± 1.05 | 0.024 |
Hemoglobin A1c (%) | 5.87 ± 0.03 | 5.66 ± 0.03 | <0.001 | 5.73 ± 0.02 | 6.00 ± 0.07 | <0.001 |
FEV1 (L) | 3.17 ± 0.02 | 3.23 ± 0.04 | 0.218 | 2.36 ± 0.02 | 2.08 ± 0.05 | <0.001 |
FVC (L) | 4.17 ± 0.02 | 4.22 ± 0.06 | 0.420 | 2.96 ± 0.02 | 2.65 ± 0.06 | <0.001 |
FEV1/FVC | 0.76 ± 0.00 | 0.76 ± 0.00 | 0.203 | 0.80 ± 0.00 | 0.78 ± 0.01 | 0.116 |
Male | Female | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Q1 * (n = 357) | Q2 † (n = 379) | Q3 ‡ (n = 323) | Q4 § (n = 342) | p Value | Q1 ∥ (n = 470) | Q2 ¶ (n = 445) | Q3 ** (n = 409) | Q4 †† (n = 452) | p Value | |
Age, mean (years) | 56.20 ± 0.55 | 55.50 ± 0.54 | 54.51 ± 0.57 | 53.68 ± 0.59 | 0.016 | 54.81 ± 0.53 | 55.18 ± 0.60 | 55.97 ± 0.53 | 59.02 ± 0.70 | <0.001 |
Income | 0.209 | 0.241 | ||||||||
Low | 73 (20.4) | 93 (24.5) | 67 (20.7) | 92 (26.9) | 100 (21.3) | 99 (22.2) | 112 (27.4) | 98 (21.7) | ||
Mid-low | 110 (30.8) | 88 (23.2) | 76 (23.5) | 77 (22.5) | 129 (27.4) | 118 (26.5) | 97 (23.7) | 110 (24.3) | ||
Mid-high | 85 (23.8) | 94 (24.8) | 93 (28.8) | 85 (24.9) | 122 (26.0) | 116 (26.1) | 87 (21.3) | 123 (27.2) | ||
High | 89 (24.9) | 104 (27.4) | 87 (26.9) | 88 (25.7) | 119 (25.3) | 112 (25.2) | 113 (27.6) | 121 (26.8) | ||
Education | 0.005 | 0.723 | ||||||||
Elementary school | 73 (20.4) | 76 (20.1) | 54 (16.7) | 56 (16.4) | 138 (29.4) | 156 (35.1) | 113 (27.6) | 158 (35.0) | ||
Middle school | 56 (15.7) | 50 (13.2) | 36 (11.1) | 50 (14.6) | 74 (15.7) | 49 (11.0) | 69 (16.9) | 63 (13.9) | ||
High school | 127 (35.6) | 113 (29.8) | 89 (27.6) | 107 (31.3) | 148 (31.5) | 138 (31.0) | 125 (30.6) | 137 (30.3) | ||
College graduation | 101 (28.3) | 140 (36.9) | 144 (44.6) | 129 (37.7) | 110 (23.4) | 102 (22.9) | 102 (24.9) | 94 (20.8) | ||
Region | 0.075 | 0.044 | ||||||||
Urban | 271 (75.9) | 296 (78.1) | 267 (82.7) | 263 (76.9) | 380 (80.9) | 366 (82.2) | 328 (80.2) | 344 (76.1) | ||
Rural | 86 (24.1) | 83 (21.9) | 56 (17.3) | 79 (23.1) | 90 (19.1) | 79 (17.8) | 81 (19.8) | 108 (23.9) | ||
Marital status | 0.181 | 0.075 | ||||||||
Married | 345 (96.6) | 365 (96.3) | 312 (96.6) | 320 (93.6) | 468 (99.6) | 438 (98.4) | 399 (97.6) | 443 (98.0) | ||
Unmarried | 12 (3.4) | 14 (3.7) | 11 (3.4) | 22 (6.4) | 2 (0.4) | 7 (1.6) | 10 (2.4) | 9 (2.0) | ||
Alcohol consumption | 0.005 | 0.063 | ||||||||
Never | 82 (23.0) | 93 (24.5) | 50 (15.5) | 54 (15.8) | 190 (40.4) | 168 (37.8) | 151 (36.9) | 202 (44.7) | ||
