The Role of Direct Oral Anticoagulants in Cancer-Associated Thrombosis According to the Current Literature
Abstract
:1. Introduction
2. RCTs Comparing DOACs to Standard Treatment (LMWH/VKA) in CAT
3. Real-World Data on CAT Patients
4. Current Recommendations on CAT Management
5. Considerations on the Current Literature
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Lyman, G.H. Venous thromboembolism in the patient with cancer: Focus on burden of disease and benefits of thromboprophylaxis. Cancer 2010, 7, 1334–1349. [Google Scholar] [CrossRef] [PubMed]
- Ay, C.; Pabinger, I.; Cohen, A.T. Cancer-associated venous thromboembolism: Burden, mechanisms, and management. Thromb. Haemost. 2017, 117, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Chew, H.K.; Wun, T.; Harvey, D.; Zhou, H.; White, R.H. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch. Intern. Med. 2006, 166, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Monreal, M.; Falga, C.; Valdes, M.; Suarez, C.; Gabriel, F.; Tolosa, C.; Montes, J.; Riete Investigators. Fatal pulmonary embolism and fatal bleeding in cancer patients with venous thromboembolism: Findings from the RIETE registry. J. Thromb. Haemost. 2006, 4, 1950–1956. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Kuderer, N.M.; Lyman, G.H. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J. Thromb. Haemost. 2007, 5, 632–634. [Google Scholar] [CrossRef] [PubMed]
- Kearon, C.; Akl, E.A.; Ornelas, J.; Blaivas, A.; Jimenez, D.; Bounameaux, H.; Huisman, M.; King, C.S.; Morris, T.A.; Sood, N.; et al. Antithrombotic Therapy for VTE Disease: CHEST Guideline and Expert Panel report. Chest 2016, 149, 315–352. [Google Scholar] [CrossRef]
- Prins, M.H.; Lensing, A.W.; Brighton, T.A.; Lyons, R.; Rehm, J.; Trajanovic, M.; Davidson, B.L.; Beyer-Westendorf, J.; Pap, A.F.; Berkowitz, S.D.; et al. Oral rivaroxaban versus enoxaparin with vitamin K antagonist for the treatment of symptomatic venous thromboembolism in patients with cancer (EINSTEIN-DVT and EINSTEIN-PE): A pooled subgroup analysis of two randomised controlled trials. Lancet Haematol. 2014, 1, e37–e46. [Google Scholar] [CrossRef]
- Agnelli, G.; Buller, H.R.; Cohen, A.; Gallus, A.S.; Lee, T.C.; Pak, R.; Raskob, G.E.; Weitz, J.I.; Yamabe, T. Oral apixaban for the treatment of venous thromboembolism in cancer patients: Results from the AMPLIFY trial. J. Thromb. Haemost. 2015, 13, 2187–2191. [Google Scholar] [CrossRef] [PubMed]
- Young, A.M.; Marshall, A.; Thirlwall, J.; Chapman, O.; Lokare, A.; Hill, C.; Hale, D.; Dunn, J.A.; Lyman, G.H.; Hutchinson, C.; et al. Comparison of an Oral Factor Xa Inhibitor with Low Molecular Weight Heparin in Patients with Cancer with Venous Thromboembolism: Results of a Randomized Trial (SELECT-D). J. Clin. Oncol. 2018, 36, 2017–2023. [Google Scholar] [CrossRef] [PubMed]
- Marshall, A.; Levine, M.; Hill, C.; Hale, D.; Thirlwall, J.; Wilkie, V.; French, K.; Kakkar, A.; Lokare, A.; Maraveyas, A.; et al. Treatment of cancer-associated venous thromboembolism: 12-month outcomes of the placebo versus rivaroxaban randomization of the SELECT-D Trial (SELECT-D: 12 m). J. Thromb. Haemost. 2020, 18, 905–915. [Google Scholar] [CrossRef]
- Van Es, N.; Di Nisio, M.; Bleker, S.M.; Segers, A.; Mercuri, M.F.; Schwocho, L.; Kakkar, A.; Weitz, J.I.; Beyer-Westendorf, J.; Boda, Z.; et al. Edoxaban for treatment of venous thromboembolism in patients with cancer. Rationale and design of the Hokusai VTE-cancer study. Thromb. Haemost. 2015, 114, 1268–1276. [Google Scholar] [CrossRef] [Green Version]
- Raskob, G.E.; van Es, N.; Verhamme, P.; Carrier, M.; Di Nisio, M.; Garcia, D.; Grosso, M.A.; Kakkar, A.K.; Kovacs, M.J.; Mercuri, M.F.; et al. Edoxaban for the Treatment of Cancer-Associated Venous Thromboembolism. N. Engl. J. Med. 2018, 378, 615–624. [Google Scholar] [CrossRef]
