ABCA1 rs1883025 and CYP4F2 rs2108622 Gene Polymorphism Association with Age-Related Macular Degeneration and Anti-VEGF Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Control Group Formation
2.2. Ophthalmological Evaluation
2.3. DNA Extraction and Genotyping
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jager, R.D.; Mieler, W.F.; Miller, J.W. Age-related macular degeneration. N. Engl. J. Med. 2008, 358, 2606–2617. [Google Scholar] [CrossRef] [Green Version]
- Congdon, N.; O’Colmain, B.; Klaver, C.C. Causes and prevalence of visual impairment among adults in the United States. Arch. Ophthalmol. 2004, 122, 477–485. [Google Scholar]
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.G.; Klein, R.; Cheng, C.Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef] [Green Version]
- García-Layana, A.; Cabrera-Lopez, F.; Garcia-Arumi, J.; Arias-Barquet, L.; Ruiz-Moreno, J.M. Early and intermediate age-related macular degeneration: Update and clinical review. Clin. Interv. Aging 2017, 12, 1579–1587. [Google Scholar] [CrossRef] [Green Version]
- Friedman, D.S.; O’Colmain, B.J.; Munoz, B.; Tomany, S.C.; McCarty, C.; de Jong, P.T.; Nemesure, B.; Mitchell, P.; Kempen, J. Eye Diseases Prevalence Research Group Prevalence of age-related macular degeneration in the United States. Arch. Ophthalmol. 2004, 122, 564–572. [Google Scholar] [PubMed] [Green Version]
- Gess, A.J.; Fung, A.E.; Rodriguez, J.G. Imaging in neovascular age-related macular degeneration. Semin. Ophthalmol. 2011, 26, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.F.; Maguire, M.G.; Fine, S.L. Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: Two-year results. Ophthalmology 2012, 119, 1388–1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gragoudas, E.S.; Adamis, A.P.; Cunningham, E.T., Jr.; Feinsod, M.; Guyer, D.R. VEGF inhibition study in ocular neovascularization clinical trial group, pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med. 2004, 351, 2805–2816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrara, N.; Damico, L.; Shams, N.; Lowman, H.; Kim, R. Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina 2006, 26, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Bretillon, L.; Acar, N.; Seeliger, M.W.; Santos, M.; Annick, M.; Juanéda, P.; Martine, L.; Grégoire, S.; Joffre, C.; Bron, A.M. ApoB100, LDLR−/− mice exhibit reduced electroretinographic response and cholesteryl esters deposits in the retina. Investig. Ophthalmol. Vis. Sci. 2008, 49, 1307–1314. [Google Scholar] [CrossRef]
- Curcio, C.A.; Johnson, M.; Rudolf, M.; Huang, J.D. The oil spill in ageing Bruch membrane. Br. J. Ophthalmol. 2011, 95, 1638–1645. [Google Scholar] [CrossRef]
- Fliesler, S.J.; Bretillon, L. The ins and outs of cholesterol in the vertebrate retina. J. Lipid Res. 2010, 51, 3399–3413. [Google Scholar] [CrossRef] [Green Version]
- Kishan, A.U.; Modjtahedi, B.S.; Martins, E.N.; Modjtahedi, S.P.; Morse, L.S. Lipids and age-related macular degeneration. Surv. Ophthalmol. 2011, 56, 195–213. [Google Scholar] [CrossRef]