≤1/week | 131 (36.7) | 173 (45.6) | 149 (46.1) | 128 (37.4) | 243 (51.7) | 239 (53.7) | 207 (50.6) | 210 (46.5) | ||
2-3/week | 84 (23.5) | 77 (20.3) | 77 (23.8) | 89 (26.0) | 32 (6.8) | 29 (6.5) | 41 (10.0) | 27 (6.0) | ||
≥4/week | 60 (16.8) | 36 (9.5) | 47 (14.6) | 71 (20.8) | 5 (1.1) | 9 (2.0) | 10 (2.4) | 13 (2.9) | ||
Smoking | 0.139 | 0.036 | ||||||||
Never smoker | 60 (16.8) | 68 (17.9) | 64 (19.8) | 55 (16.1) | 441 (93.8) | 418 (93.9) | 371 (90.7) | 409 (90.5) | ||
Ex-smoker | 168 (47.1) | 208 (54.9) | 162 (50.2) | 175 (51.2) | 13 (2.8) | 9 (2.0) | 13 (3.2) | 19 (4.2) | ||
Current smoker | 129 (36.1) | 103 (27.2) | 97 (30.0) | 112 (32.7) | 16 (3.4) | 18 (4.0) | 25 (6.1) | 24 (5.3) | ||
Pulmonary tuberculosis | 24 (6.7) | 19 (5.0) | 14 (4.3) | 22 (6.4) | 0.142 | 18 (3.8) | 26 (5.8) | 12 (2.9) | 11 (2.4) | 0.075 |
Asthma | 4 (1.1) | 1 (0.3) | 5 (1.5) | 9 (2.6) | 0.003 | 9 (1.9) | 12 (2.7) | 19 (4.6) | 24 (5.3) | 0.014 |
Lung cancer | 2 (0.6) | 1 (0.3) | 2 (0.6) | 2 (0.6) | 0.608 | 1 (0.2) | 0 (0.0) | 1 (0.2) | 0 (0.0) | - |
BMI (kg/m2) | 24.31 ± 0.20 | 24.35 ± 0.17 | 24.88 ± 0.18 | 25.31 ± 0.18 | <0.001 | 23.25 ± 0.16 | 23.81 ± 0.17 | 24.42 ± 0.21 | 25.30 ± 0.23 | <0.001 |
eGFR | 91.32 ± 2.80 | 84.53 ± 0.83 | 83.16 ± 0.80 | 78.23 ± 0.86 | <0.001 | 93.34 ± 0.92 | 89.50 ± 0.81 | 86.90 ± 0.90 | 79.91 ± 0.99 | <0.001 |
MAP (mmHg) | 93.67 ± 0.63 | 94.08 ± 0.58 | 93.69 ± 0.71 | 94.87 ± 0.69 | 0.518 | 88.86 ± 0.55 | 89.41 ± 0.68 | 90.74 ± 0.65 | 91.64 ± 0.54 | <0.001 |
Hemoglobin A1c (%) | 6.09 ± 0.08 | 5.84 ± 0.04 | 5.69 ± 0.04 | 5.69 ± 0.04 | <0.001 | 5.74 ± 0.05 | 5.68 ± 0.04 | 5.73 ± 0.03 | 5.86 ± 0.04 | 0.003 |
FEV1 (L) | 3.10 ± 0.04 | 3.17 ± 0.04 | 3.19 ± 0.04 | 3.26 ± 0.04 | 0.051 | 2.37 ± 0.03 | 2.41 ± 0.02 | 2.34 ± 0.03 | 2.23 ± 0.03 | <0.001 |
FVC (L) | 4.13 ± 0.04 | 4.15 ± 0.04 | 4.17 ± 0.04 | 4.27 ± 0.05 | 0.124 | 2.99 ± 0.04 | 3.00 ± 0.03 | 2.95 ± 0.03 | 2.80 ± 0.03 | <0.001 |
FEV1/FVC | 0.75 ± 0.00 | 0.76 ± 0.00 | 0.76 ± 0.00 | 0.76 ± 0.00 | 0.115 | 0.79 ± 0.00 | 0.80 ± 0.00 | 0.79 ± 0.00 | 0.79 ± 0.00 | 0.133 |
Hyperuricemia | Uric Acid Quartile | ||||||
---|---|---|---|---|---|---|---|
β ± SE | p Value | Q1 | Q2 β ± SE | Q3 β ± SE | Q4 β ± SE | p Value | |
Model 1 † | |||||||
Male | |||||||
FEV1 | −0.008 ± 0.038 | 0.841 | Ref. | 0.013 ± 0.039 | −0.028 ± 0.046 | 0.022 ± 0.044 | 0.687 |
