A Novel Technique for Treatment of Metaphyseal Voids in Proximal Humerus Fractures in Elderly Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pre-Operative
2.2. Operative
2.3. Novel Technique of PMMA Metaphyseal Void Augmentation
2.4. Post-Operative
2.5. Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kralinger, F.; Blauth, M.; Goldhahn, J.; Käch, K.; Voigt, C.; Platz, A.; Hanson, B. The Influence of Local Bone Density on the Outcome of One Hundred and Fifty Proximal Humeral Fractures Treated with a Locking Plate. J. Bone Jt. Surg. Am. 2014, 96, 1026–1032. [Google Scholar] [CrossRef]
- Panagiotopoulou, V.C.; Varga, P.; Richards, R.G.; Gueorguiev, B.; Giannoudis, P.V. Late screw-related complications in locking plating of proximal humerus fractures: A systematic review. Injury 2019, 50, 2176–2195. [Google Scholar] [CrossRef] [PubMed]
- Krappinger, D.; Bizzotto, N.; Riedmann, S.; Kammerlander, C.; Hengg, C.; Kralinger, F.S. Predicting failure after surgical fixation of proximal humerus fractures. Injury 2011, 42, 1283–1288. [Google Scholar] [CrossRef]
- Sproul, R.C.; Iyengar, J.J.; Devcic, Z.; Feeley, B.T. A systematic review of locking plate fixation of proximal humerus fractures. Injury 2011, 42, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.E.; Leung, B.C.; Spratt, K.F.; Koval, K.J.; Weinstein, J.D.; Goodman, D.C.; Tosteson, A.N. Trends and variation in incidence, surgical treatment, and repeat surgery of proximal humeral fractures in the elderly. J. Bone Jt. Surg. Am. 2011, 93, 121–131. [Google Scholar] [CrossRef]
- Yahuaca, B.I.; Simon, P.; Christmas, K.N.; Patel, S.; Gorman, R.A., 2nd; Mighell, M.A.; Frankle, M.A. Acute surgical management of proximal humerus fractures: ORIF vs. hemiarthroplasty vs. reverse shoulder arthroplasty. J. Shoulder Elb. Surg. 2020, 29, S32–S40. [Google Scholar] [CrossRef] [PubMed]
- Biermann, N.; Prall, W.C.; Bocker, W.; Mayr, H.O.; Haasters, F. Augmentation of plate osteosynthesis for proximal humeral fractures: A systematic review of current biomechanical and clinical studies. Arch. Orthop. Trauma Surg. 2019, 139, 1075–1099. [Google Scholar] [CrossRef]
- Roderer, G.; Scola, A.; Schmolz, W.; Gebhard, F.; Windolf, M.; Hofmann-Fliri, L. Biomechanical in vitro assessment of screw augmentation in locked plating of proximal humerus fractures. Injury 2013, 44, 1327–1332. [Google Scholar] [CrossRef]
- Hengg, C.; Nijs, S.; Klopfer, T.; Jaeger, M.; Platz, A.; Pohlemann, T.; Babst, R.; Franke, J.; Kralinger, F. Cement augmentation of the proximal humerus internal locking system in elderly patients: A multicenter randomized controlled trial. Arch. Orthop. Trauma Surg. 2019, 139, 927–942. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, J.; Molony, D.; Burke, N.G.; FitzPatrick, D.; Mullett, H. Effect of calcium triphosphate cement on proximal humeral fracture osteosynthesis: A cadaveric biomechanical study. J. Orthop. Surg. 2013, 21, 173–177. [Google Scholar] [CrossRef]
- Solberg, B.D.; Moon, C.N.; Franco, D.P.; Paiement, G.D. Locked plating of 3- and 4-part proximal humerus fractures in older patients: The effect of initial fracture pattern on outcome. J. Orthop. Trauma 2009, 23, 113–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varga, P.; Inzana, J.A.; Fletcher, J.W.A.; Hofmann-Fliri, L.; Runer, A.; Dr., N.P.S.P.; Windolf, M. Cement augmentation of calcar screws may provide the greatest reduction in predicted screw cut-out risk for proximal humerus plating based on validated parametric computational modelling. Bone Jt. Res. 2020, 9, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Sprecher, C.M.; Schmidutz, F.; Helfen, T.; Richards, R.G.; Blauth, M.; Milz, S. Histomorphometric Assessment of Cancellous and Cortical Bone Material Distribution in the Proximal Humerus of Normal and Osteoporotic Individuals: Significantly Reduced Bone Stock in the Metaphyseal and Subcapital Regions of Osteoporotic Individuals. Medicine 2015, 94, e2043. [Google Scholar] [CrossRef]