- Curcio, C.A.; Johnson, M.; Huang, J.D.; Rudolf, M. Apolipoprotein B-containing lipoproteins in retinal aging and age-related macular degeneration. J. Lipid Res. 2010, 51, 451–467. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Clark, M.E.; Crossman, D.K.; Kojima, K.; Messinger, J.D.; Mobley, J.A.; Curcio, C.A. Abundant lipid and protein components of drusen. PLoS ONE 2010, 5, e10329. [Google Scholar] [CrossRef] [PubMed]
- Moreira, E.F.; Larrayoz, I.M.; Lee, J.W.; Rodríguez, I.R. 7-Ketocholesterol is present in lipid deposits in the primate retina: Potential implication in the induction of VEGF and CNV formation. Investig. Ophthalmol. Vis. Sci. 2009, 50, 523–532. [Google Scholar] [CrossRef]
- Rendic, S.; Guengerich, F.P. Survey of Human Oxidoreductases and Cytochrome P450 Enzymes Involved in the Metabolism of Xenobiotic and Natural Chemicals. Chem. Res. Toxicol. 2015, 28, 38–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasegawa, E.; Inafuku, S.; Mulki, L.; Okunuki, Y.; Yanai, R.; Smith, K.E.; Kim, C.B.; Klokman, G.; Bielenberg, D.R.; Puli, N.; et al. Cytochrome P450 monooxygenase lipid metabolites are significant second messengers in the resolution of choroidal neovascularization. Proc. Natl. Acad. Sci. USA 2017, 114, E7545–E7553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatarunas, V.; Kupstyte, N.; Giedraitiene, A.; Skipskis, V.; Jakstas, V.; Zvikas, V.; Lesauskaite, V. The impact of CYP2C19*2, CYP4F2*3, and clinical factors on platelet aggregation, CYP4F2 enzyme activity, and 20-hydroxyeicosatetraenoic acid concentration in patients treated with dual antiplatelet therapy. Blood Coagul. Fibrinolysis 2017, 28, 658–664. [Google Scholar] [CrossRef] [PubMed]
- Fava, C.; Ricci, M.; Melander, O.; Minuz, P. Hypertension, cardiovascular risk and polymorphisms in genes controlling the cytochrome P450 pathway of arachidonic acid: A sex-specific relation? Prostaglandins Other Lipid Mediat. 2012, 98, 75–85. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Stambolian, D.; Edwards, A.O.; Branham, K.E.; Othman, M.; Jakobsdottir, J.; Tosakulwong, N.; Pericak-Vance, M.A.; Campochiaro, P.A.; Klein, M.L.; et al. Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration. Proc. Natl. Acad. Sci. USA 2010, 107, 7401–7406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Reynolds, R.; Fagerness, J.; Rosner, B.; Daly, M.J.; Seddon, J.M. Association of variants in the LIPC and ABCA1 genes with intermediate and large drusen and advanced age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2011, 52, 4663–4670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oram, J.F.; Heinecke, J.W. ATP-binding cassette transporter A1: A cell cholesterol exporter that protects against cardiovascular disease. Physiol. Rev. 2005, 85, 1343–1372. [Google Scholar] [CrossRef] [PubMed]
- Singaraja, R.R.; Brunham, L.R.; Visscher, H.; Kastelein, J.J.; Hayden, M.R. Efflux and atherosclerosis: The clinical and biochemical impact of variations in the ABCA1 gene. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1322–1332. [Google Scholar] [CrossRef] [Green Version]
- Stewart, J.M.; Bailey, K.R.; Duncan, K.G.; Kane, J.P.; Schwartz, D.M. Expression of reverse cholesterol transport protiens SR-BI, SR-BII and ABCA1 in the human retinal pigment epithelium. Ophthalmol. Vis. Sci. 2003, 44, 1711. [Google Scholar]