FVC | −0.016 ± 0.050 | 0.753 | Ref. | −0.030 ± 0.050 | −0.070 ± 0.055 | 0.019 ± 0.055 | 0.374 |
FEV1/FVC | 0.001 ± 0.005 | 0.841 | Ref. | 0.009 ± 0.006 | 0.006 ± 0.006 | 0.002 ± 0.006 | 0.428 |
Female | |||||||
FEV1 | −0.143 ± 0.046 | 0.002 | Ref. | 0.033 ± 0.027 | −0.021 ± 0.034 | −0.053 ± 0.031 | 0.006 |
FVC | −0.159 ± 0.048 | 0.001 | Ref. | 0.015 ± 0.034 | −0.024 ± 0.041 | −0.079 ± 0.041 | 0.021 |
FEV1/FVC | −0.008 ± 0.008 | 0.308 | Ref. | 0.006 ± 0.004 | 0.000 ± 0.005 | 0.001 ± 0.004 | 0.351 |
Model 2 ‡ | |||||||
Male | |||||||
FEV1 | 0.000 ± 0.038 | 0.996 | Ref. | 0.004 ± 0.038 | −0.029 ± 0.046 | 0.028 ± 0.042 | 0.631 |
FVC | −0.011 ± 0.051 | 0.832 | Ref. | −0.039 ± 0.049 | −0.076 ± 0.055 | 0.017 ± 0.054 | 0.314 |
FEV1/FVC | 0.002 ± 0.005 | 0.666 | Ref. | 0.008 ± 0.006 | 0.007 ± 0.006 | 0.004 ± 0.006 | 0.545 |
Female | |||||||
FEV1 | −0.142 ± 0.044 | 0.001 | Ref. | 0.039 ± 0.026 | −0.018 ± 0.034 | −0.050 ± 0.031 | 0.002 |
FVC | −0.161 ± 0.047 | <0.001 | Ref. | 0.020 ± 0.034 | −0.026 ± 0.040 | −0.083 ± 0.040 * | 0.007 |
FEV1/FVC | −0.008 ± 0.008 | 0.307 | Ref. | 0.006 ± 0.003 | 0.001 ± 0.004 | 0.003 ± 0.004 | 0.255 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, H.; Baek, S.-Y.; Kim, S.-W.; Park, E.-J.; Kim, H.; Lee, J.; Jeon, C.-H. Gender-Specific Association of Serum Uric Acid and Pulmonary Function: Data from the Korea National Health and Nutrition Examination Survey. Medicina 2021, 57, 953. https://doi.org/10.3390/medicina57090953
Jeong H, Baek S-Y, Kim S-W, Park E-J, Kim H, Lee J, Jeon C-H. Gender-Specific Association of Serum Uric Acid and Pulmonary Function: Data from the Korea National Health and Nutrition Examination Survey. Medicina. 2021; 57(9):953. https://doi.org/10.3390/medicina57090953
Chicago/Turabian StyleJeong, Hyemin, Sun-Young Baek, Seon-Woo Kim, Eun-Jung Park, Hyungjin Kim, Jaejoon Lee, and Chan-Hong Jeon. 2021. "Gender-Specific Association of Serum Uric Acid and Pulmonary Function: Data from the Korea National Health and Nutrition Examination Survey" Medicina 57, no. 9: 953. https://doi.org/10.3390/medicina57090953
APA StyleJeong, H., Baek, S. -Y., Kim, S. -W., Park, E. -J., Kim, H., Lee, J., & Jeon, C. -H. (2021). Gender-Specific Association of Serum Uric Acid and Pulmonary Function: Data from the Korea National Health and Nutrition Examination Survey. Medicina, 57(9), 953. https://doi.org/10.3390/medicina57090953