Granulocyte Apheresis: Can It Be Associated with Anti PD-1 Therapy for Melanoma?
Abstract
:1. Introduction
2. Neutrophil Biology and Cancer
3. Neutrophils as Biomarkers in Melanoma Patients Treated with Immune Checkpoint Inhibitors
4. Neutrophils as Therapeutic Targets in Dermatology
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Robert, C.; Long, G.V.; Brady, B.; Dutriaux, C.; Maio, M.; Mortier, L.; Hassel, J.C.; Rutkowski, P.; McNeil, C.; Kalinka-Warzocha, E.; et al. Nivolumab in Previously Untreated Melanoma without BRAF Mutation. N. Engl. J. Med. 2015, 372, 320–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robert, C.; Ribas, A.; Schachter, J.; Arance, A.; Grob, J.-J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.M.; Lotem, M.; et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma (KEYNOTE-006): Post-Hoc 5-Year Results from an Open-Label, Multicentre, Randomised, Controlled, Phase 3 Study. Lancet Oncol. 2019, 20, 1239–1251. [Google Scholar] [CrossRef]
- Perisano, C.; Vitiello, R.; Sgambato, A.; Greco, T.; Cianni, L.; Ragonesi, G.; Malara, T.; Maccauro, G.; Martini, M. Evaluation of PD1 and PD-L1 expression in high-grade sarcomas of the limbs in the adults: Possible implications of immunotherapy. J. Biol. Regul. Homeost. Agents 2020, 34, 289–294. [Google Scholar] [PubMed]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, Y.; Zhao, X.; Xu, M.; Pan, J.; Ma, Y.; Zou, L.; Peng, Q.; Zhang, J.; Su, C.; Xu, Z.; et al. PD-1 Inhibitor Combined with Radiotherapy and GM-CSF (PRaG) in Patients with Metastatic Solid Tumors: An Open-Label Phase II Study. Front. Immunol. 2022, 13, 952066. [Google Scholar] [CrossRef] [PubMed]
- Quail, D.F.; Amulic, B.; Aziz, M.; Barnes, B.J.; Eruslanov, E.; Fridlender, Z.G.; Goodridge, H.S.; Granot, Z.; Hidalgo, A.; Huttenlocher, A.; et al. Neutrophil Phenotypes and Functions in Cancer: A Consensus Statement. J. Exp. Med. 2022, 219, e20220011. [Google Scholar] [CrossRef] [PubMed]
- Amulic, B.; Cazalet, C.; Hayes, G.L.; Metzler, K.D.; Zychlinsky, A. Neutrophil Function: From Mechanisms to Disease. Annu. Rev. Immunol. 2012, 30, 459–489. [Google Scholar] [CrossRef]
- Mantovani, A.; Cassatella, M.A.; Costantini, C.; Jaillon, S. Neutrophils in the Activation and Regulation of Innate and Adaptive Immunity. Nat. Rev. Immunol. 2011, 11, 519–531. [Google Scholar] [CrossRef]
- Matlung, H.L.; Babes, L.; Zhao, X.W.; van Houdt, M.; Treffers, L.W.; van Rees, D.J.; Franke, K.; Schornagel, K.; Verkuijlen, P.; Janssen, H.; et al. Neutrophils Kill Antibody-Opsonized Cancer Cells by Trogoptosis. Cell Rep. 2018, 23, 3946–3959.e6. [Google Scholar] [CrossRef]
- Ley, K.; Hoffman, H.M.; Kubes, P.; Cassatella, M.A.; Zychlinsky, A.; Hedrick, C.C.; Catz, S.D. Neutrophils: New Insights and Open Questions. Sci. Immunol. 2018, 3, eaat4579. [Google Scholar] [CrossRef]
- Casanova-Acebes, M.; Nicolás-Ávila, J.A.; Li, J.L.; García-Silva, S.; Balachander, A.; Rubio-Ponce, A.; Weiss, L.A.; Adrover, J.M.; Burrows, K.; A-González, N.; et al. Neutrophils Instruct Homeostatic and Pathological States in Naive Tissues. J. Exp. Med. 2018, 215, 2778–2795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moses, K.; Brandau, S. Human Neutrophils: Their Role in Cancer and Relation to Myeloid-Derived Suppressor Cells. Semin. Immunol. 2016, 28, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Lecot, P.; Sarabi, M.; Pereira Abrantes, M.; Mussard, J.; Koenderman, L.; Caux, C.; Bendriss-Vermare, N.; Michallet, M.-C. Neutrophil Heterogeneity in Cancer: From Biology to Therapies. Front. Immunol. 