- Tserentsoodol, N.; Gordiyenko, N.V.; Pascual, I.; Lee, J.W.; Fliesler, S.J.; Rodriguez, I.R. Intraretinal lipid transport is dependent on high density lipoprotein-like particles and class B scavenger receptors. Mol. Vis. 2006, 12, 1319–1333. [Google Scholar] [PubMed]
- Sakiene, R.; Vilkeviciute, A.; Kriauciuniene, L.; Balciuniene, V.J.; Buteikiene, D.; Miniauskiene, G.; Liutkeviciene, R. CYP4F2 (rs2108622) Gene Polymorphism Association with Age-Related Macular Degeneration. Adv. Med. 2016, 2016, 3917916. [Google Scholar] [CrossRef] [Green Version]
- Vilkeviciute, A.; Bastikaityte, N.; Mockute, R.; Cebatoriene, D.; Kriauciuniene, L.; Zemaitiene, R.; Liutkeviciene, R. The Role of SNPs in IL1RL1 and IL1RAP Genes in Age-related Macular Degeneration Development and Treatment Efficacy. In Vivo 2020, 34, 2443–2451. [Google Scholar] [CrossRef]
- Grassmann, F.; Heid, I.M.; Weber, B.H. International AMD Genomics Consortium (IAMDGC). Recombinant Haplotypes Narrow the ARMS2/HTRA1 Association Signal for Age-Related Macular Degeneration. Genetics 2017, 205, 919–924. [Google Scholar] [CrossRef]
- Fritsche, L.G.; Igl, W.; Bailey, J.N.; Grassmann, F.; Grassmann, F.; Sengupta, S.; Bragg-Gresham, J.L.; Burdon, K.P.; Hebbring, S.J.; Wen, C.; et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat. Genet. 2016, 8, 134–143. [Google Scholar] [CrossRef] [Green Version]
- Li, C.M.; Clark, M.E.; Chimento, M.F.; Curcio, C.A. Apolipoprotein localization in isolated drusen and retinal apolipoprotein gene expression. Investig. Ophthalmol. Vis. Sci. 2006, 47, 3119–3128. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Reem, R.E.; Omarova, S.; Huang, S.; DiPatre, P.L.; Charvet, C.D.; Curcio, C.A.; Pikuleva, I.A. Spatial distribution of the pathways of cholesterol homeostasis in human retina. PLoS ONE 2012, 7, e37926. [Google Scholar] [CrossRef] [Green Version]
- Dashti, N.; McGwin, G.; Owsley, C.; Curcio, C.A. Plasma apolipoproteins and risk for age related maculopathy. Br. J. Ophthalmol. 2006, 90, 1028–1033. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Gu, H.M.; Zhang, D.W. ATP-binding cassette transporters and cholesterol translocation. IUBMB Life 2013, 65, 505–512. [Google Scholar] [CrossRef]
- Storti, F.; Klee, K.; Todorova, V.; Steiner, R.; Othman, A.; van der Velde-Visser, S. Impaired ABCA1/ABCG1-mediated lipid efflux in the mouse retinal pigment epithelium (RPE) leads to retinal degeneration. eLife 2019, 8, e45100. [Google Scholar] [CrossRef]
- Yafeng, W.; Mingxu, W.; Yue, H.; Rui, Z.; Le, M. ABCA1 rs1883025 polymorphism and risk of age-related macular degeneration. Graefes Arch. Clin. Exp. Ophthalmol. 2016, 254, 323–332. [Google Scholar]
- Fanging, L.; Yingjie, L.; Mingwu, L.; Yaoyao, S.; Bai, Y.; Yang, F.; Guo, J.; Chen, Y.; Huang, L.; Li, X. ABCA1 rs1883025 polymorphism shows no association with neovascular age-related macular degeneration or polypoidal choroidal vasculopathy in a Northern Chinese population. Ophthalmic. Res. 2014, 51, 210–215. [Google Scholar]
- Waldman, M.; Peterson, S.J.; Arad, M.; Hochhauser, E. The role of 20-HETE in cardiovascular diseases and its risk factors. Prostaglandins Other Lipid Mediat. 2016, 125, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Kubicka, T.A.; Karska-Basta, I.; Kobylarz, J.; Dziedzina, S.; Sanak, M.; Romanowska-Dixon, B. Association between Y402H, E318D and R102G polymorphisms of complement proteins genes and the response to intravitreal anti-VEGF treatment in patients with neovascular age-related macular degeneration. Klin. Oczna 2016, 118, 114–121. [Google Scholar]