- Mulder, F.I.; van Es, N.; Kraaijpoel, N.; Di Nisio, M.; Carrier, M.; Duggal, A.; Gaddh, M.; Garcia, D.; Grosso, M.A.; Kakkar, A.K.; et al. Edoxaban for treatment of venous thromboembolism in patient groups with different types of cancer: Results from the Hokusai VTE Cancer study. Thromb. Res. 2020, 185, 13–19. [Google Scholar] [CrossRef] [Green Version]
- McBane, R.D., 2nd; Wysokinski, W.E.; Le-Rademacher, J.G.; Zemla, T.; Ashrani, A.; Tafur, A.; Perepu, U.; Anderson, D.; Gundabolu, K.; Kuzma, C.; et al. Apixaban and dalteparin in active malignancy-associated venous thromboembolism: The ADAM VTE trial. J. Thromb. Haemost. 2020, 18, 411–421. [Google Scholar] [CrossRef]
- Agnelli, G.; Becattini, C.; Bauersachs, R.; Brenner, B.; Campanini, M.; Cohen, A.; Connors, J.M.; Fontanella, A.; Gussoni, G.; Huisman, M.V.; et al. Apixaban versus Dalteparin for the Treatment of Acute Venous Thromboembolism in Patients with Cancer: The Caravaggio Study. Thromb. Haemost. 2018, 118, 1668–1678. [Google Scholar] [CrossRef] [Green Version]
- Agnelli, G.; Becattini, C.; Meyer, G.; Munoz, A.; Huisman, M.V.; Connors, J.M.; Cohen, A.; Bauersachs, R.; Brenner, B.; Torbicki, A.; et al. Apixaban for the Treatment of Venous Thromboembolism Associated with Cancer. N. Engl. J. Med. 2020, 382, 1599–1607. [Google Scholar] [CrossRef]
- Ageno, W.; Vedovati, M.C.; Cohen, A.; Huisman, M.; Bauersachs, R.; Gussoni, G.; Becattini, C.; Agnelli, G. Bleeding with Apixaban and Dalteparin in Patients with Cancer-Associated Venous Thromboembolism: Results from the Caravaggio Study. Thromb. Haemost. 2021, 121, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Mulder, F.I.; Bosch, F.T.M.; Young, A.M.; Marshall, A.; McBane, R.D.; Zemla, T.J.; Carrier, M.; Kamphuisen, P.W.; Bossuyt, P.M.M.; Buller, H.R.; et al. Direct oral anticoagulants for cancer-associated venous thromboembolism: A systematic review and meta-analysis. Blood 2020, 136, 1433–1441. [Google Scholar] [CrossRef] [PubMed]
- Giustozzi, M.; Agnelli, G.; Del Toro-Cervera, J.; Klok, F.A.; Rosovsky, R.P.; Martin, A.C.; Herold, J.; Tzoran, I.; Szmit, S.; Bertoletti, L.; et al. Direct Oral Anticoagulants for the Treatment of Acute Venous Thromboembolism Associated with Cancer: A Systematic Review and Meta-Analysis. Thromb. Haemost. 2020, 120, 1128–1136. [Google Scholar] [CrossRef] [PubMed]
- Kahale, L.A.; Hakoum, M.B.; Tsolakian, I.G.; Matar, C.F.; Terrenato, I.; Sperati, F.; Barba, M.; Ed Yosuico, V.; Schunemann, H.; Akl, E.A. Anticoagulation for the long-term treatment of venous thromboembolism in people with cancer. Cochrane Database Syst. Rev. 2018, 6, CD006650. [Google Scholar] [CrossRef]
- Ageno, W.; Mantovani, L.G.; Haas, S.; Kreutz, R.; Monje, D.; Schneider, J.; van Eickels, M.; Gebel, M.; Zell, E.; Turpie, A.G.G. Safety and effectiveness of oral rivaroxaban versus standard anticoagulation for the treatment of symptomatic deep-vein thrombosis (XALIA): An international, prospective, non-interventional study. Lancet Hematol. 2016, 3, e12–e21. [Google Scholar] [CrossRef]
- Ageno, W.; Mantovani, L.G.; Haas, S.; Kreutz, R.; Monje, D.; Schneider, J.; van Eickels, M.; Gebel, M.; Turpie, A.G.G. Subgroup Analysis of Patients with Cancer in XALIA: A Noninterventional Study of Rivaroxaban versus Standard Anticoagulation for VTE. TH Open 2017, 1, e33–e42. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, A.; Stein, C.M.; Chung, C.P.; Daugherty, J.R.; Smalley, W.E.; Ray, W.A. An automated database case definition for serious bleeding related to oral anticoagulant use. Pharmacoepidemiol. Drug Saf. 2011, 20, 560–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streiff, M.B.; Milentijevic, D.; McCrae, K.; Yannicelli, D.; Fortier, J.; Nelson, W.W.; Laliberte, F.; Crivera, C.; Lefebvre, P.; Schein, J.; et al. Effectiveness and safety of anticoagulants for the treatment of venous thromboembolism in patients with cancer. Am. J. Hematol. 2018, 93, 664–671. [Google Scholar] [CrossRef]