- Kwon, B.K.; Goertzen, D.J.; O’Brien, P.J.; Broekhuyse, H.M.; Oxland, T.R. Biomechanical evaluation of proximal humeral fracture fixation supplemented with calcium phosphate cement. J. Bone Jt. Surg. Am. 2002, 84, 951–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, C.M.; Page, R.S. Severely impacted valgus proximal humeral fractures. J. Bone Jt. Surg. Am. 2004, 86 (Suppl. 1), 143–155. [Google Scholar] [CrossRef] [Green Version]
- Somasundaram, K.; Huber, C.P.; Babu, V.; Zadeh, H. Proximal humeral fractures: The role of calcium sulphate augmentation and extended deltoid splitting approach in internal fixation using locking plates. Injury 2013, 44, 481–487. [Google Scholar] [CrossRef]
- Marongiu, G.; Verona, M.; Cardoni, G.; Capone, A. Synthetic Bone Substitutes and Mechanical Devices for the Augmentation of Osteoporotic Proximal Humeral Fractures: A Systematic Review of Clinical Studies. J. Funct. Biomater. 2020, 11, 29. [Google Scholar] [CrossRef]
- Egol, K.A.; Sugi, M.T.; Ong, C.C.; Montero, N.; Davidovitch, R.; Zuckerman, J.D. Fracture site augmentation with calcium phosphate cement reduces screw penetration after open reduction-internal fixation of proximal humeral fractures. J. Shoulder Elb. Surg. 2012, 21, 741–748. [Google Scholar] [CrossRef]
- Schroter, L.; Kaiser, F.; Stein, S.; Gbureck, U.; Ignatius, A. Biological and mechanical performance and degradation characteristics of calcium phosphate cements in large animals and humans. Acta Biomater. 2020, 117, 1–20. [Google Scholar] [CrossRef]
- Maestretti, G.; Sutter, P.; Monnard, E.; Ciarpaglini, R.; Wahl, P.; Hoogewoud, H.; Gautier, E. A prospective study of percutaneous balloon kyphoplasty with calcium phosphate cement in traumatic vertebral fractures: 10-year results. Eur. Spine J. 2014, 23, 1354–1360. [Google Scholar] [CrossRef]
- Hulme, P.A.; Krebs, J.; Ferguson, S.J.; Berlemann, U. Vertebroplasty and kyphoplasty: A systematic review of 69 clinical studies. Spine 2006, 31, 1983–2001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieberman, I.H.; Togawa, D.; Kayanja, M.M. Vertebroplasty and kyphoplasty: Filler materials. Spine J. 2005, 5, 305S–316S. [Google Scholar] [CrossRef]
- Anselmetti, G.C.; Manca, A.; Kanika, K.; Murphy, K.; Eminefendic, H.; Masala, S.; Regge, D. Temperature measurement during polymerization of bone cement in percutaneous vertebroplasty: An in vivo study in humans. Cardiovasc. Intervent. Radiol. 2009, 32, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Kim, T.Y.; Hwang, J.T. PHILOS plate fixation with polymethyl methacrylate cement augmentation of an osteoporotic proximal humerus fracture. Clin. Shoulder Elb. 2020, 23, 156–158. [Google Scholar] [CrossRef]
- Spross, C.; Grueninger, P.; Gohil, S.; Dietrich, M. Open Reduction and Internal Fixation of Fractures of the Proximal Part of the Humerus. JBJS Essent. Surg. Tech. 2015, 5, e15. [Google Scholar] [CrossRef] [PubMed]
- Schnetzke, M.; Bockmeyer, J.; Porschke, F.; Studier-Fischer, S.; Grutzner, P.A.; Guehring, T. Quality of Reduction Influences Outcome After Locked-Plate Fixation of Proximal Humeral Type-C Fractures. J. Bone Jt. Surg. Am. 2016, 98, 1777–1785. [Google Scholar] [CrossRef] [PubMed]
- Boesmueller, S.; Wech, M.; Gregori, M.; Domaszewski, F.; Bukaty, A.; Fialka, C.; Albrecht, C. Risk factors for humeral head necrosis and non-union after plating in proximal humeral fractures. Injury 2016, 47, 350–355. [Google Scholar] [CrossRef]