- Chen, H.; Yu, K.; Wu, G.Z. Association between variant Y402H in age-related macular degeneration (AMD) susceptibility gene CFH and treatment response of AMD: A meta-analysis. PLoS ONE 2012, 7, e42464. [Google Scholar] [CrossRef] [Green Version]
- Guohai, C.; Radouil, T.; Ensheng, L.; Fangzheng, J.; Mao, S.; Tong, Y. Pharmacogenetics of Complement Factor H Y402H Polymorphism and Treatment of Neovascular AMD with Anti-VEGF Agents: A Meta-Analysis. Sci. Rep. 2015, 28, 14517. [Google Scholar]
- Wickremasinghe, S.S.; Wie, J.; Lim, J.; Chauhan, D.S.; Robman, L.; Richardson, A.J.; Hageman, G.; Baird, P.N.; Guymer, R. Variants in the APOE gene are associated with improved outcome after anti-VEGF treatment for neovascular AMD. Investig. Ophthalmol. Vis. Sci. 2011, 52, 4072–4079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.L.; Chen, C.L.; Wang, Y.X.; Tong, Y.; Fang, X.L.; Li, L.; Wang, Z.Y. Association between polymorphism rs11200638 in the HTRA1 gene and the response to anti-VEGF treatment of exudative AMD: A meta-analysis are current standard treatments. However, the outcome of anti-VEGF therapeutics is not uniform in all patients. BMC Ophthalmol. 2017, 17, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Group | p Value | ||
---|---|---|---|
Exuxudative AMD (eAMD) n = 104 | Control n = 201 | ||
Men, n (%) | 33 (31.7%) | 67 (33.3%) | 0.777 |
Women, n (%) | 71 (68.3%) | 134 (66.7%) | |
Age median (min; max) | 77 (61; 92) | 75 (67; 94) | 0.186 |
Genotype/ Allele | Frequency (%) | ||||
---|---|---|---|---|---|
Control Group n (%) (n = 210) | p Value HWE | eAMD Group n (%) (n = 181) | p Value HWE | p Value | |
Genotype | 0.854 | 0.187 | |||
C/C | 112 (53.33) | 102 (56.35) | χ2= 2.501 p = 0.286 | ||
T/C | 82 (39.05) | 72 (39.78) | |||
T/T | 16 (7.62) | 7 (3.87) | |||
Total | 210 (100) | 181 (100) | |||
Allele | |||||
C | 336 (74.67) | 276 (76.25) | χ2= 0.269 p = 0.604 | ||
T | 114 (25.33) | 86 (23.75) |
Genotype/ Allele | Frequency (%) | ||||
---|---|---|---|---|---|
Control Group n (%) (n = 210) | p Value HWE | eAMD Group n (%) (n = 181) | p Value HWE | p Value | |
Genotype | 0.436 | 0.961 | |||
C/C | 125 (62.2) | 59 (56.7) | χ2 = 1.848 p = 0.397 | ||
T/C | 63 (31.3) | 34 (32.7) | |||
T/T | 13 (6.5) | 11 (2.6) | |||
Total | 201 (100) | 104 (100) | |||
Allele | |||||
C | 313 (77.9) | 152 (73.1) | χ2 = 1.731 p = 0.188 | ||
T | 89 (22.1) | 56 (26.9) |
Genotype/ Allele | Frequency (%) | ||
---|---|---|---|
Responders n(%) (n = 86) | Non-Responders n (%) (n = 18) | p Value | |
Genotype | |||
C/C | 53 (61.6) | 6 (33.3) | χ2 = 4.858 p = 0.088 |
T/C | 25 (29.1) | 9 (50) | |
T/T | 5 (9.3) | 3 (16.7) | |
Total | 86 (100) | 18 (100) | |
Allele | |||
C | 131 (78.9) | 21 (58.3) | χ2 = 6.729 p = 0.009 |
T | 35 (21.1) | 15 (41.7) |
Genotype/ Allele | Frequency (%) | ||
---|---|---|---|
Responders n(%) (n = 86) | Non-Responders n (%) (n = 18) | p Value | |
Genotype | |||
C/C | 50 (58.1) | 11 (61.1) | χ2 = 0.55 p = 0.973 |
T/C | 31 (36) | 6 (33.3) | |
T/T | 5 (5.8) | 1 (5.6) | |