- Wysokinski, W.E.; Houghton, D.E.; Casanegra, A.I.; Vlazny, D.T.; Bott-Kitslaar, D.M.; Froehling, D.A.; Hodge, D.O.; Peterson, L.G.; Mcbane, R.D. Comparison of apixaban to rivaroxaban and enoxaparin in acute cancer-associated venous thromboembolism. Am. J. Hematol. 2019, 94, 1185–1192. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; McCrae, K.; Milentijevic, D.; McCormick, N.; Laliberte, F.; Crivera, C.; Lefebvre, P.; Lejeune, D.; Rozjabek, H.; Schein, J.; et al. The risk of recurrent VTE and major bleeding in a commercially insured population of cancer patients treated with anticoagulation. Am. J. Hematol. 2019, 94, E58–E61. [Google Scholar] [CrossRef]
- Cohen, A.T.; Maraveyas, A.; Beyer-Westendorf, J.; Lee, A.Y.Y.; Mantovani, L.G.; Bach, M.; COSIMO Investigators. COSIMO—Patients with active cancer changing to rivaroxaban for the treatment and prevention of recurrent venous thromboembolism: A non-interventional study. Thromb J. 2018, 16, 21. [Google Scholar] [CrossRef] [Green Version]
- Attia, D.; Khorana, A.A. Evolving Treatment Options for Cancer-Related Venous Thromboembolism. JACC Cardio Oncol. 2020. Available online: http://hdl.handle.net/10616/47325 (accessed on 15 June 2021). [CrossRef]
- Lee, A.Y.Y. Anticoagulant Therapy for Venous Thromboembolism in Cancer. N. Engl. J. Med. 2020, 382, 1650–1652. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; Noble, S.; Lee, A.Y.Y.; Soff, G.; Meyer, G.; O’Connell, C.; Carrier, M. Role of direct oral anticoagulants in the treatment of cancer-associated venous thromboembolism: Guidance from the SSC of the ISTH. J. Thromb. Haemost. 2018, 16, 1891–1894. [Google Scholar] [CrossRef] [Green Version]
- Key, N.S.; Khorana, A.A.; Kuderer, N.M.; Bohlke, K.; Lee, A.Y.Y.; Arcelus, J.I.; Wong, S.L.; Balaban, E.P.; Flowers, C.R.; Francis, C.W.; et al. Venous Thromboembolism Prophylaxis and Treatment in Patients with Cancer: ASCO Clinical Practice Guideline Update. J. Clin. Oncol. 2020, 38, 496. [Google Scholar] [CrossRef]
- Konstantinides, S.V.; Torbicki, A.; Agnelli, G.; Danchin, N.; Fitzmaurice, D.; Galie, N.; Gibbs, J.S.R.; Huisamn, M.V.; Humbert, M.; Kucher, N.; et al. 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur. Heart J. 2014, 35, 3033–3069. [Google Scholar] [CrossRef] [Green Version]
- Konstantinides, S.V.; Meyer, G. The 2019 ESC Guidelines on the Diagnosis and Management of Acute Pulmonary Embolism. Eur. Heart J. 2019, 40, 3453–3455. [Google Scholar] [CrossRef] [Green Version]
- Farge, D.; Frere, C.; Connors, J.M.; Ay, C.; Khorana, A.A.; Munoz, A.; Brenner, B.; Kakkar, A.; Rafii, H.; Solymoss, S.; et al. 2019 international clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer. Lancet Oncol. 2019, 20, e566–e581. [Google Scholar] [CrossRef] [Green Version]
- Lyman, G.H.; Carrirer, M.; Ay, C.; Di Nisio, M.; Hicks, l.K.; Khorana, A.A.; Leavitt, A.D.; Lee, A.Y.Y.; Macbeth, F.; Morgan, R.L.; et al. American Society of Hematology 2021 guidelines for management of venous thromboembolism: Prevention and treatment in patients with cancer. Blood Adv. 2021, 5, 927–974. [Google Scholar] [CrossRef]
- Kakkos, S.K.; Gohel, M.; Baekgaard, N.; Bauersachs, R.; Bellmunt-Montoya, S.; Black, S.A.; Ten Cate-Hoek, A.J.; Elalamy, I.; Enzmann, F.K.; Geroulakos, G.; et al. Editor’s Choice—European Society for Vascular Surgery (ESVS) 2021 Clinical Practice Guidelines on the Management of Venous Thrombosis. Eur. J. Vasc. Endovasc. Surg. 2021, 61, 9–82. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.J.; Ryu, K.H.; Park, B.J.; Yoon, B.-H. The risk of gastrointestinal hemorrhage with non-vitamin K antagonist oral anticoagulants: A network meta-analysis. Medicine 2021, 100, e25216. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Seo, S.; Kim, K.-P.; Chang, H.-M.; Ryoo, B.-Y.; Yoo, C.; Jeong, J.H.; Lee, J.-L.; Im, H.-S.; Jeong, H.; et al. Rivaroxaban versus Low-molecular-weight Heparin for Venous Thromboembolism in Advanced Upper Gastrointestinal tract and Hepatopancreatobiliary Cancer. In Vivo 2020, 34, 829–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, S.; Zhang, Y.; Li, Y.; Li, Y.; Miao, Y.; Zhao, R.; Zhai, S. Direc Oral Anticoagulant for the Treatment of VTE in Cancer Patients: A systematic Review and Meta-analysis. Ann. Pharmacothe. 2021, 55, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W. Current status of treatment of cancer-associated venous thromboembolism. Thromb J. 2021, 19, 21. [Google Scholar] [CrossRef]
- Osataphan, S.; Patell, R.; Chiasakul, T.; Khorana, A.A.; Zwicker, J.I. Extended thromboprophylaxis for medically ill patients with cancer: A systematic review and meta-analysis. Blood Adv. 2021, 5, 2055–2062. [Google Scholar] [CrossRef] [PubMed]
- Burlacu, A.; Genovesi, S.; Goldsmith, D.; Rossignol, P.; Ortiz, A.; Klra, P.A.; Malyszko, J.; Banach, M.; Kanbay, M.; Covic, A. Bleeding in advanced CKD patients on antithrombotic medication-A critical appraisal. Pharmacol. Res. 2018, 129, 535–543. [Google Scholar] [CrossRef] [PubMed]
Societies’ recommendations | International Society of Thrombosis and Hemostasis (ISTH) 2018 | In Itiative on Thrombosis and Cancer (ITAC/CME) 2019 | European Society of Cardiology (ESC) 2019 | American Society of Clinical Oncology (ASCO) 2020 | American Society of Hematology (ASH) 2021 | European Society for Vascular Surgery (ESVS) 2021 |
Anticoagulant choice | Use of specific DOACS (edoxaban, rivaroxaban) and LMWHs are the preferred pharmaceutical choices (Weak guidance) LMWHs are preferred in patients with high bleeding or DDI risk (weak guidance) | Initial phase (5–10 days): LMWH, rivaroxaban, or edoxaban following ≥5 days of parenteral anticoagulation (Grade 1B) Long-term (<6 months): LMWH or DOACs (edoxaban, rivaroxaban) (Grade1A) Extended therapy (>6 months): LMWH or DOACs (Grade 1A0 | In patients with PE and cancer, LMWH should be considered for the first 6 months over VKAs. (Class IIa Level A) Rivaroxaban and edoxaban should be considered as alternatives to LMWHs in patients without gastrointestinal cancer (Class IIa Level C and Class IIa Level B, respectively) | Initial phase (5–10 days): LMWH, fondaparinux or rivaroxaban preferred (evidence quality: high; strength of recommendation: strong) Long-term (<6 months): LMWH, edoxaban or rivaroxaban (VKAs are acceptable alternatives for long-term therapy if LMWH/DOACs not available) (Evidence quality: High; Strength of recommendation: strong) Extended therapy (≥6 months): LMWH, edoxaban or rivaroxaban or VKAs (evidence quality: low; strength of recommendation: weak to moderate) | DOACs (rivaroxaban, apixaban) as prophylaxis in ambulatory high thrombotic risk cancer patients under systemic therapy (moderate evidence) Initial phase (<7 days): LMWHs or DOACs (apixaban, edoxaban, rivaroxaban) as alternative (very low evidence) Long-term (3–6 months): DOACS over LMWH (Low evidence) Extended therapy (>6 months): DOACS or LMWHs (very low evidence) | LMWHs as standard of treatment in initial and principal phase (Class I Level A) Extended therapy (>6 months): DOACs (Class I Level C) DOACs as an alternative in patients without GI or genitourinary cancer for initial, principal, and extended treatment (Class IIa Level A) |
Societies’ recommendations | ISTH 2018 | ITAC/CME 2019 | ESC 2019 | ASCO 2020 | ASH 2021 | ESVS 2021 |