- Booker, S.; Alfahad, N.; Scott, M.; Gooding, B.; Wallace, W.A. Use of scoring systems for assessing and reporting the outcome results from shoulder surgery and arthroplasty. World J. Orthop. 2015, 6, 244–251. [Google Scholar] [CrossRef]
- Brunner, F.; Sommer, C.; Bahrs, C.; Heuwinkel, R.; Hafner, C.; Rillmann, P.; Kohut, G.; Ekelund, A.; Muller, M.; Audigé, L.; et al. Open Reduction and Internal Fixation of Proximal Humerus Fractures Using a Proximal Humeral Locked Plate: A Prospective Multicenter Analysis. J. Orthop. Trauma 2009, 23, 163–172. [Google Scholar] [CrossRef]
- Spross, C.; Zeledon, R.; Zdravkovic, V.; Jost, B. How bone quality may influence intraoperative and early postoperative problems after angular stable open reduction–internal fixation of proximal humeral fractures. J. Shoulder Elb. Surg. 2017, 26, 1566–1572. [Google Scholar] [CrossRef]
- Thanasas, C.; Kontakis, G.; Angoules, A.; Limb, D.; Giannoudis, P. Treatment of proximal humerus fractures with locking plates: A systematic review. J. Shoulder Elb. Surg. 2009, 18, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Klug, A.; Wincheringer, D.; Harth, J.; Schmidt-Horlohe, K.; Hoffmann, R.; Gramlich, Y. Complications after surgical treatment of proximal humerus fractures in the elderly-an analysis of complication patterns and risk factors for reverse shoulder arthroplasty and angular-stable plating. J. Shoulder Elb. Surg. 2019, 28, 1674–1684. [Google Scholar] [CrossRef] [PubMed]
- Miyamura, S.; Lans, J.; Min, K.S.; Waryasz, G.R.; Murase, T.; Chen, N.C. Bone resorption of the greater tuberosity after open reduction and internal fixation of complex proximal humeral fractures: Fragment characteristics and intraoperative risk factors. J. Shoulder Elb. Surg. 2021, 30, 1626–1635. [Google Scholar] [CrossRef] [PubMed]
- Cristofolini, L.; Ruspi, M.L.; Marras, D.; Cavallo, M.; Guerra, E. Reconstruction of proximal humeral fractures without screws using a reinforced bone substitute. J. Biomech. 2021, 115, 110138. [Google Scholar] [CrossRef]
- Blazejak, M.; Hofmann-Fliri, L.; Buchler, L.; Gueorguiev, B.; Windolf, M. In vitro temperature evaluation during cement augmentation of proximal humerus plate screw tips. Injury 2013, 44, 1321–1326. [Google Scholar] [CrossRef]
- Gradl, G.; Knobe, M.; Stoffel, M.; Prescher, A.; Dirrichs, T.; Pape, H.C. Biomechanical evaluation of locking plate fixation of proximal humeral fractures augmented with calcium phosphate cement. J. Orthop. Trauma 2013, 27, 399–404. [Google Scholar] [CrossRef]
- Unger, S.; Erhart, S.; Kralinger, F.; Blauth, M.; Schmoelz, W. The effect of in situ augmentation on implant anchorage in proximal humeral head fractures. Injury 2012, 43, 1759–1763. [Google Scholar] [CrossRef]
Parameter | Range of Fracture Reduction | ||
---|---|---|---|
Anatomical | Acceptable | Malreduced | |
HSD (mm) | Anatomical | ≤5 | >5 |
NSA (°) | Normal (120–150) | Minor varus (110–120) | >150 (valgus) or <110 (major varus) |
GTC (mm) | Anatomical | ≤5 | >5 |
Treatment Group | Number of Cases | Age (Years) | ||||
---|---|---|---|---|---|---|
Female | Male | Total | Neer Classification | |||
Three-Part | Four-Part | |||||
Non-augmentation | 56 (89%) | 7 (11%) | 63 | 61 (97%) | 2 (3%) | 63.4 ± 12.7 |
Bone graft augmentation | 25 (89%) | 3 (11%) | 28 | 24 (86%) | 4 (14%) | 64.5 ± 10.6 |
PMMA augmentation | 28 (97%) | 1 (3%) | 29 | 21 (72%) | 8 (28%) | 71.9 ± 10.7 |
Treatment Group | Follow-Up Period (Months) | ||
---|---|---|---|
3 | 6 | 12 | |
Non-augmentation | 24.77 ± 7.51 | 15.19 ± 6.93 | 8.42 ± 5.59 |