2019, 10, 2155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanmamed, M.F.; Carranza-Rua, O.; Alfaro, C.; Oñate, C.; Martín-Algarra, S.; Perez, G.; Landazuri, S.F.; Gonzalez, A.; Gross, S.; Rodriguez, I.; et al. Serum Interleukin-8 Reflects Tumor Burden and Treatment Response across Malignancies of Multiple Tissue Origins. Clin. Cancer Res. 2014, 20, 5697–5707. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.-H.; Liang, S.; Henderson, A.J.; Dong, C. Regulation of Interleukin-8 Expression in Melanoma-Stimulated Neutrophil Inflammatory Response. Exp. Cell Res. 2007, 313, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Wysocki, R.W.; Amoozgar, Z.; Maiorino, L.; Fein, M.R.; Jorns, J.; Schott, A.F.; Kinugasa-Katayama, Y.; Lee, Y.; Won, N.H.; et al. Cancer Cells Induce Metastasis-Supporting Neutrophil Extracellular DNA Traps. Sci. Transl. Med. 2016, 8, 361ra138. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Clavijo, P.E.; Robbins, Y.; Patel, P.; Friedman, J.; Greene, S.; Das, R.; Silvin, C.; Van Waes, C.; Horn, L.A.; et al. Inhibiting Myeloid-Derived Suppressor Cell Trafficking Enhances T Cell Immunotherapy. JCI Insight 2019, 4, 126853. [Google Scholar] [CrossRef] [Green Version]
- Barnes, B.J.; Adrover, J.M.; Baxter-Stoltzfus, A.; Borczuk, A.; Cools-Lartigue, J.; Crawford, J.M.; Daßler-Plenker, J.; Guerci, P.; Huynh, C.; Knight, J.S.; et al. Targeting Potential Drivers of COVID-19: Neutrophil Extracellular Traps. J. Exp. Med. 2020, 217, e20200652. [Google Scholar] [CrossRef]
- Ince, L.M.; Weber, J.; Scheiermann, C. Control of Leukocyte Trafficking by Stress-Associated Hormones. Front. Immunol. 2018, 9, 3143. [Google Scholar] [CrossRef] [Green Version]
- Granot, Z.; Henke, E.; Comen, E.A.; King, T.A.; Norton, L.; Benezra, R. Tumor Entrained Neutrophils Inhibit Seeding in the Premetastatic Lung. Cancer Cell 2011, 20, 300–314. [Google Scholar] [CrossRef]
- Catena, R.; Bhattacharya, N.; El Rayes, T.; Wang, S.; Choi, H.; Gao, D.; Ryu, S.; Joshi, N.; Bielenberg, D.; Lee, S.B.; et al. Bone Marrow-Derived Gr1+ Cells Can Generate a Metastasis-Resistant Microenvironment via Induced Secretion of Thrombospondin-1. Cancer Discov. 2013, 3, 578–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Blois, A.; El Rayes, T.; Liu, J.F.; Hirsch, M.S.; Gravdal, K.; Palakurthi, S.; Bielenberg, D.R.; Akslen, L.A.; Drapkin, R.; et al. Development of a Prosaposin-Derived Therapeutic Cyclic Peptide That Targets Ovarian Cancer via the Tumor Microenvironment. Sci. Transl. Med. 2016, 8, 329ra34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.P.; Padgett, L.; Dinh, H.Q.; Marcovecchio, P.; Blatchley, A.; Wu, R.; Ehinger, E.; Kim, C.; Mikulski, Z.; Seumois, G.; et al. Identification of an Early Unipotent Neutrophil Progenitor with Pro-Tumoral Activity in Mouse and Human Bone Marrow. Cell Rep. 2018, 24, 2329–2341.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalafati, L.; Kourtzelis, I.; Schulte-Schrepping, J.; Li, X.; Hatzioannou, A.; Grinenko, T.; Hagag, E.; Sinha, A.; Has, C.; Dietz, S.; et al. Innate Immune Training of Granulopoiesis Promotes Anti-Tumor Activity. Cell 2020, 183, 771–785.e12. [Google Scholar] [CrossRef]
- Anselmi, M.; Fontana, F.; Marzagalli, M.; Gagliano, N.; Sommariva, M.; Limonta, P. Melanoma Stem Cells Educate Neutrophils to Support Cancer Progression. Cancers 2022, 14, 3391. [Google Scholar] [CrossRef]
- Shaul, M.E.; Fridlender, Z.G. Tumour-Associated Neutrophils in Patients with Cancer. Nat. Rev. Clin. Oncol. 2019, 16, 601–620. [Google Scholar] [CrossRef]
- Pilla, L.; Alberti, A.; Di Mauro, P.; Gemelli, M.; Cogliati, V.; Cazzaniga, M.E.; Bidoli, P.; Maccalli, C. Molecular and Immune Biomarkers for Cutaneous Melanoma: Current Status and Future Prospects. Cancers 2020, 12, 3456. [Google Scholar] [CrossRef]