Duration of therapy | NR | LMWHs or DOACs should be used for a least 6 months, while extension should rely on individualized evaluation (Grade 1A) | Extended anticoagulation (>6 months) should be considered for an indefinite period or until cancer is cured (Class IIa Level B) | Extended therapy may be considered in active cancer (evidence quality: low; strength of recommendation: weak to moderate) | Extended anticoagulation (>6 months) should be considered for an indefinite period in active cancer (low evidence) | Extended anticoagulation (>6 months) should be considered for an indefinite period in active cancer (in text) |
Societies’ recommendations | ISTH 2018 | ITAC/CME 2019 | ESC 2019 | ASCO 2020 | ASH 2021 | ESVS 2021 |
Aim & weighting the evidence | To outline expert experience and the biological rational that may affect clinical decision The guidance statements are in accordance with the following premises: 1. Average patient with cancer and VTE 2. “we recommend” reflects a strong guidance with strong consensus among the panel 3. ”We suggest” reflects a weak guidance with moderate consensus among the panel | To establish a global consensus for the treatment and prophylaxis of VTE in patients with cancer The GRADE approach was used by an expert panel to conduct a systematic review of the current literature. The level of evidence was characterized as high (A), moderate (B), low (C), and very low (D), while the level of recommendation was strong (grade 1), weak (grade 2), and characterized as best clinical practice (guidance) | To suggest optimal objectively validated management strategies for patients with suspected or confirmed PE. Conclusions based on the available scientific evidence, using the European Society of Cardiology grading system (A, B, or C indicates the level of current evidence). Depending on the strength of recommendation, each one is categorized as Class I, IIa/IIb, and III. | To provide updated recommendations about prophylaxis and treatment of VTE in patients with cancer A systematic review of RCTs reporting on VTE prophylaxis and treatment using PubMed and CENTRAL databases, executed by an expert commit using the “signals” approach | To support patients, clinicians, and others in decisions about treatment of VTE The Grading of Recommendations Assessments, Development and Evaluation (GRADE) approach was used by an expert panel | To assist clinicians in selecting the best management strategies to achieve optimal patient outcomes Revision and summary of the relevant peer reviewed published literature. Conclusions based on the available scientific evidence, using the European Society of Cardiology grading system (A, B, or C indicates the level of current evidence). Depending on the strength of recommendation, each one is categorized as Class I, IIa/IIb, and III. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nana, P.; Dakis, K.; Peroulis, M.; Rousas, N.; Spanos, K.; Kouvelos, G.; Arnaoutoglou, E.; Matsagkas, M. The Role of Direct Oral Anticoagulants in Cancer-Associated Thrombosis According to the Current Literature. Medicina 2021, 57, 960. https://doi.org/10.3390/medicina57090960
Nana P, Dakis K, Peroulis M, Rousas N, Spanos K, Kouvelos G, Arnaoutoglou E, Matsagkas M. The Role of Direct Oral Anticoagulants in Cancer-Associated Thrombosis According to the Current Literature. Medicina. 2021; 57(9):960. https://doi.org/10.3390/medicina57090960
Chicago/Turabian StyleNana, Petroula, Konstantinos Dakis, Michail Peroulis, Nikos Rousas, Konstantinos Spanos, George Kouvelos, Eleni Arnaoutoglou, and Miltos Matsagkas. 2021. "The Role of Direct Oral Anticoagulants in Cancer-Associated Thrombosis According to the Current Literature" Medicina 57, no. 9: 960. https://doi.org/10.3390/medicina57090960
APA StyleNana, P., Dakis, K., Peroulis, M., Rousas, N., Spanos, K., Kouvelos, G., Arnaoutoglou, E., & Matsagkas, M. (2021). The Role of Direct Oral Anticoagulants in Cancer-Associated Thrombosis According to the Current Literature. Medicina, 57(9), 960. https://doi.org/10.3390/medicina57090960