Bone graft augmentation | 26.86 ± 7.12 | 18.29 ± 6.30 | 10.15 ± 5.32 |
PMMA augmentation | 23.67 ± 7.95 | 15.53 ± 5.91 | 10.21 ± 6.83 |
Treatment Group | Follow-Up Period (Months) | Difference to Contralateral at 12 Months | ||
---|---|---|---|---|
3 | 6 | 12 | ||
Non-augmentation | 49.03 ± 12.95 | 68.08 ± 12.74 | 80.53 ± 12.12 | 16.63 ± 11.99 (82.74 ± 12.34%) |
Bone graft augmentation | 45.32 ± 10.18 | 64.96 ± 11.19 | 77.36 ± 11.89 | 13.18 ± 8.54 (85.25 ± 9.41%) |
PMMA augmentation | 52.90 ± 9.59 | 69.90 ± 9.16 | 79.48 ± 14.02 | 13.54 ± 11.22 (84.83 ± 12.67%) |
Treatment Group | Follow-Up Period (Months) | ||
---|---|---|---|
3 | 6 | 12 | |
Internal rotation (°) | |||
Non-augmentation | 39.35 ± 9.30 | 55.97 ± 9.18 | 62.74 ± 9.86 |
Bone graft augmentation | 40.71 ± 9.79 | 58.04 ± 7.86 | 63.39 ± 7.58 |
PMMA augmentation | 42.59 ± 9.88 | 57.07 ± 10.48 | 64.48 ± 8.06 |
External rotation (°) | |||
Non-augmentation | 51.94 ± 11.28 | 65.00 ± 6.07 | 67.42 ± 4.41 |
Bone graft augmentation | 53.21 ± 9.64 | 65.89 ± 4.92 | 68.57 ± 3.56 |
PMMA augmentation | 55.86 ± 8.77 | 65.17 ± 7.13 | 67.93 ± 4.12 |
Flexion (°) | |||
Non-augmentation | 111.85 ± 22.73 | 142.50 ± 19.16 | 157.83 ± 15.06 |
Bone graft augmentation | 106.96 ± 18.68 | 137.86 ± 15.48 | 154.82 ± 15.24 |
PMMA augmentation | 113.28 ± 14.84 | 141.72 ± 19.93 | 154.14 ± 19.32 |
Abduction (°) | |||
Non-augmentation | 93.31 ± 23.66 | 127.02 ± 21.53 | 146.21 ± 20.58 |
Bone graft augmentation | 88.93 ± 21.27 | 119.11 ± 16.89 | 139.82 ± 17.87 |
PMMA augmentation | 97.41 ± 15.27 | 123.28 ± 21.14 | 139.48 ± 23.58 |
Complications (Overall Incidence) | Treatment Groups | ||
---|---|---|---|
1 | 2 | 3 | |
Intraoperative | |||
Iatrogenic screw penetration (4.2%) | 2 | 1 | 2 |
Intraosseous broken drill bit (0.8%) | 0 | 0 | 1 |
Neuropraxia—lateral femoral cutaneous nerve (0.8%) | 0 | 1 | 0 |
Postoperative | |||
Varus with NSA < 110° or NSA change > 10° (7.6%) | 7 | 2 | 0 |
GT proximalization (5.0%) | 3 | 2 | 1 |
Partial GT resorption (1.7%) | 0 | 0 | 2 |
Subacromial impingement (6.7%) | 5 | 2 | 1 |
Secondary screw perforation (4.2%) | 3 | 2 | 0 |
Adhesive capsulitise (6.7%) | 6 | 2 | 0 |
Pain at the donor site—iliac crest (1.7%) | 0 | 2 | 0 |
AVN (6.7%) | 3 | 3 | 2 |
Infection (1.7%) | 1 | 1 | 0 |
Other implant-related complications (5.0%) | 4 | 2 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hristov, S.; Visscher, L.; Winkler, J.; Zhelev, D.; Ivanov, S.; Veselinov, D.; Baltov, A.; Varga, P.; Berk, T.; Stoffel, K.; et al. A Novel Technique for Treatment of Metaphyseal Voids in Proximal Humerus Fractures in Elderly Patients. Medicina 2022, 58, 1424. https://doi.org/10.3390/medicina58101424
Hristov S, Visscher L, Winkler J, Zhelev D, Ivanov S, Veselinov D, Baltov A, Varga P, Berk T, Stoffel K, et al. A Novel Technique for Treatment of Metaphyseal Voids in Proximal Humerus Fractures in Elderly Patients. Medicina. 2022; 58(10):1424. https://doi.org/10.3390/medicina58101424
Chicago/Turabian StyleHristov, Stoyan, Luke Visscher, Jörg Winkler, Daniel Zhelev, Stoyan Ivanov, Deyan Veselinov, Asen Baltov, Peter Varga, Till Berk, Karl Stoffel, and et al. 2022. "A Novel Technique for Treatment of Metaphyseal Voids in Proximal Humerus Fractures in Elderly Patients" Medicina 58, no. 10: 1424. https://doi.org/10.3390/medicina58101424
APA StyleHristov, S., Visscher, L., Winkler, J., Zhelev, D., Ivanov, S., Veselinov, D., Baltov, A., Varga, P., Berk, T., Stoffel, K., Kralinger, F., & Gueorguiev, B. (2022). A Novel Technique for Treatment of Metaphyseal Voids in Proximal Humerus Fractures in Elderly Patients. Medicina, 58(10), 1424. https://doi.org/10.3390/medicina58101424