- Chen, D.S.; Mellman, I. Elements of Cancer Immunity and the Cancer–Immune Set Point. Nature 2017, 541, 321–330. [Google Scholar] [CrossRef]
- Petrelli, F.; Ardito, R.; Merelli, B.; Lonati, V.; Cabiddu, M.; Seghezzi, S.; Barni, S.; Ghidini, A. Prognostic and Predictive Role of Elevated Lactate Dehydrogenase in Patients with Melanoma Treated with Immunotherapy and BRAF Inhibitors: A Systematic Review and Meta-Analysis. Melanoma Res. 2019, 29, 1–12. [Google Scholar] [CrossRef]
- Capone, M.; Giannarelli, D.; Mallardo, D.; Madonna, G.; Festino, L.; Grimaldi, A.M.; Vanella, V.; Simeone, E.; Paone, M.; Palmieri, G.; et al. Baseline neutrophil-to-lymphocyte ratio (NLR) and derived NLR could predict overall survival in patients with advanced melanoma treated with nivolumab. J. Immunother. Cancer 2018, 6, 74. [Google Scholar] [CrossRef]
- Garnier, M.; Zaragoza, J.; Bénéton, N.; Bens, G.; Meurisse, V.; Samimi, M.; Maillard, H.; Machet, L. High Neutrophil-to-Lymphocyte Ratio before Starting Anti-Programmed Cell Death 1 Immunotherapy Predicts Poor Outcome in Patients with Metastatic Melanoma. J. Am. Acad. Dermatol. 2018, 79, 165–167.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartlett, E.K.; Flynn, J.R.; Panageas, K.S.; Ferraro, R.A.; Sta.Cruz, J.M.; Postow, M.A.; Coit, D.G.; Ariyan, C.E. High Neutrophil-to-Lymphocyte Ratio (NLR) Is Associated with Treatment Failure and Death in Patients Who Have Melanoma Treated with PD-1 Inhibitor Monotherapy. Cancer 2020, 126, 76–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, Y.; Liao, D.; Mei, D.; Zhang, Y.; Liu, Y. Elevated Neutrophil-to-Lymphocyte Ratio Is Associated with Poor Outcomes for Melanoma Patients Treated With PD-1 Inhibitor or Chemotherapy in a Chinese Population. Front. Oncol. 2020, 10, 1752. [Google Scholar] [CrossRef]
- Koczka, K.; Rigo, R.; Batuyong, E.; Cook, S.; Asad, M.; Vallerand, I.; Suo, A.; Wang, E.; Cheng, T. Comparing the Associations between Host and Tumor Factors with Survival Outcomes with Anti-PD-1 Immunotherapy in Metastatic Melanoma. Cancer Med. Online ahead of print. 2022. [Google Scholar] [CrossRef] [PubMed]
- Hayward, N.K.; Wilmott, J.S.; Waddell, N.; Johansson, P.A.; Field, M.A.; Nones, K.; Patch, A.-M.; Kakavand, H.; Alexandrov, L.B.; Burke, H.; et al. Whole-Genome Landscapes of Major Melanoma Subtypes. Nature 2017, 545, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Saxena, S.; Wong, E.T. Heterogeneity of Common Hematologic Parameters among Racial, Ethnic, and Gender Subgroups. Arch. Pathol. Lab. Med. 1990, 114, 715–719. [Google Scholar]
- Guida, M.; Bartolomeo, N.; Quaresmini, D.; Quaglino, P.; Madonna, G.; Pigozzo, J.; Di Giacomo, A.M.; Minisini, A.M.; Tucci, M.; Spagnolo, F.; et al. Basal and one-month differed neutrophil, lymphocyte and platelet values and their ratios strongly predict the efficacy of checkpoint inhibitors immunotherapy in patients with advanced BRAF wild-type melanoma. J. Transl. Med. 2022, 20, 159. [Google Scholar] [CrossRef]
- Gnesotto, L.; Mioso, G.; Alaibac, M. Use of Granulocyte and Monocyte Adsorption Apheresis in Dermatology (Review). Exp. Ther. Med. 2022, 24, 536. [Google Scholar] [CrossRef]
- Kanekura, T. Clinical and Immunological Effects of Adsorptive Myeloid Lineage Leukocyte Apheresis in Patients with Immune Disorders. J. Dermatol. 2018, 45, 943–950. [Google Scholar] [CrossRef]
- Kanekura, T.; Hiraishi, K.; Kawahara, K.; Maruyama, I.; Kanzaki, T. Granulocyte and Monocyte Adsorption Apheresis (GCAP) for Refractory Skin Diseases Caused by Activated Neutrophils and Psoriatic Arthritis: Evidence That GCAP Removes Mac-1-Expressing Neutrophils. Ther. Apher. Dial. 2006, 10, 247–256. [Google Scholar] [CrossRef]