Total | 86 (100) | 18 (100) | |
Allele | |||
C | 131 (76.2) | 28 (77.8) | χ2 = 0.043 p = 0.836 |
T | 41 (23.8) | 8 (22.2) |
Parameter | Time Point | Responders Group | Non-Responders Group | p-Value |
---|---|---|---|---|
Mean Central retinal thickness (CRT) (μM) Median (interquartile range) | Baseline | 338 (100) | 296 (105) | 0.109 |
Three months | 276 (98) | 307 (110) | 0.299 | |
Six months | 275 (88) | 335 (105,5) | 0.360 | |
Mean BCVA Median (interquartile range) | Baseline | 0.30 (0.25) | 0.40 (0.48) | 0.028 |
Three months | 0.35 (0.3) | 0.40 (0.47) | 0.557 | |
Six months | 0.35 (0.28) | 0.30 (0.38) | 0.091 |
Parameter | Time Point | TT + TC | CC | p Value |
---|---|---|---|---|
Mean CRT (μM) Median (interquartile range) | Baseline | 313 (87) | 350 (102.5) | 0.171 |
Three months | 269 (110) | 280 (102) | 0.099 | |
Six months | 271 (111) | 282 (106) | 0.190 | |
BCVA Median (interquartile range) | Baseline | 0.32 (0.34) | 0.3 (0.24) | 0.188 |
Three months | 0.35 (0.4) | 0.4 (0.3) | 0.872 | |
Six months | 0.35 (0.4) | 0.3 (0.3) | 0.744 | |
Changes in BCVA Median (interquartile range) | Six months | 0.00 (0.2) | 0.05 (0.1) | 0.081 |
12 months | 0.00 (0.26) | 0.08 (0.2) | 0.102 | |
Changes in CRT Median (interquartile range) | Six months | 27 (72.5) | 15 (94) | 0.691 |
Parameter | Time Point | TT + TC | CC | p Value |
---|---|---|---|---|
Mean central retinal thickness (μM) Median (interquartile range) | Baseline | 307.5 (84.5) | 350 (94.25) | 0.094 |
Three months | 265 (76.5) | 280 (114.25) | 0.092 | |
Six months | 271 (72.25) | 291.5 (117.75) | 0.030 | |
BCVA Median (interquartile range) | Baseline | 0.265 (0.24) | 0.3 (0.21) | 0.952 |
Three months | 0.325 (0.3) | 0.4 (0.4) | 0.834 | |
Six months | 0.3 (0.27) | 0.31 (0.41) | 0.732 | |
Changes in BCVA Median (interquartile range) | Six months | 0.035 (0.1) | 0.00 (0.19) | 0.261 |
12 months | 0.085 (0.18) | 0.035 (0.28) | 0.698 | |
Changes in central retinal thickness Median (interquartile range) | Six months | 49 (103.5) | 24 (99) | 0.410 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mockute, R.; Vilkeviciute, A.; Balciuniene, V.J.; Zemaitiene, R.; Liutkeviciene, R. ABCA1 rs1883025 and CYP4F2 rs2108622 Gene Polymorphism Association with Age-Related Macular Degeneration and Anti-VEGF Treatment. Medicina 2021, 57, 974. https://doi.org/10.3390/medicina57090974
Mockute R, Vilkeviciute A, Balciuniene VJ, Zemaitiene R, Liutkeviciene R. ABCA1 rs1883025 and CYP4F2 rs2108622 Gene Polymorphism Association with Age-Related Macular Degeneration and Anti-VEGF Treatment. Medicina. 2021; 57(9):974. https://doi.org/10.3390/medicina57090974
Chicago/Turabian StyleMockute, Ruta, Alvita Vilkeviciute, Vilma Jurate Balciuniene, Reda Zemaitiene, and Rasa Liutkeviciene. 2021. "ABCA1 rs1883025 and CYP4F2 rs2108622 Gene Polymorphism Association with Age-Related Macular Degeneration and Anti-VEGF Treatment" Medicina 57, no. 9: 974. https://doi.org/10.3390/medicina57090974
APA StyleMockute, R., Vilkeviciute, A., Balciuniene, V. J., Zemaitiene, R., & Liutkeviciene, R. (2021). ABCA1 rs1883025 and CYP4F2 rs2108622 Gene Polymorphism Association with Age-Related Macular Degeneration and Anti-VEGF Treatment. Medicina, 57(9), 974. https://doi.org/10.3390/medicina57090974