- Chen, X.-L.; Mao, J.-W.; Wang, Y.-D. Selective Granulocyte and Monocyte Apheresis in Inflammatory Bowel Disease: Its Past, Present and Future. World J. Gastrointest. Pathophysiol. 2020, 11, 43–56. [Google Scholar] [CrossRef]
- Domènech, E.; Grífols, J.-R.; Akbar, A.; Dignass, A.U. Use of Granulocyte/Monocytapheresis in Ulcerative Colitis: A Practical Review from a European Perspective. World J. Gastroenterol. 2021, 27, 908–918. [Google Scholar] [CrossRef] [PubMed]
- Cuadrado, E. Granulocyte/Monocyte Apheresis as Immunotherapic Tool: Cellular Adsorption and Immune Modulation. Autoimmun. Rev. 2009, 8, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Hanai, H.; Takeda, Y.; Eberhardson, M.; Gruber, R.; Saniabadi, A.R.; Winqvist, O.; Lofberg, R. The Mode of Actions of the Adacolumn Therapeutic Leucocytapheresis in Patients with Inflammatory Bowel Disease: A Concise Review. Clin. Exp. Immunol. 2011, 163, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Lago, I.; Benítez, J.M.; García-Sánchez, V.; Gutiérrez, A.; Sempere, L.; Ginard, D.; Barreiro-de Acosta, M.; Cabriada, J.L. Granulocyte and Monocyte Apheresis in Inflammatory Bowel Disease: The Patients’ Point of View. Gastroenterol. Hepatol. 2018, 41, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Kawai, M.; Kawanami, C.; Fukuda, A.; Seno, H. Pyoderma Gangrenosum with Primary Sclerosing Cholangitis-Associated Colitis Successfully Treated with Concomitant Granulocyte and Monocyte Adsorption Apheresis with Corticosteroids. Clin. J. Gastroenterol. 2021, 14, 1561–1566. [Google Scholar] [CrossRef] [PubMed]
- Panés, J.; Guilera, M.; Ginard, D.; Hinojosa, J.; González-Carro, P.; González-Lara, V.; Varea, V.; Domènech, E.; Badia, X. Treatment Cost of Ulcerative Colitis Is Apheresis with Adacolumn Cost-Effective? Dig. Liver Dis. 2007, 39, 617–625. [Google Scholar] [CrossRef]
- Tabuchi, T.; Ubukata, H.; Sato, S.; Nakata, I.; Goto, Y.; Watanabe, Y.; Hashimoto, T.; Mizuta, T.; Adachi, M.; Soma, T. Granulocytapheresis as a possible cancer treatment. Anticancer Res. 1995, 15, 985–990. [Google Scholar] [CrossRef]
- Yonekawa, M.; Kawamura, A.; Komai, T.; Agishi, T.; Adachi, M. Extra-corporeal granulocytapheresis for cancer and rheumatoid arthritis. Transfus. Sci. 1996, 17, 463–472. [Google Scholar] [CrossRef]
- Tabuchi, T.; Ubukata, H.; Saniabadi, A.R.; Soma, T. Granulocyte apheresis as a possible new approach in cancer therapy: A pilot study involving two cases. Cancer Detect. Prev. 1999, 23, 417–421. [Google Scholar] [CrossRef]
- Ferrucci, P.F.; Ascierto, P.A.; Pigozzo, J.; Del Vecchio, M.; Maio, M.; Antonini Cappellini, G.C.; Guidoboni, M.; Queirolo, P.; Savoia, P.; Mandalà, M.; et al. Baseline Neutrophils and Derived Neutrophil-to-Lymphocyte Ratio: Prognostic Relevance in Metastatic Melanoma Patients Receiving Ipilimumab. Ann. Oncol. 2016, 27, 732–738. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sernicola, A.; Colpo, A.; Leahu, A.I.; Alaibac, M. Granulocyte Apheresis: Can It Be Associated with Anti PD-1 Therapy for Melanoma? Medicina 2022, 58, 1398. https://doi.org/10.3390/medicina58101398
Sernicola A, Colpo A, Leahu AI, Alaibac M. Granulocyte Apheresis: Can It Be Associated with Anti PD-1 Therapy for Melanoma? Medicina. 2022; 58(10):1398. https://doi.org/10.3390/medicina58101398
Chicago/Turabian StyleSernicola, Alvise, Anna Colpo, Anca Irina Leahu, and Mauro Alaibac. 2022. "Granulocyte Apheresis: Can It Be Associated with Anti PD-1 Therapy for Melanoma?" Medicina 58, no. 10: 1398. https://doi.org/10.3390/medicina58101398